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Abstract. Hurricane Florence (2018) was one of the most destructive storms

of the 2018 hurricane season. This storm produced a substantial amount of pre-

cipitation, which caused immense flooding along the coast. As a result, billions
of dollars of damage were done to the coast. This study explored approaches to

improve the prediction of the track and intensity of Hurricane Florence (2018)

by utilizing the deterministic Numerical Weather Prediction (NWP) models
and a statistical modeling-based ensemble technique. The Global Forecast

System (GFS) data is employed to initialize the Weather Research and Fore-

casting (WRF) and Hurricane WRF (HWRF) models to produce numerous
simulations with various scheme options and starting times. The simulation

data from five different NWP (Numerical Weather Prediction) models includ-

ing the HWRF, WRF, ECMWF (European Centre for Medium-Range Weather
Forecasts), and GFS models, were then interpolated to prepare for the statisti-

cal models. With the interpolated data, a hybrid method with multiple linear
regression (MLR), random forest, and simple ensemble (SE) was developed.

This hybrid method used multiple linear regression and random forest to iden-

tify the significant factors for hurricane prediction in the training set, and an
averaging ensemble was then applied to the significant factors’ data. As veri-

fied in the testing data sets, the errors from the hybrid method were reduced,

indicating the improvement of the predictability. It is found that our numerical
simulations using the HWRF model with a statistical modeling-based ensem-

ble technique improved the accuracy of the track and intensity prediction of

Hurricane Florence (2018). Overall, these tools and methods can greatly im-
prove the accuracy of the track and intensity prediction of future hurricanes
like Florence and can help ensure better civilian preparedness for a hazardous

storm.

1. Introduction. Hurricane Florence (2018) was a powerful and long-lived hurri-
cane that caused extensive damage in the Carolinas in September 2018, primarily as
a result of both freshwater and saltwater flooding. Florence originated from a strong
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tropical wave that emerged off the west coast of Africa on August 30th. The wave
steadily organized and strengthened into a tropical depression on the next day, then
acquired tropical storm strength on September 1st. As it moved north-westward,
Florence intensified rapidly on September 4–5, reaching Category 4. Then, it weak-
ened rapidly to tropical storm on September 7. Florence re-intensified to hurricane
strength on September 9 and major hurricane status by the following day. It reached
its peak intensity on September 11, when the east coast received warnings from the
NHC (National Hurricane Center). Then, it weakened to Category 1 on September
13, turned southward, and made the landfall the next day near Wilmington, North
Carolina. Two days later it resumed northward then north-eastward direction, dis-
sipated, and quickly went back to sea on September 18.

As shown in Fig.1, over the sea, Florence’s track looks mostly straight north-
westward, with a slight northward deflection on September 6—10. Starting on Sep-
tember 13, Florence stalled for two and a half days while turning southward and
making landfall in North Carolina as a weakened Category 1 hurricane. However,
this Category 1 storm created storm damage equivalent to a Category 5 hurricane.
At its peak just before landfall, the 500-mile-wide storm had an area of tropical
storm force winds that was 300 miles wide [1]. The combination of strong winds,
size and slow speed prompted wide-spread record high storm surge (9 to 13 feet)
across eastern North Carolina [11]. Many places received record-breaking rainfall,
with more than 30 inches (760 mm) measured in some places (Fig.2). As the ninth
most-destructive hurricane to hit United States, the storm caused a total of 54
deaths, and property damage and economic losses of $24.23 billion, with $24 billion
in damages in the Carolinas alone [12].

Figure 1. Hurricane Florence 2018 track from NHC

Strong storms such as tropical cyclones often cause flooding hazards in coastal
areas due to a combination of storm surge, gusty winds, and precipitation. Accu-
rate predictions are critical for effective disaster mitigation. While advanced storm
surge/flood modeling systems have been developed, they are heavily dependent on
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Figure 2. Observed precipitation of Hurricane Florence 2018

the accuracy of the tropical cyclone (TC) prediction [7]. Especially challenging is
predicting instances when abrupt variations occur in TC track and intensity.

