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Summary

We have investigated the effects of shear and sharp
gradients in static stability and demonstrated how a
mountain wave and its associated surface winds can be
strongly influenced. Linear theory for two-dimensional,
nonrotating stratified flow over an isolated mountain ridge
with positive shear and constant static stability shows that
the horizontal wind speeds on both the lee and upslope
surfaces are suppressed by positive shear. The critical
F(= U/Nh where U is the basic wind speed, N the Brunt-
Vaisala frequency, and & the mountain height) for the
occurrence of wave breaking decreases when the strength
of the positive shear increases, while the location for the
wave-induced critical level is higher in cases with larger
positive shear. The linear theory is then verified by a series
of systematic nonlinear numerical experiments. Four
different flow regimes are found for positive shear flow
over a two-dimensional mountain. The values of critical F
which separate the flow regimes are lower when the
strength of the positive shear is larger. The location of
stagnation aloft from numerical simulations is found to be
quite consistent with those predicted by linear theory.

We calculate the strongest horizontal wind speed on the
lee surface (Upnax), the smallest horizontal wind speed on
the upslope surface (Upnin), the reflection (Ref), and the
transmission (Tran) coefficients for different combinations
of the stability ratio between the upper and lower layers
(i.e. A2 = N,/N;) and z; (interface height) in a two-layer
atmosphere from linear analytical solutions. Both Ref and
Tran are found to be functions of log(\;;) but not the
interface height (z;). Ref is larger when )\, is much
different from 1, no matter whether it is larger or smaller
than 1. However, Tran decreases when log(\|,) increases
and approaches 0 when log(\,) is large. The magnitude of

the largest Up,x (smallest Up,;,) increases (decreases) as the
absolute value of log()\;;) increases. It is found that the
largest Upax occurs when the nondimensional z; is near
0.25 4 n/2 for cases with a less stable upper layer or when
7y is near n/2 for cases with a more stable upper layer.
These results are confirmed by nonlinear numerical
simulations. We find that linear theory is very useful in
qualitative analysis of the possibility of high-drag state for
different stability profiles. The location of stagnation aloft
in a two-layer atmosphere from numerical simulations
agrees very well with those predicted by linear theory.

The above findings are applied to investigate the Boulder
severe downslope windstorm of 11 January 1972. We find
that the windstorm cannot develop if the near mountain-top
inversion is located at a higher altitude (e.g., z = 6.7 km).
However, if there exists a less stable layer right below the
tropopause, the windstorm can develop in the absence of a
low-level inversion. These results indicate the importance
of partial reflection due to the structured atmosphere in
influencing the possibility of severe downslope windstorms,
although partial reflection may not be the responsible
mechanism for the generation of windstorms.

1. Introduction

Recently, Lin and Wang (1996, denoted as LW
hereafter), using a numerical model, identified
four flow regimes for two-dimensional, hydro-
static, nonrotating, continuously stratified, uni-
form Boussinesq flow over an isolated mountain
ridge: (I) flow with neither wave breaking aloft
nor upstream blocking (F > 1.12), (II) flow with
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wave breaking aloft in the absence of upstream
blocking (0.9 < F < 1.12), (II) flow with both
wave breaking and upstream blocking, but where
wave breaking occurs first (0.6 < F < 0.9), and
(IV) flow with both wave breaking and upstream
blocking, but where blocking occurs first
(0.3 < F <0.6). The control parameter F is
defined as U/Nh, where U is the undisturbed
horizontal wind speed of the far upstream basic
flow, N is the Brunt-Viisila frequency, and £ is
the peak mountain height of a bell-shaped
obstacle. The critical F(F,) which separates
regimes I and II in their numerical study is very
close to 1.18 (F;1 = 0.85), which was also found
by Miles and Huppert (1969) based on Long’s
nonlinear analytical solution (Long, 1953). The
small discrepancy between F,. obtained numeri-
cally and theoretically is explained by Wang
(1996) to be due to the modification of upstream
flow conditions during the integration of the
numerical model over a finite domain. If the
horizontal domain of the numerical model is
increased, the numerical value of F. is found to
be even closer to the analytical value 1.18.
Basically, LW verifies the finding of Miles and
Huppert (1969) in determining F,. which sepa-
rates linear mountain waves from the high-drag
state (Peltier and Clark, 1979) flow behavior.
Prior to the study of LW, F,. was proposed to be
different from the theoretical value 1.18 in some
other studies, e.g. F. = 1.33 for flow past a
Gaussian mountain in numerical simulations by
Pierrehumbert and Wyman (1985) and F, = 0.67
in laboratory experiments by Baines and Hoinka
(1985).

