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Abstract This study is focused on developing pattern

recognition and image fusion techniques to trace the origins

and propagation of the pre-tropical storm (pre-TS) Debby

(2006) mesoscale convective systems (MCSs) and African

easterly waves (AEWs) using satellite imagery. These MCSs

could be generating over mountains in North Africa and

going through complicated splitting and merging processes.

Therefore, an objectively analyzed MCS movement is

essential. This study presents a technique which traces

extracted features to find the origin of TS Debby. This

technique produces a fused image with the most relevant

information from water vapor and infrared satellite images,

segments the cloud top height satellite images by clustering

clouds, and tracks clouds to determine the origin of TS

Debby (2006). The presented technique could be applied to

other AEWs and MCSs which lead to tropical cyclogenesis

to improve the numerical weather prediction over data sparse

areas, such as over eastern and central North Africa.

1 Introduction

A tropical cyclone (TC) is a non-frontal synoptic-scale warm

core low-pressure system that originates over tropical or

subtropical oceans and contains organized deep convection

and a defined cyclonic surface wind circulation (Lin 2007).

The formation of TCs over the eastern Atlantic Ocean region,

off the North African coast, remains an important research

topic, which is poorly understood due to the lack of an ade-

quate scientific understanding of the physical mechanisms

involved and sparsity of data in the area. TCs contain groups

of thunderstorms which are often organized in mesoscale

convective systems (MCSs) (Lin 2007). Prior studies have

shown that the source disturbances for the development of

Atlantic TCs are African easterly waves (AEWs) with MCSs

embedded in them (Berry and Thorncroft 2005; Reed et al.

1977). The AEWs are prominent in the Northern Hemisphere

from June until early October and usually have a wavelength

of 2,000–4,000 km, a phase speed of 7–9 m s-1, and a period

of approximately 3–5 days (Reed et al. 1977; Zawislak and

Zipser 2010). Although only a few AEWs organize and

develop into a TC, the AEW-induced TCs account for about

60 % of the Atlantic Ocean’s TCs and for about 85 % of

major hurricanes (Landsea 1993; Lin et al. 2012; Pielke and

Landsea 1998). Classification and prediction of TCs are

known to be a difficult task due to the lack of understanding of

physical mechanisms that are involved in the cyclogenesis,

the technical term for the development and strengthening

stage of a TC.

Forecasters have difficulty representing these storms

accurately in numerical weather prediction (NWP) models

as well as in detecting and predicting the early stages of

cyclogenesis with confidence (Piñeros and Ritchie 2006).

Therefore, the physical processes associated with TC

development are a research topic of great interest. This

research topic is of importance to forecasters, because it

helps them locate signs of cyclogenesis and the origin of

many TCs. Having this information will help the public

prepare for TCs in a timely manner. Earlier studies, with
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the assistance of satellite observations, have observed that

MCSs which are embedded within AEWs can lead to TC

development (Simpson et al. 1968). Analysis of satellite

observations is an effective approach for understanding

atmospheric properties and is widely used for weather

forecasting and prediction purposes (Mandal et al. 2005).

One method to reliably detect or predict the development

of a TC is to examine the evolution of cloud clusters using

satellite observations. However, determining whether cloud

clusters will merge into an AEW–MCS and then develop

into a TC has been shown by many to be a difficult task

(Piñeros et al. 2010).

Objectively analyzed AEW–MCS movement using

satellite observations is essential to understand the forma-

tion and propagation of developing TCs. Grazzini et al.

(2001) stated that pixel’s gray level values from satellite

observations give impressive insights on cloud structures in

a precise way. This fact is the basis of ongoing research to

help forecasters predict or analyze TC evolution, forma-

tion, and intensity. This research focused on expanding the

research on determining the origins of pre-TC AEW and

MCSs using solely satellite observations. Forecasters will

be able to use the proposed techniques to assist in their

determinations of the origins of these TCs which, in turn,

will assist them in the difficult task of predicting the

storms. The main focus of this research was to develop

image fusion and pattern recognition techniques to trace

the origins and propagation of the pre-tropical storm (TS)

Debby (2006) MCSs using satellite imagery.