This study focuses on the accurate prediction of track and intensity near landfall.
For the forecasting errors, we refer to the data in NHC for the annual average error
in Fig.3 for the track and Fig.4 for the intensity. In 2018, the track error is about
33 nautical miles for 24 hours, and the intensity error is about 7 knots for 24 hours.
We are using these as references to evaluate our ensemble model’s performance.
For Florence 2018, the ensemble techniques have been applied to investigate the
flooding [3], and Johnson [5] employed the regression-based ensemble technique
on the track. Some good statistical model based super ensemble techniques were
developed in analyzing climate variables [6]. Our goal is to improve the predictions
by combining deterministic NWP (Numerical Weather Prediction) and statistical
models on track and intensity.

2. NWP experiments.

2.1. WRF simulations. The WRF-ARW (Weather Research and Forecast, Ad-
vanced Research WRF, denoted as WRF) is a state-of-the-art atmospheric model-
ing system designed for both meteorological research and weather prediction. It
offers a host of options for atmospheric processes and can run on a variety of
computing platforms [10]. WRF excels in a broad range of applications across
scales ranging from tens of meters to thousands of kilometers, including meteo-
rological studies, real-time NWP, idealized simulations, data assimilation, earth
system model coupling, and model training and educational support. In study-
ing this hurricane, we utilized WRF v4.4 and conducted numerous simulations
[8]. The varied configuration options include the domain size, resolution, mi-
crophysics scheme, boundary layer model, cumulus parameterization, sea surface
temperature updating, and pressure top. The starting time varied from Septem-
ber 10 to 11. The model initialization and boundary data are ERA-Interim and
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Figure 3. Track error from NHC

Figure 4. Intensity error from NHC
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ERA5 (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim, or
https://rda.ucar.edu/datasets/ds627.0). Both are from the European Centre for
Medium-Range Weather Forecasts (ECMWF) reanalysis.

The WRF simulated results are compared with the observation data (best track
data) from HURDAT2 (https://www.aoml.noaa.gov/hrd/ hurdat/hurdat2.html) for
the track and intensity. Our study [8] reveals that the WRF tracks are sensitive to
the simulation domain with slight improvement from the frequent SST (Sea Sur-
face Temperature) updating and deep high pressure-top. Overall, the WRF results
match reasonably well with the observation data after two days’ simulation, al-
though some error persists. Figure 5 shows the track results of some simulation
cases. In Fig.5, we can see two sets of tracks: one with a huge southward turning
over the sea and made landfall in South Carolina; the other matches better with
the observation, but still with big errors at the southward turning near landfall.

Figure 5. WRF-ARW simulations

2.2. HWRF simulations. The HWRF (Hurricane WRF) model is a specialized
version of the WRF and is the operational backbone for hurricane track and inten-
sity forecasts by the NHC. The HWRF system includes the WRF model software
infrastructure, the NMM-E (Non-Hydrostatic Mesoscale Model on the E Grid) dy-
namic core, the MPIPOM-TC (Message Passing Interface Princeton Ocean Model-
Tropical Cyclone), and the NCEP (National Centers for Environmental Prediction)
coupler [13]. Studies show accurate predictions from HWRF for the track and in-
tensity of hurricanes. The HWRF package v4.0 is well wrapped in Python scripts
and the components are tightly streamlined with optimal schemes [2]. The initial-
ization and boundary data are the GFS (Global Forecast System) forecasting data
(https://rda.ucar.edu/datasets/ds084.1/).

The HWRF simulations were set on a parent domain covering 80o × 80o with
two moving nest domains (24o × 24o and 7o × 7o) on a rotated latitude/longitude
E-staggered grid. The center of the stationary parent domain was at the loca-
tion of the initial storm, and the nest domains moved along with the storm using
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a two-way interactive nesting. The resolutions were set at 0.099o (about 11km),
0.033o (about 3.67km), and 0.011o (about 1.22km). We used 10 hPa for model top
and 75 for vertical levels. The other schemes included SASAS (Scale-Aware Sim-
plified Arakawa-Schubert) for cumulus parameterization, Ferrier-Aligo package for
microphysics, GFS eddy-diffusivity mass flux scheme for planetary boundary layer,
Monin-Obukhov scheme for surface flux, and RRTMG (Rapid Radiative Transfer
Model for General Circulation Models) for radiation effects.