The purpose of the present study is to extend
LW’s study to include the effects of vertical shear
and sharp gradients in static stability, which are
commonly observed in the real atmosphere.
According to the observational data (e.g., Fig.
12 of Peltier and Clark, 1979), the horizontal
wind speed increases almost linearly with height
in the troposphere during winter, the season in
which severe downslope windstorms are most
frequent at Boulder, Colorado. Sharp, vertical
gradients in static stability also often exist in the
atmosphere, and this structure modifies the nature
of a mountain-induced disturbance significantly.
The tropopause and boundary layer capping
inversions are examples of stability structures
found in the atmosphere.

The nondimensional critical mountain height
(F;1 = Nh/U) for stagnation aloft and along the
upslope lower boundary were investigated by
Smith (1989) theoretically for stratified forward
shear flow past a three-dimensional isolated
mountain in isosteric coordinates. It was shown
that F;l, if the surface wind speed is taken as U
in calculating F.!, for both stagnation aloft and
along the upslope surface is a function of the
aspect ratio (h/a, where a is the horizontal scale
of the mountain) and Richardson number (Ri).
The mountain height needed for stagnation at the
lower boundary is modified very little by the
presence of shear. However, the increasing am-
bient wind speed with height reduces the pos-
sibility of stagnation and wave breaking aloft. If
reversed wind shear exists and continues aloft, the
ambient flow must decrease to zero at some level.
Such flows have been analyzed using linear
theory (Booker and Bretherton, 1967), revealing
that near the wind reversal level (i.e., the critical
level in a steady-state flow) gravity waves are
absorbed in such a way that requires viscous or
nonlinear effects, even for a nearly inviscid fluid
and an infinitesimal hill. The effects of reversed
wind shear with a critical level on two-dimen-
sional orographically-forced flow responses are
investigated in a separate in a separate study
(Wand and Lin, 1999a, b). In this study, the role
of forward shear in influencing the flow response
is investigated rigorously using a nonlinear
numerical model and explained using a two-
dimensional linear theory. One of the objectives is
to study how the flow regime is modified when
there exists wind shear in the atmosphere in order
to improve the prediction of severe downslope
windstorms.

If the stability varies with height, one can
approximate the N(z) structure as a number of
discrete layers of constant N in certain cases. At
the sharp interfaces between such layers, partial
reflections must occur to allow the pressure and
vertical velocity fields to remain continuous
(Blumen, 1965; Klemp and Lilly, 1975). Klemp
and Lilly (1975) suggested that a strong surface
response occurs whenever the depth of the
troposphere is an integral number of half the
mean vertical wavelength of the disturbance.
Under such conditions there is constructive
interference between the direct wave from the
surface and the partially reflected wave from the
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tropopause, and a modest increase in the surface
response. From their point of view, then, the
occurrence of a windstorm demands a rather
special tuning of the mean flow parameters. Chun
(1995) studied the response of a stably stratified
two-layer atmosphere to low-level heating. She
found that the incident wave from lower levels
may be totally reflected from the interface if the
upper layer is neutrally stratified. The flow res-
ponse is controlled by the low-layer depth and the
stability ratio between the upper and lower layers.
Chun’s study used a uniform upstream wind
profile. In this study, we will investigate the wave
reflection and transmission in a structured shear
flow.