Image fusion is the process of combining images from

multiple sources, such as sensors, in order to make infer-

ences about an event of interest, such as weather. This

process was used to combine images from different

instrument channels in an efficient manner in order to

obtain the most important characteristics from each source.

Pattern recognition is the process of assigning a label to a

given instance. Pattern recognition techniques for this

research were used to separate (or group) the data into

different clusters (or classes). Due to the lack of under-

standing of AEW–MCS formation and propagation, the

groups were based on some inherent similarity measure

using unsupervised techniques. Forecasters can use the

image fusion and pattern recognition techniques to improve

the accuracy of numerical simulations of the development

and strengthening stages of a TC. This improvement was

gained by allowing a reasonable model initialization

scheme once the calculated origin was included in the

model domain. As hypothesized by Hodges and Thorncroft

(1997) and Lin et al. (2012), the mountains in East Africa

and Arabian Peninsula may play a role in initiating the

AEW and its associated MCSs along with other environ-

mental factors. These factors were analyzed and their

hypothesis was validated.

2 Mesoscale convective systems and African easterly

waves

2.1 Mesoscale convective systems

MCSs are considered to be an organized cluster of thun-

derstorms with a spatial scale of 100–1,000 km which is

approximately 1–10� in latitude (Lin 2007). MCSs are

usually circular or linear in shape. However, smaller con-

vective systems can sometimes merge into a larger, ellip-

tical MCS; the underlying convective cells can be hidden

by the extensive cloud shield. MCSs can form in different

environmental conditions. Some form in a moist environ-

ment with strong wind shear and others occur in a moist

environment with no wind shear. These MCSs can some-

times merge together and, under the right conditions, they

form TCs.

In infrared satellite images, a MCS looks like a well-

organized mesoscale cloud cluster, which has a circular or

oval shape depending on upper level wind strength. In this

research, the clouds of interest were high- and middle-level

clouds due to the fact that higher clouds usually have

longer life cycles. With that in mind, this research sepa-

rated the middle- and high-level clouds into classes. When

separating middle-level clouds, the classes included alto-

cumulus, altostratus, and nimbostratus clouds. Cirrus, cir-

rostratus, anvil cirrus, and cirrocumulus are types of clouds

that were included when separating high-level clouds. The

preceding cloud types were important in this research,

especially when tracking the MCSs to find the origin of a

tropical cyclone.

2.2 African easterly waves

Tracking the AEW and MCS systems to their origins is

essential in helping understand the interactions involved in

the formation of AEWs and MCSs over North Africa. As

mentioned earlier, tropical cyclogenesis is often led by

disturbances in the atmosphere such as propagating AEWs.

The AEWs are the dominant synoptic-scale atmospheric

wave systems in West Africa and are the main precursors

of TCs in the Atlantic Ocean. Satellite data were used in

the work presented by Simpson et al. (1968) and Carlson

(1969) which traced the Atlantic tropical cyclogenesis from

disturbances over West and Central Africa around 10�N,

but not in East Africa. Note that in these studies, tracking

the MCSs in satellite images is an alternative way of

tracking AEWs. AEWs likely develop from instabilities in

the mid-tropospheric African easterly jet (AEJ) and can

develop sustained convection; in some cases, these AEWs

will further develop into a TC (e.g., Burpee 1972).

Inconsistency in AEW activity modulates TC activity;

therefore, understanding the circumstances under which
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AEWs dissipate has the potential to enhance predictability

of tropical cyclogenesis and TC formation (Agudelo et al.

2011).