Figure 6. HWRF simulations

In HWRF simulations, we mainly varied the starting times [9]. The individual
tracks in comparison with the observation data were plotted in Fig.6 for starting
times on 09/10 and 09/11, and in Fig.7 for starting times on 09/12 and 09/13. It
can be seen from these two figures that, in general, the closer the starting time
is to the landfall time the better the simulation result is. The tracks from the
cases with starting times on 09/10 are all straight in the northwest direction, while
one day later (09/11) the tracks start to deflect toward the north before landfall,
which can be seen clearly in case 9/11 18Z in Fig.6. The cases starting on 09/12
showed clear southward then northward turning after landfall. In Fig.7, the cases
starting late 09/12 start to curve/turn north before landfall, while the cases starting
on 09/13 show clear curving and turning northward before landfall and southward
after landfall, matching very well with the observation track.

The intensity results (not shown here) are consistent with the track results. The
maximum winds from the cases with early starting times on 09/10 and 09/11 show
large discrepancies, while the later starting times on 09/12 and 09/13 show small
errors with the simulation results varying around the observation values up and
down. Overall, the case with starting time 09/13 00Z, which is 36 hours before the
landfall time, provides the best results in track and intensity near landfall.

2.3. Error analysis. To better evaluate the performance of the simulation cases,
we calculated the storm center errors (in distance) for the tracks (Fig.8) and the
errors of the maximum winds (Fig.9) for intensity. Around landfall at 9/14 12Z,
both cases with starting times at 9/13 00Z and 9/14 00Z have an error of 30 km. A
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Figure 7. HWRF simulations

simple average of these two may result in a better case with a distance error 17 km
at the landfall. In general, on average the location distance error within 24 hours is
44 km. The intensity error in Fig.9 also shows the best two cases of 9/13 and 9/14
with small errors of 2 and 3 knots. On average, the intensity error is 8 knots within
24 hours.

Figure 8. Track errors for HWRF simulations

3. Methodology.

3.1. Data collection. In this study, we retrieved and obtained data for Florence
2018 from various NWP models: WRF (one case), HWRF (one case), GFS (forecast
data), and ECMWF (ERA-Interim, ERA5). The GFS forecast, ERA-Interim, and
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Figure 9. Intensity errors for HWRF simulations

ERA5 are downloaded from the RDA website. The initial time for these data is
09/11 00Z. These data from different NWP models are used in our statistical model-
based ensemble method to improve the accuracy of prediction, especially for track
and intensity. A simple analysis of these data on track and intensity is shown in
Fig.10.

Figure 10. Track and intensity for the data collected
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Overall, the track data from NWP models match well with the observation to
some extent. Some discrepancies occur at the beginning in the WRF and ERA-
Interim data. The big discrepancies occurred at the turnings before and after land-
fall. As shown in Fig.10a, the GFS forecast track stalled at the coast and never
made landfall, the HWRF track went straight northwest and made landfall 12 hours
early, the WRF track followed well with the observation until a half day after the
landfall turning northward early. Relatively, the ERA-Interim and ERA5 tracks
matched well with the observation in Fig.10a.

The intensity in Figs.10b & 10c, however, showed large discrepancies. In Fig.10b
for the maximum winds, the worst case was the ERA-Interim, which remained at
20-30 m/s the whole time, the winds in ERA5 were about 10m/s higher than the
ERA-Interim. Both the ECMWF data sets never picked up the hurricane strength.
The GFS were about 60 m/s till 6 hours after landfall when the GFS wind started
to match with the observation and decreased following the observation. The WRF
simulation data started with 60m/s and picked up the hurricane strength in about
two days, over predicted with higher values before the landfall, then decreased along
with the observation but remained above after landfall. The HWRF simulation
provided the best matching values for the hurricane intensity. With the largest
error as 30 m/s at landfall, the HWRF data followed the observation in the entire
simulation time. In Fig.10c for the minimum MSLP (Mean Sea Level Pressure),
the worst case is again ERA-Interim with the highest values above the observation.
The values from the GFS forecast and WRF were comparable to each other and did
not match with the observation until almost one day after the landfall. Unlike the
wind result, the ERA5 pressure values were lower/better than the GFS/WRF/ERA-
Interim data. The best pressure data was from HWRF, starting with almost the
same value of 945 mb, and remaining within 10 mb error in the whole simulation
time.

From the above analysis, the WRF and HWRF simulations with starting time
9/11 have large errors for the prediction of landfall location, but their intensity
match with the observation data with little errors. The ERA-Interim and ERA5
match well on track with small error but have large errors on intensity. With large
variation and discrepancies, we use this set of data to test the regression-based
ensemble techniques.