Scorer (1949) was the first to adopt a two-layer
atmosphere in the study of a stratified flow over
mountains. The interface condition is based on
the continuity of the solution and its first
derivative. Scorer’s conditions are of considerable
importance because they suggest the kind of
airstream structure which favors lee (resonance)
waves. The criterion for the occurrence of lee
waves and the factors which govern the amplitude
of the waves are proposed in his study. Lee waves
do not decay downstream, but the amplitude of
the disturbance does fall off rapidly with height
(Smith, 1979). In practice, Scorer’s condition for
the existence of lee waves is associated with a
strongly stable layer in the lower atmosphere and/
or strongly increasing wind speed with height. In
the stable lower layer, the generated wave pro-
pagates up and to the right. Eventually it reaches
the reflection level with k* > 2, where k is the
horizontal wave number and /> is the Scorer
parameter. The wave cannot propagate above this
level, and the wave energy is totally reflected
back toward the ground. Thus, the wave energy
oscillates between the ground and the reflection
level, forming a standing wave pattern in the
vertical (i.e., no phaseline tilt). The use of
Scorer’s criterion has been proved successful, at
least in a statistical sense, for predicting the
occurrence of lee waves.

Queney et al. (1960) showed that most of the
very short waves (k — 00) and about 75% of the
very long waves (k — 0) are able to pass through
the tropopause without reflection, while approxi-
mately 25% of the very long waves are reflected
back to the ground from the tropopause. They
also found that the amplitude of the long-wave

components in the stratosphere is profoundly
influenced by the flow parameters in the tropo-
sphere. Corby and Sawyer (1958) showed that
Scorer-type waves were virtually independent of
the flow parameters in the stratosphere.

The phase of the reflected waves is important
to the flow field. A reviewed in Smith (1989), a
vertically propagating wave encountering a
sudden increase or decrease in static stability is
partially reflected with a phase shift 7 or 0, res-
pectively. The downward reflected wave returns
to the lower boundary and is there reflected
upward. If this reflected wave is generally in
phase with the original wave generated by the
topography so that the total phase shift in near 27
or an integral multiple, then the atmosphere is
said to be “tuned”. On the other hand, if the total
phase shift is ™ + 2n7, the waves are out of phase
and the atmosphere is “detuned”. In principle, a
tuned (detuned) atmosphere can give rise to much
stronger (weaker) mountain waves than an atmo-
sphere with no structure for a given mountain.
The concept of a tuned atmosphere is primarily
limited to two-dimensional hydrostatic flow. The
linear theory of tuned atmospheres is now quite
widely known, but it has not been proven to be
useful in many applications, even for nearly two-
dimensional hydrostatic flow. Smith (1989) sug-
gested the reason for this is that the structured
atmosphere is very sensitive to nonlinear effects,
much more so than an unstructured atmosphere.
The numerical calculations by Durran (1986)
indicate that nonlinear effects begin surprisingly
early in atmospheres with sharp gradients in static
stability. However, we will show in this paper that
linear theory is actually very useful, in a sense,
for qualitative analysis of the flow response even
when the flow is highly nonlinear. The sensitivity
of layered flows to nonlinear effects is explained
by noting the sensitivity of flow tuning to the
interface height in a systematic comparison
between the results predicted by both linear
theory and nonlinear numerical simulations.

The remainder of the paper is organized as
follows. The description of the numerical model
adopted in this study is presented in Sect. 2. In
Sect. 3, the effects of shear on flow regimes are
demonstrated in the numerical simulations and
explained by linear theory. Section 4 contains the
discussion of the effects of sharp vertical
gradients in static stability. The findings in both
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Sects. 3 and 4 are then applied to investigate the
Boulder severe windstorm of 11 January 1972 in
Sect. 5. Concluding remarks are presented in
Sect. 16.