Hill and Lin (2003) and Lin et al. (2005) suggested that

the Ethiopian Highlands region is a favorable location for

the development of AEWs which are formed over land,

within the tropical rain forest belt of equatorial Africa, or

develop downstream of mountain ranges. This disturbance

then propagates to the western coastline of Africa where

some MCSs develop into TCs. This occurs when the MCSs

form at the crest of a wave-like structure and exhibit

banding features (Laing and Fritsch 1993). Hodges and

Thorncroft (1997) concluded in their study that majority of

MCSs originate near the EH and Hill and Lin (2003)

observed that the MCSs that form on the lee side of the EH

propagate downstream of the EH region with the associated

AEW. Mozer and Zehnder (1996) found through simula-

tion that the low-level easterly flow over the Atlas and

Hoggar Mountains in Western Africa results in a baro-

tropically unstable jet which produces many lee vortices

that propagate downstream from the mountain. This region

is also where the AEJ occurs as a result of the strong

temperature gradient over the surface of North Africa in

response to the differences in climate between the Sahara

and the African rain belt. Pytharoulis and Thorncroft

(1995) suggested that the locations of the AEWs are clo-

sely associated with the movement of the AEJ. Grist (2002)

found that AEJs behave differently in wet and dry years.

Because AEWs are closely associated, AEWs differ as

well. AEWs are often associated with MCSs while they

travel westward (Lin et al. 2012; Laing and Fritsch 1993)

which helps make AEWs detectable from satellite imagery.

3 Methodology

The purpose of this paper is to present the results of

research which used image fusion and pattern recognition

techniques to trace the origins and propagations of pre-TS

Debby’s (2006) mesoscale convective systems. The block

diagram for the methodology used is displayed in Fig. 1

and the steps below have been performed for this study.

The programs used for visualization and computations

in this research are MathWorks Incorporated’s Matlab, ITT

Visual Information Solutions’ IDL, and National Oceanic

and Atmospheric Administration’s (NOAA’s) Weather and

Climate Toolkit. Matlab is a well-known high-level lan-

guage that performs computationally exhaustive tasks fas-

ter, therefore it was used to perform the main tasks of

image fusion, clustering, feature extraction and tracking.

IDL and NOAA’s Weather and Climate Toolkit were

solely used in this study to produce the satellite images

needed.

3.1 Image fusion

Image fusion is a process of combining images from

multiple sources to estimate or predict an event of interest

like weather (Hall and McMullen 2004). The accuracy of

the initialization scheme in numerical simulations of TC

AEWs and MCSs was improved by fusing images. The

accuracy was improved by providing more detailed infor-

mation than individual VIS, IR, and WV data can give

alone. When fusing images, it is important that the source

images used for fusion are similar in some way. For this

study, the source satellite images had gray level values and

were scaled in the same manner in order to make sure that

the fusion process was accurate.

Prior research in weather forecasting has verified that it

is quite difficult to obtain all necessary information from a

single satellite image. Because of this, it is beneficial to

fuse images from multiple sensors into a single image

which contains the most relevant information from source

images (Mumtaz et al. 2008). A main disadvantage of

current image fusion techniques is that most techniques

simply merge the image data together which results in

information loss and a change in spectral characteristics of

an image (Wehrmann et al. 2004). Research has been done

on different image fusion techniques which produce an

accurately fused image that displays the most significant

characteristics of the source.

Lacewell et al. (2010) proposed an image fusion

method that uses discrete wavelet transform (DWT) and

an optimization tool. Figure 2 displays the block diagram

for this method. DWT is used in this technique to

decompose the images into a multi-resolution represen-

tation that capture coarse and detailed information. This

representation was used in the optimization tool (e.g.,

Genetic Algorithm) to determine the optimal weights of

the water vapor (WV) and infrared (IR) satellite images

Obtain 
Satellite Data 

Produce satellite images from satellite 
data 

Fuse water vapor and infrared 
satellite images using genetic 

algorithms and discrete wavelet 
transform 

Apply fuzzy c-means clustering to 
cloud top height images to separate 

high and mid level clouds 

Feature Extraction and Tracking

Fig. 1 Block diagram for the methodology used to trace the origins

and propagation of pre-tropical storm Debby (2006)
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for the produced fused image. Using the DWT represen-

tation is computationally inexpensive when compared to

processing the entire image.