3.2. Statistical modeling. The main steps of the regression-based ensemble tech-
nique are: first interpolate the data, then separate the data into training set and
testing or forecasting set, use the training set to build the regression model, test or
forecast using the testing set, and lastly revise the regression model(s) accordingly.
In the regression models, the usual sampling size is about 1000 data points [4].
However, the 6-hourly observation data has only 4 data points for one day. The
other data sets could be 3-hourly and hourly, which are still not enough. Interpolat-
ing the data into smaller time intervals (i.e., 3 mins) helps with the consistent time
stamps for the data points and provides sufficient sampling size for regression model
training. The goal is to predict landfall, specifically the location and the intensity.
The earlier times data are used to train the regression model. Thus, we separate
the data into a training set covering 9/11 00Z to 9/14 00Z and a testing set for
the rest for 9/14 00Z to 9/15 00Z. We use the training set to train the model, then
use the model to test. The observation data (interpolated) is used to supervise the
data in the training stage and to verify (evaluate) in the test (forecasting) stage.
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Lastly, we revise the model based on the verification and evaluation results. For a
new model, the last two steps (training and testing) may be repeated.

Figure 11 shows an example of interpolating the observed track data in latitude
and longitude. The left is the original data, and the right is the interpolated data.
The thick short blue line shows the cut off place for the training set and test-
ing/forecasting set. Similar interpolation is conducted on the intensity data with
the same cut off place for the training set and testing/forecasting set. The figure is
omitted here.

Figure 11. An example of interpolated data for the observation
track. (a) The original track data; (b) The interpolated data.

The statistical models employed in this study are multiple linear regression and
random forest regression. The traditional simple ensemble takes the average of all
the ensemble members included in the model. The data from NWP models serve as
predictors, and the observed data serves as the real value of the predictant. In this
study, different statistical models are built/trained separately for different variable
fields. The RMSE (root mean square error) is utilized in this study to measure the
performance of the models. The definition of the RMSE is

RMSE =

√
Σn

i=1(ŷi − yi)2

n

4. Results and discussions.

4.1. Latitude. When considering all 5 NWP models data as predictors, the fol-
lowing summary was obtained:

Coefficients Estimate Std. Error t-value Pr (> |t|)
HWRF -0.0154 0.009296 -1.659 0.09746 .
WRF -0.0087 0.003232 -2.709 0.00685 **
GFS 0.1445 0.010434 13.852 < 2e-16 ***
ERA-I 0.3184 0.018298 17.402 < 2e-16 ***
ERA5 0.5614 0.014705 38.180 < 2e-16 ***

The trained regression model is

Ŷ = −0.0154X1 − 0.0087X2 + 0.1445X3 + 0.3184X4 + 0.5614X5

where X1 is the latitude from HWRF, X2 is from WRF, X3 from GFS, X4 from
ERA-I, and X5 from ERA5. Note that there is no intercept in the model. Since
the predictors are the numerical simulation values for the same variable in the
deterministic system but from different physical models, there is no shift in the
values. With the physical background of the predictors, the intercept should be 0.
The above model is called the full model. In the summary table, the 2 stars and
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3 stars beside the P-value for WRF, GFS, ERA-I, and ERA5 indicate that these
four are the statistically significant predictors. However, the P-value for WRF is
relatively/significantly higher than those for the other three predictors.

After the null hypothesis test, we reached a reduced model with three predictors
in the regression model. We obtained the following summary:

Coefficients Estimate Std. Error t-value Pr (> |t|)
GFS 0.1254 0.009229 13.59 < 2e-16 ***
ERA-I 0.3369 0.017682 19.05 < 2e-16 ***
ERA5 0.5380 0.012701 42.36 < 2e-16 ***

In this reduced model, all the coefficients are positive, and they add up to 1. In a
sense, these coefficients can be considered as the weights. It tells us that the ERA5
and ERA-I resemble the observation track very well.

We also did the simple ensemble by averaging all the ensemble members. To
compare with different regression models, we employed the random forest regression
model which picks up significant contributors automatically. The results are shown
in Table 4.1. For latitude, the random forest model gives the best result, with error
15 nautical miles. The NHC error for the track is about 33 nautical miles. The
simple ensemble on the reduced model members also provides a good result.