2. Numerical model and experiment design

The numerical model adopted in this study is
identical to that developed in LW. For conve-
nience, the model will be briefly described in this
paper. This two-dimensional, hydrostatic version
of the North Carolina State University geophysi-
cal fluid dynamics model is based on the
nonlinear primitive equations governing orogra-
phically forced finite-amplitude perturbations in a
uniform, nonrotating, stratified, Boussinesq flow
in the terrain-following coordinate o=zr(z—z)/
(zr — z5), where z4(x) is the mountain geometry
and z7 is the top of the computational domain.
The horizontal momentum, hydrostatic, incom-
pressible continuity, and thermodynamic energy
equations are
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A first-order closure formulation of the subgrid
mixing which depends on the relative strengths of
stratification and shear (Lilly, 1962; Durran and
Klemp, 1982) is adopted in this model. The
subgrid scale effects are introduced into the
calculations through the terms D, and Dy,

D, = (KMA)x + G(KMA)U + H(KMB)U;
Dy = [Ku(0, + Gb,)], + G[Ku (6, + Gb,)],
+ (KuH0,),,

where

A = u, + Gu, — Hw,; B = Hu, +w, + Gwy,

K 1/2
Ky = k* AxAz|Def| {max(l — IR 0)] :
Ky

R; = N7 /Def?, Def? = A> + B?,

N2 = g5 In(0)]

In this study, we assume that k= 0.21 and
Ky /Ky =3 as suggested by Deardorff (1971,
1972). Some symbols are explained below, while
others have their conventional meanings:

total horizontal velocity

basic horizontal velocity
perturbation horizontal velocity
vertical velocity

perturbation pressure

total potential temperature

basic state potential temperature
perturbation potential temperature
coefficient of Rayleigh friction and
Newtonian cooling

po constant reference density

To constant reference temperature
Ky eddy diffusivity of heat

Ky eddy diffusivity of momentum

R; Richardson number

Np local Brunt-Viisild frequency.

~

QLD I N |

In deriving Eq. (1), the hydrostatic equation has
been used. The governing equations are discre-
tized and numerically integrated over a two-
dimensional grid in (x,o) space. The horizontal
(vertical) derivatives are approximated by fourth
(second)-order centered differences. These
schemes are identical to those employed in the
Cartesian model adopted by Lin et al. (1993), and
Wang et al. (1996). The time derivatives are
approximated through the leapfrog scheme, with
the exception of the first time step, which is
computed by forward differencing. Viscous
effects are modeled through the inclusion of
Rayleigh friction and Newtonian cooling, which
for all cases reported in this paper are taken to be
zero in the model physical domain.

Within the terrian-following coordinate sys-
tem, the lower boundary condition requires w' =
udh/dx at o = 0, where h is the terrain function.
The upper boundary condition is approximated
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either by placing an artificial viscous absorbing
layer (Klemp and Lilly, 1978) or imposing the
radiation boundary condition (Klemp and Durran,
1983) at the top of the physical domain. In the
present model, the damping in the sponge layer is
associated with Rayleigh friction and Newtonian
cooling. To minimize wave reflection, the damp-
ing coefficient v is increased gradually from zero
at the top of the inviscid region, z = zj, to z7 at
the top boundary, z = z7, according to

V:VTsin2<gZ_Zl>. (5)

r — 11

The numerical technique for implementing the
radiation upper boundary condition can be found
in Klemp and Durran (1983). In this study, we use
the viscous absorbing layer since it is more
reliable in simulating flow over mountains
(Wang, 1996). The lateral boundary conditions
are specified by the Orlanski (1976) radiation
condition. A five-point numerical smoother
(Shapiro, 1970) is applied to every field at every
time step to damp 2Ax waves, while a three-point
numerical smoother is applied to damp 2At
waves (Asselin, 1972).

The time and horizontal grid intervals used in
this study are 10s and 4 km, respectively. For all
cases presented in this study, the horizontal
domain contains 128 grid points. There are 80
vertical grid intervals. An idealized bell-shaped
mountain ridge is used throughout this study,

h

) = (8
where h and a are the mountain height and half-
width, respectively. The mountain half-width is
taken as 20km in this study except in Sect. 5
where it is reduced to 10 km. This model has been
tested against Long’s nonlinear theoretical results
and the nonhydrostatic model results of Peltier
and Clark (1979), and is found to be capable of
producing accurate results (see LW).