3.2 Clustering

Clustering refers to the process of assigning a label to

members of a population where members with similar

measurable characteristics are placed in the same class.

Clustering can be divided into supervised and unsupervised

clustering; but for this research, unsupervised clustering

was used. Supervised clustering is the process of clustering

where there is prior knowledge of the classes in which the

data belong. Unsupervised clustering refers to the cluster-

ing process where nothing is known concerning the

membership of the data to specific classes (Theodoridis and

Koutroumbas 2003). This method is useful in processing

satellite imagery due to the fact that pattern information in

the satellite images is usually unknown.

Clustering was implemented in Matlab to segment the

images which were produced with Meteosat second gen-

eration’s (MSG’s) cloud top height (CTH) dataset. To

simplify the CTH imagery, the high- and middle-level

clouds were extracted using morphological operators.

These operators included bwareaopen which removes all

objects containing less than a specified number of pixels

and imfill which fills in any holes in the image. Once the

image contained the relevant clouds, it was then converted

to the French Commission Internationale de l’éclairage

(CIE) L*a*b* color space to simplify the clustering stage.

The clustering technique that was used in this research was

the fuzzy C-means (FCM) algorithm which is a method of

partitioning a collection of N vectors into c clusters Gi

(where i = 1, 2, …, c) that allowed a data point to belong

to two or more clusters. For this study, the image was

partitioned into three clusters which represented the

high-level clouds, middle-level clouds, and all other pixels.

The general goal of FCM was to find the cluster centers

which minimize how dissimilar data elements are. This

dissimilarity can be measured using a dissimilarity func-

tion. The steps for FCM clustering algorithm are as follows

(Albayrak and Amasyali 2003):

1. Randomly initialize the binary membership matrix

U = [uij] using
Pc

i¼1 uij ¼ 1; 8j ¼ 1; . . .; n where uij e

[0, 1], and c and n are the number of clusters and inputs,

respectively.

2. At k-step, calculate the cluster centers ci.

ci ¼
Pn

j¼1 um
ij xj

Pn
j¼1 um

ij

where m 2 1;1½ � is a weighting exponent and xj is the data

points.

3. Compute dissimilarity function J between centroids

and data points

J U; c1; c2; . . .; ccð Þ ¼
Xc

i¼1

Xn

j¼1
um

ij d
2
ij

ci is the center of cluster i, and dij is the Euclidean distance

between the ith cluster center and jth data point.

4. Compute new uij. If Uðk þ 1Þ � UðkÞk k\e, the user-

defined sensitivity threshold, then stop. Otherwise go to

step 2.

uij ¼
1

Pc
k¼1

dij

dkj

� � 2
m�1

By iteratively updating the cluster centers and the

membership grades for each data point, FCM iteratively

moves the cluster centers to the ‘‘correct’’ location within a

data set (Albayrak and Amasyali 2003). This technique

Water vapor 
satellite image 

(WV) 

Infrared satellite 
image (IR) 

Obtain image 
signatures using 
discrete wavelet 

transform 

Use genetic 
algorithm to find 
optimal weights 

(WWV, WIR) using
image signatures

Fused satellite 
image 

WV*W

IR*WIR

WV

Fig. 2 Block diagram of image fusion technique
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assists in distinguishing between the middle- and high-

level clouds in the CTH imagery.

3.3 Feature extraction and tracking

In image processing, feature extraction is the technique

for acquiring relevant features that help to better under-

stand the data. There are many feature extraction meth-

ods, but there are only a few that are commonly used.