Table 4.1. Errors from Various Models for Latitude
MLR SE MLR SE Random NHC

Model Full Full Reduced Reduced Forest
Model Model Model Model Model

RMSE
(deg) 0.4653696 0.4343811 0.4690583 0.3124698 0.2503998

Distance
(nautical 27.94 26.08 28.16 18.76 15.05 33
miles)

4.2. Longitude. For some reason, the performance of the models on the longitude
is quite different. Similar to the models for latitude, we obtained the full model
with all 5 NWP models as predictors and the reduced model with GFS, ERA-I,
and ERA5 predictors. The results of the root mean square errors are displayed in
Table 4.2. Surprisingly, the results from random forest did not improve the MLR.
The best model (the smallest error) is the simple ensemble on the full model, with
an error of 22.8 n miles, comparable with the NHC error.

Table 4.2. Errors from Various Models for Longitude
MLR SE MLR SE Random NHC

Model Full Full Reduced Reduced Forest
Model Model Model Model Model

RMSE
(deg) 0.6375 0.38 0.674112 0.49 1.4577

Distance
(nautical 38.25 22.8 40.45 29.4 87.62 33
miles)

4.3. Intensity. Prediction of intensity is always much harder than that of track.
Here is a quick report for some of the regression models on the maximum wind.
Again, we have the full model and reduced model. Only the ERA-Interim is ex-
cluded in the reduced model. The summary of the full model for maximum wind
of MLR is:
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Coefficients Estimate Std. Error t-value Pr(> |t|)
(Int.) 86.2848 7.034765 12.265 < 2e-16 ***
HWRF 0.26694 0.026322 10.141 < 2e-16 ***
WRF -0.5412 0.007779 -69.567 < 2e-16 ***
GFS 2.57476 0.118608 21.708 < 2e-16 ***
ERA-I 0.02239 0.097575 0.229 0.819
ERA5 -0.48353 0.051040 -9.474 < 2e-16 ***

It is clearly indicated that ERA-I is not a significant contributor in representing
the maximum winds. The summary of the reduced model is:

Coefficients Estimate Std. Error t-value Pr(> |t|)
(Int.) 87.11558 6.029308 14.449 < 2e-16 ***
HWRF 0.26502 0.024951 10.622 < 2e-16 ***
WRF -0.5405 0.007376 73.296 < 2e-16 ***
GFS 2.58118 0.115280 22.390 < 2e-16 ***
ERA5 -0.48596 0.049906 -9.738 < 2e-16 ***

Similar work has been conducted for the minimum SLP (sea level pressure).
All the results for maximum wind and minimum SLP for intensity are shown in
Table 4.3. For both, the averaging on the reduced model provides the best result,
comparable with the NHC error. The random forest regression improved the MLR
on the maximum wind, but not for the minimum SLP. The result from the MLR
on the maximum wind is comparable with the best result and NHC error, so not
too far off.

Table 4.3. Errors from Various Models for Intensity
MLR SE MLR SE Random NHC

Model Full Full Reduced Reduced Forest
Model Model Model Model Model

Max Wind
RMSE (kt) 15.2449 19.52458 15.4436 14.4 34.40646 13
Min SLP
RMSE 21.98858 10.6756 21.34215 9.19942 12.36754
(mb)

5. Conclusion. In conclusion, we applied simple ensemble (SE), multiple linear
regression (MLR), and random forest regression (RFR) techniques. For latitude,
the RFR provides the best result, improving the NHC’s forecast significantly. For
longitude, the SE on the full model provides the best result, improving the NHC’s
forecast. For intensity, the SE on the reduced model provides the best result,
comparable with the NHC’s forecast. Overall, the hybrid of SE with MLR and
RFR is recommended.

Acknowledgments. This research was funded by NC A&T SU and UNC CH
Looking Forward Pilot Program 136069, DHS SRT for MSI program by ORISE
under DOE contract number DE-SC0014664, NSF under grant number 2022961,
and NCAR/CISL for computing resources under Project UNCT0006, and RENCI
at UNC CH for computing support.