3. Shear effects on flow regimes for
two-dimensional orographically-forced flow

a) Linear flow

In this section, we investigate the effects of wind
shear on the two-dimensional response for strati-
fied flow over a mountain ridge. We first discuss

the linear analytical results. If the basic wind
profile is specified as U(z) = Uy + az, where Uy
is the wind speed at z = 0, and N(z) = N, where
N is the Brunt-Viisild frequency, the solutions
can be calculated following the procedures
similar to those in Smith (1986). For details,
readers are referred to that paper. The steady-state
perturbation horizontal and vertical wind velo-
cities can be obtained by

—UghaH"2(z + H) ™"/

/ —
u(x2) = a? + x?
X [(g — ux)cos@ + (;—C—F ua)sin@},
9)
haH~1/> H)Y/2
w’(x,z):U0 a (Z—z )
(a® + x?)
x [(@® — x*)sin @ — 2axcosf],  (10)

where H=Uy/a, p=+/R; —0.25, § = ,uln(Hiﬂ),
and Ri = (N/a)*. These steady-state solutions for
two-dimensional nonrotating flow are plotted in
Fig. 1 for F = Uy/Nh = 10, and Ri = oo (Figs.
la-b), 100 (Figs. 1c—d), and 10 (Figs. le—f). In
this figure, the vertical domain is 3.4)\,, where
A, =27nUy/N. For the uniform flow case,
vertically propagating waves are predicted by
the theory, whose amplitudes vertically repeat
every \,. Note that this local vertical wavelength
only holds under conditions suitable for the WKB
approximation. It is well known that the extreme
magnitude of disturbance occurs somewhere
along the vertical line above the mountain peak
(x =0) for linear hydrostatic mountain waves.
For cases with forward shear in the wind profile,
vertically propagating mountain waves are also
observed, similar to those produced in uniform
flow. However, the local vertical wavelength
increases with height since it is calculated by
27U(z)/N. In the case with Ri = 100, the whole
domain contains about 1.6 vertical wave cycle,
while it contains only about 1 vertical wave cycle
in the case with Ri = 10. The extreme magnitude
of disturbance in «’'(w') decreases (increases) with
height instead of vertically repeating with the
same value unlike the case with uniform basic
wind. This may be explained, to a first approx-
imation, by the linearized momentum and
thermodynamic equations in Fourier space where
w' is proportional to and i is inversely propor-
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Fig. 1. a The horizontal perturbation wind field from the analytical solution for uniform flow over a bell-shaped mountain; b
same as in a except for vertical wind field; ¢ same as in a except for shear flow with Ri = 100 from Eq. (9); d same as in ¢
except for vertical wind field; e same as in ¢ except with Ri = 10; f same as in d except with Ri = 10
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tional to the basic wind speed, which increases
with height. One of the objectives of this study is
to discuss the effects of shear on the occurrence
of severe downslope winds. It is well-known that
the first stage of severe downslope winds is the
existence of stagnation aloft or a wave-induced
critical level (e.g., Scinocca and Peltier, 1993). In
cases with uniform flow (Fig. 1a), the lowest
stagnation aloft is located near z = 0.75); where
' is minimum (e.g., see Peltier and Clark, 1979).
Wind reversal will occur when u + Uy < 0.
However, the height of the lowest stagnation
aloft in Figs. 1c and e must be located at a higher
altitude than that in Fig. la, since the local
vertical wavelength increases as the shear
increases (Ri is smaller).