Object tracking is an image processing problem that can

benefit from an accurate feature extraction method, for

example, tracing the origins and propagations of pre-TCs.

The feature extraction and tracking portion of this

research was the most important part in tracing the origin

and propagations of pre-TS Debby (2006). For this pro-

cedure, the scale and orientation adaptive mean shift

tracking (SOAMST) method, which was proposed by the

work given by Ning et al. (2010), was used. This algo-

rithm can solve problems of estimating the scale and

orientation changes of a target and it is based on the area

of the target and the corrected second order central

moments. A key to successful results is to select the

region (or object) that is being tracked and set the

parameters to an appropriate value. The satellite images

used in this research were taken in 3-h intervals. There-

fore, this algorithm must have an appropriate value for the

search size so it can accommodate this interval. When

implementing this algorithm, an appropriate search size to

locate the target object was set to 10; this size was

determined through trial and error by comparing the

center of a cloud with a known location. This parameter

may vary depending on the application of the algorithm,

but for this application, this search size increased the

accuracy of the tracking procedure to accommodate the

cloud movement in the 3-h interval. The implementation

of this algorithm is summarized below:

1. Initialize the position, y0, of the target candidate

model and then calculate the target model using

q̂ ¼
Pn

i¼1 k x�i
�
�
�
�2

� �
d b x�i
� �
� f

� �

Pn
i¼1 k x�ik k

2
� �

where d is the Kronecker delta function, b(xi*) associates

the pixel xi* to the histogram bin, f is the feature in the

target model, and k(x) is an isotropic kernel profile.

2. Initialize the iteration number k 0.

3. Calculate the target candidate model p̂ðy0Þ in the

current image frame using

p̂ y0ð Þ ¼
Pnh

i¼1 k y0�xi

h

�
�

�
�2

� �
d b xið Þ � f½ �

Pnh

i¼1 k y0�xi

h

�
�

�
�2

� �

where xi are pixels in the target candidate region centered

at y0 where i = 1,…, n, and h is the bandwidth.

4. Calculate the weight vector wif gi¼1;2;...;n using

wi ¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂u

p̂u y0ð Þ

s

d b xið Þ � f½ �

where d and b xið Þ have the same meaning as in step 1.

5. Calculate the new position y1 of the target candidate

model using

y1 ¼
Pnh

i¼1 xiwiPnh

i¼1 wi
:

6. Let y1 � y0k k ! d. Set the error threshold, e (default

is 0.1), and the maximum iteration number, N (default is

15).

Fig. 3 Terrain data for Northern Africa with labels to indicate major

geographical features. Asir Mountains (AR), Bongo Massif (BM),

Cameroon Highlands (CM), Darfur Mountains (DF), Eastern Arc

Mountains (EA), Ethiopian highlands (EH), Futa Jallon Highlands

(FJ), Gulf of Aden (GA), Gulf of Guinea (GG), Hoggar Mountains

(HG), Ruwenzori Mountains (RZ), and Tibesti Mountains (TB) (Lin

et al. 2005). The red star indicates the peak of EH (color figure

online)
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Fig. 4 Examples of the satellite

images generated from the

GridSat data for a visual

channel, b infrared channel, and

c infrared water vapor channel

for 8/22/12Z
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If d\e or k�Nð Þ Stop and go to step 7

Otherwise k þ 1! k and go to step 3

7. Estimate the width, height, and orientation from the

target candidate model using

Cov ¼ f11 f12

f21 f22


 �

� a2 0

0 b2


 �

� f11 f12

f21 f22


 �T

where the vectors (f11, f21)T and (f12, f22)T represent the

orientation of the two main axes of the target, A is the

estimated area of the target, and k1 and k2 are the eigen-

values of the covariance matrix, while a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1A= pk2ð Þ

p
,

and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2A= pk1ð Þ

p
.