This research was developed by DHS Summer Research Team Program for Mi-
nority Serving Institutions, administered for the U.S. Department of Homeland
Security (DHS) by the Oak Ridge Institute for Science and Education (ORISE)



REGRESSION ANALYSIS BASED ENSEMBLE TECHNIQUES ON FLORENCE 13

through an interagency agreement between DHS and the U.S. Department of En-
ergy (DOE). ORISE is managed by Oak Ridge Associated Universities (ORAU)
under DOE contract number DE-SC0014664. This document has not been for-
mally reviewed by DHS. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of DHS, DOE, NSF, or ORAU /ORISE.
DHS, DOE and ORAU/ORISE do not endorse any products or commercial services
mentioned in this publication.

REFERENCES

[1] J. Armstrong, Tropical Storm Florence (Report), Post Tropical Cyclone Report, Nathional

Weather Service Columbio, South Carolina, October 1, 2018.

[2] M. K. Biswas, L. Carson, K. Newman, D. Stark, E. Kalina, E. Grell and J. Frimel, Community
HWRF Users’ Guide, v4.0a, NCAR: Boulder, CO, USA, 2018.

[3] M. E. Gharamti, J. L. McCreight, S. J. Noh, T. J. Hoar, A. RafieeiNasab and B. K. Johnson,

Ensemble streamflow data assimilation using WRF-hydro and DART: Hurricane Florence
flooding, Hydrol. Earth Syst. Sci. Discuss., 2021, 1-31.

[4] G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning:

With Applications in R, Springer Texts Statist, Springer, New York, 2021.
[5] T. Johnson, The WRF Modeling and Ensemble Prediction of Hurricane Florence 2018, Grad-

uate Project Report, North Carolina Agricultural and Technical State University in Greens-

boro, May 2021.
[6] T. N. Krishnamurti, V. Kumar, A. Simon, A. Bhardwaj, T. Ghosh and R. Ross, A review of

multimodel superensemble forecasting for weather, seasonal climate, and hurricanes, Reviews
of Geophysics, 54 (2016), 336-377.

[7] J. Li and B. Nie, Storm surge prediction: Present status and future challenges, Procedia

IUTAM: Symposium on Storm Surge Modelling and Forecasting, Shanghai China, 25 (2017),
3-9.

[8] L. Liu, Combined Atmospheric and Storm Surge Modeling of Hurricane Florence 2018, DHS

Summer Research Training Team for Minority Serving Institutions report, August 2020.
[9] L. Liu, HWRF Modeling of Irma 2017 and Hurricane Florence 2018, DHS Summer Research

Training Team for Minority Serving Institutions report, August 2022.

[10] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G.
Powers, M. G. Duda, D. M. Barker and X. Y. Huang, A Description of the Advanced Research

WRF Version 4, NCAR tech. note ncar/tn-556+ str, (2019), 145.

[11] S. R. Stewart and R. Berg, Tropical Cyclone Report: Hurricane Florence (AL062018), NHC
Technical Report, 2019.

[12] L. J. Tanz, M. N. Hoffman, D. Dandeneau, Z. Faigen, Z. Moore, S. Proescholdbell and
S. M. Kansagra, Notes from the field: hurricane Florence–related emergency department

visits—North Carolina, 2018, Morbidity and Mortality Weekly Report , 68 (2019), 631-632.
[13] V. Tallapragada, L. Bernardet, M. K. Biswas, S. Gopalakrishnan, Y. Kwon, Q. Liu, ... and

X. Zhang, Hurricane Weather Research and Forecasting (HWRF) Model: 2013 Scientific

Documentation, HWRF Development Testbed Center Technical Report, 99, 2014.

Received July 2024; revised August 2024; early access September 2024.

http://dx.doi.org/10.5194/hess-2020-642
http://dx.doi.org/10.5194/hess-2020-642
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4309209&return=pdf
http://dx.doi.org/10.1007/978-1-0716-1418-1
http://dx.doi.org/10.1007/978-1-0716-1418-1
http://dx.doi.org/10.1002/2015RG000513
http://dx.doi.org/10.1002/2015RG000513
http://dx.doi.org/10.1016/j.piutam.2017.09.002
http://dx.doi.org/10.15585/mmwr.mm6828a3
http://dx.doi.org/10.15585/mmwr.mm6828a3

	1. Introduction
	2. NWP experiments
	2.1. WRF simulations
	2.2. HWRF simulations
	2.3. Error analysis

	3. Methodology
	3.1. Data collection
	3.2. Statistical modeling

	4. Results and discussions
	4.1. Latitude
	4.2. Longitude
	4.3. Intensity

	5. Conclusion
	Acknowledgments
	REFERENCES