8. Estimate the initial target candidate model for the

next frame using

x� y1ð Þ � Cov�1
2 � x� y1ð ÞT � 1

At the conclusion of this algorithm, the origin of the TC

is enclosed in an ellipse.

-20 0 20 40 60E -20 0 20 40 60E -20 0 20 40 60E

Fig. 5 Hovmöller diagram of the GridSat visual channel from 8/10/09Z to 8/24/12Z in 3-h intervals for the pre-Debby (2006) system. The visual

channel is only visible during daylight, therefore only 9–15Z for each day are shown
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4 Case description, analysis and discussion

4.1 Case description

The track of the pre-TS Debby (2006) disturbance was

analyzed previously by Lin et al. (2012) using Meteosat-8

satellite imagery and the Advanced Research Weather

Research and Forecasting (ARW) model. In their study, a

cloud cluster prior to pre-TS Debby (2006) MCS could be

traced back to the region of Ethiopian Highlands and Asir

Mountains around 8/11/00Z. For convenience, Fig. 3

shows the locations of the following geographical features:

Asir Mountains (AR), Bongo Massif (BM), Cameroon

Highlands (CM), Darfur Mountains (DF), Eastern Arc

Mountains (EA), Ethiopian highlands (EH), Futa Jallon

Highlands (FJ), Gulf of Aden (GA), Gulf of Guinea (GG),

-20 0 20 40 60E -20 0 20 40 60E -20 0 20 40 60E -20 0 20 40 60E

Fig. 6 Hovmöller diagram of the GridSat infrared channel from 8/10/

00Z to 8/24/12Z in 3-h intervals for the pre-Debby (2006) system

with manually estimated tracks superimposed. The solid lines
represent the track of pre-Debby (2006), while the dashed lines

indicate where a splitting process has occurred. These tracks are

produced manually therefore they are estimates and are not fully

accurate

C. W. Lacewell et al.

123



Hoggar Mountains (HG), Ruwenzori Mountains (RZ), and

Tibesti Mountains (TB).

4.2 Analysis

The pre-TS Debby (2006) MCSs were properly traced

across Northern Africa to determine their origin and

propagation. NOAA’s GridSat data were used to produce

satellite images using IDL. For a better understanding of

GridSat’s channels, Fig. 4 shows an example of the satel-

lite images produced for the visual (VIS), IR, and WV

channels, respectively. The VIS images display the visible

reflectance, which is unitless, while the IR and WV chan-

nels display the brightness temperatures in Kelvin. These

images were produced in black and white for fusion

purposes.

-20 0 20 40 60E -20 0 20 40 60E -20 0 20 40 60E -20 0 20 40 60E

Fig. 7 Hovmöller diagram of the GridSat water vapor channel from

8/10/00Z to 8/24/12Z in 3-h intervals for the pre-Debby (2006)

system with manually estimated tracks superimposed. The solid lines
represent the track of pre-Debby (2006), while the dashed lines

indicate where a splitting process has occurred. These tracks are

produced manually therefore they are estimates and are not fully

accurate. The moisture in the atmosphere is more visible when using

this channel

Tracing the origins and propagation of pre-TS Debby (2006) MCS
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To manually estimate the track of the MCSs using this

dataset, Hovmöller diagrams were produced in 3-h inter-

vals. Figures 5, 6, and 7 display these Hovmöller dia-

grams for the region of interest (5�–15�N, 30�W–60�E)

using the VIS, IR and WV channels, respectively. The

VIS channel is only viewable during daylight hours;

therefore, this Hovmöller diagram only contains the hours

of 09Z–15Z for August 10–24. The IR and WV channels

can be seen both day and night, making it easier to

manually track the storm using these channels. Figures 6

and 7 show these diagrams with the estimated tracks

superimposed. Many studies pertaining to satellite imag-

ery are based on the IR channels because of its visibility

throughout the day.

-20 0 20 40 60E -20 0 20 40 60E -20 0 20 40 60E -20 0 20 40 60E

Fig. 8 Hovmöller diagram of Meteosat second generation’s cloud top

height data from 8/10/00Z to 8/24/12Z in 3-h intervals for the pre-

Debby (2006) system with manually estimated tracks superimposed.

The solid lines represent the track of pre-Debby (2006). These tracks

are produced manually therefore they are estimates and are not fully

accurate but these tracks were easier to produce due to the height

information

C. W. Lacewell et al.
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Figure 8 shows the Hovmöller diagram of the CTH

dataset with the estimated manual tracks superimposed.

The MSG’s CTH data were used for clustering as well as

in the tracking stage of this work. This data were used

because higher clouds have longer life cycles. Therefore,

higher clouds have a better probability of living longer

than lower clouds and clustering the CTH data simplifies

the data by reducing the amount. Studies such as Jirak

and Cotton (2007) suggest that more pronounced features

are found in the lower troposphere which may be hidden

by the cold cloud tops that are being analyzed in this

study. This study was solely based on satellite imagery;

therefore, the features in the clouds as well as the rela-

tionship between the middle-level and high-level clouds

are of importance. Certain temperatures and features that

are not visible in the high level clouds are visible in the

middle-level clouds. If low-level clouds are of importance

to a forecaster who uses this technique, the only modifi-

cation that would need to be made is to change the

number of clusters in the FCM algorithm from 3 to 4.

This would identify the low-, middle-, and high-level

clouds and all other pixels as clusters. The images in

Fig. 9 illustrate the steps taken in the FCM algorithm to

segment the CTH images into three classes.

Using Matlab, image fusion was applied to the IDL

produced GridSat IR, and WV images. The image fusion

technique proposed by Lacewell et al. (2010) was used to

produce accurate fused images. The results were obtained

using the optimization tool. The result of this image fusion

method has minimal error and produces a fused image

which contains the most important features from the source

images. When the source images are of poor quality, this

may cause error in the tracking stage because features

could be undetected in the produced fused image. To

reduce the possibility of error, IDL was used to produce

high-quality satellite images directly from the satellite data

which are essential to obtaining satisfactory results of the

MCS tracks.

All image sequences were processed using the

SOAMST algorithm since, unlike other tracking algo-

rithms, it can adaptively calculate the scale and orien-

tation of the object being tracked (Ning et al. 2010).

Fig. 9 These images illustrate the steps taken to cluster the cloud top height images into high- and middle-level clouds. a Cloud top height image

for 8/22/12Z, b CTH image after image processing and morphological operators, c image changed to L*a*b* color space and d clustered image

Tracing the origins and propagation of pre-TS Debby (2006) MCS
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This algorithm was used to extract features using the

second central moment (variance) and to track the MCSs

for 8/10/00Z–8/24/21Z. Once selected, the algorithm then

back tracks the storm to find the origin. In Figs. 10, 11,

12, and 13, six frames from the results of the SOAMST

algorithm when applied to the IR, CTH, fused, and

clustered image sequences, respectively, are shown. The

tracked MCS is indicated by a circle and an arrow in

each of these figures. In order to make the location of

the MCS and cloud clusters more visible, the correct

longitude and latitude grid lines were superimposed

using IDL when needed.

4.3 Discussion

This research focused on developing image fusion and

pattern recognition techniques to trace the origins and

propagations of pre-TS Debby (2006) MCSs and AEWs

using satellite imagery. There may be cases where MCSs

do not occur during AEWs, but even in those cases, the

technique presented in this study is still valid. The task

was completed using image fusion technique proposed by

Lacewell et al. (2010), clustering of clouds into three

classes using the FCM algorithm, and feature extraction

and tracking using the SOAMST algorithm which was

Fig. 10 Six frames produced by the SOAMST algorithm when applied to the GridSat infrared image sequence representing a 8/13/12Z, b 8/13/

09Z, c 8/13/06Z, d 8/13/03Z, e 8/13/00Z, and f 8/12/21Z with red arrow and circle indicating tracked cloud (color figure online)

C. W. Lacewell et al.

123



proposed by Ning et al. (2010). The results generated

using these techniques were quite accurate. All of the

results after applying the SOAMST algorithm concluded

that the origin of pre-TS Debby is located at (10�N,

40�E), and that this location was reached on 8/12/15Z

except for results based on the IR and CTH image

sequences. The IR image sequence reached this location

on 8/12/21Z and the CTH image sequence reached this

location on 8/13/09Z. We infer that the IR image

sequence reached this location at a different time, since

some MCSs are not visible at times when there is still

moisture present in the atmosphere that allows the MCS

to remain active. This location was reached sooner in the

CTH image sequence due to the many low-level clouds

that are present in the CTH images. The CTH images

contain mostly low-level clouds; therefore, when

extracting the second central moment in the SOAMST

algorithm, these clouds have a stronger effect on the

tracking results than the high- and middle-level clouds.

Therefore, the valid time when referring to the origin was

8/12/15Z. When there is a difference in the time at the

TC originated but the location is the same, the fusion and

clustered images should be used to determine the time

since they consider the moisture in the atmosphere and

the middle and high-level clouds.

5 Conclusions and future work

An objectively analyzed AEW–MCS movement using

satellite observations is essential to understanding the

formation and propagation of developing TCs. This

research has focused on expanding the current research

on determining the origins of TCs that develop from

AEWs and associated MCSs using solely satellite

observations. The image fusion and pattern recognition

techniques that were used will improve the accuracy of

numerical simulations of pre-TC AEWs and MCSs and

can be applied to other AEWs and MCSs leading to

tropical cyclogenesis.

We hypothesized that the Ethiopian Highlands and

other mountains may play a role in initiating the AEWs

and their associated MCSs along with other environ-

mental factors. These factors were analyzed by applying

Fig. 11 Six frames produced by the SOAMST algorithm when applied to the Meteosat second generation cloud top height image sequence

representing a 8/14/00Z, b 8/13/21Z, c 8/13/18Z, d 8/13/15Z, e 8/13/12Z, and f 8/13/09Z with white arrow and circle indicating tracked cloud
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image fusion and pattern recognition techniques and the

hypothesis was validated. The MCSs of this storm assis-

ted in developing the TS at 21.7�W, 11.6�N on 8/21/18Z.

The movement of the pre-TS Debby (2006) AEW–MCS

system was analyzed using image fusion, FCM-based

clustering, and the SOAMST algorithm. The results con-

firmed that the pre-TS Debby (2006) MCS formed over

the peak of the Ethiopian Highlands. Furthermore, these

results verified the latitude of the origin; but, the longi-

tude and date differ when compared to the work by Lin

et al. (2012) which was based on the Numerical Weather

Prediction models.

In the future, this work could be extended to analyze

additional pre-TCs MCSs. A future goal for this research is

to interpolate satellite data to get more accurate tracking

results and to integrate IDL and Matlab to make imple-

mentation easier. With this integration, the forecasters will

be able to use the proposed techniques to assist in deter-

mining the origins of these TCs. The accuracy of infor-

mation will help the public prepare for TCs in a timely

manner by helping researchers design model domains to

include the origin of the TC. The fundamental issue of

locating the origin of TCs could be further enhanced

through finding the signature of the originating MCS. This

Fig. 12 Six frames produced by the SOAMST algorithm when applied to the fused image sequence representing a 8/13/06Z, b 8/13/03Z, c 8/13/

00Z, d 8/12/21Z, e 8/12/18Z, and f 8/12/15Z with red arrow and circle indicating tracked cloud (color figure online)
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work will be extended to address this issue. Also, the

model domain which includes the TC’s origin will assist

the model in making better predictions by allowing a rea-

sonable model initialization scheme.
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