Since the extreme magnitude of u' for cases
with forward shear occurs somewhere along the
vertical line at x = 0, the location of minimal '
along this line can be calculated from Eq. (9) with
x=0,

' (0,2) = — UghH™?(z + H) '/
0059}

(11)

and by taking the derivative of u'(0,z) with
respect to z. The value of z for which 0u/(0,z)/
0z = 0 is the location where u/(0, z) has either a
local maximum or minimum. We define z. as the
value which causes u'(0,z) to be a minimum.
Adopting this strategy, z. can be obtained

Ze = @ [637'(/2/L
2w

Notice that z,. in Eq. (12) has been normalized by
27Uy/N and approaches the value 0.75 as Ri
approaches infinity (shown in Fig. 2¢). The case
with infinite Ri can be considered as the one with
uniform flow, the value of 0.75 is consistent with
that predicted by linear theory for orographically-
forced uniform flow (e.g., Peltier and Clark,
1979). Substituting the value of z. into Eq. (11),
we can obtain the minimal value (0, z.). When
overturning occurs, total horizontal wind speed
u'(0,z.) + Up + az. < 0. Therefore, F. for the
existence of stagnation aloft can be obtained.

KB -9 /4p
F c = —F— e e . 13
VE; )
Other dynamically important variables are the
strongest horizontal wind speed at the lee surface

X [,usin@—i—

—1]. (12)

and the smallest horizontal wind speed at the
upslope surface. The latter is related to the
possibility of stagnation occurring at the lower
boundary. The perturbation horizontal wind speed
at the surface can be obtained from Eq. (9)

—UphaH™ [a
a? + x? [5 B ,ux] ’
From Eq. (14), the maximum (Up,y) and mini-

mum (Up,;,) horizontal wind velocities at the sur-
face normalized by U, can be obtained

u'(x,0) = (14)

111 1
Umax:1+_ Py I z=20 15
F {2 4\/Ri] (15)

and

11 1

Umm l F |:2 + 4\/R71:| bl
respectively. The results from Egs. (12)—(16) are
plotted in Fig. 2. Figure 2a shows the variation
of Unax at the lee surface with Ri for cases with
F = 1. It is apparent that Uy, decreases as the
shear increases (Ri decreases). Figure 2b shows
the variation of Uy, at the upslope surface with
Ri for cases with F' = 1. Similar to Fig. 2a, U,
decreases as Ri decreases. For two-dimensional
flow, upstream blocking occurs when there exists
a stagnation at the upslope surface. From Fig. 2b
(or Eq. 16), it can be determined that forward
shear increases the possibility of upstream
blocking. However, if we calculate the critical F
for upstream blocking based on the value of Uy,
it is found that the modification is not very
significant when Ri < 10. The decrease in Up;,
may be due to positive vorticity induced in the y-
direction by the forward shear. The vorticity of
the basic wind alters the low-level circulation.
Smith (1979) suggested that low-level blocking
is one of the most important ways in which
mountains affect the airflow. The most powerful
method for understanding nonlinear mountain
flows is by direct numerical integration of the
governing equations. The application of linear
steady-state theories is limited to a few illustra-
tive examples because the regime diagrams are
not thoroughly known.

Figure 2c¢ shows the variation of z. with Ri
from Eq. (12). It is found that z. increases as Ri
decreases. When Ri is very large, then z. is close
to 0.75, which is the location of wave-induced
critical level for the uniform flow case. Figure 2d

z=0, (16)
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Unax at lee surface (F=1)

Umnax

YT O e U T U HU. e O Lo

Umin at upslope surface (F=1)

0.514 -+ R R TRTE TR ERRR el et

024w PSRN U O

b log(Ri)

Fig. 2. a The strongest horizontal wind speed at the lee surface from Eq. (15); b the smallest horizontal wind speed at the
upslope surface from Eq. (16), ¢ the location of stagnation aloft from Eq. (13), and d the critical F for wave breaking as

functions of Ri in shear flow

shows the variation of F,. with Ri from Eq. (13). It
is apparent that F,. decreases as Ri decreases. This
is consistent with that proposed by Smith (1989)
for three-dimensional flow over an isolated
mountain; that increasing ambient wind speed
aloft reduces the possibility of wave breaking.
When Ri is very large, F,. approaches 1 which is

the critical F for the uniform flow case predicted
by linear theory. As aforementioned in the
Introduction, F,. is predicted by nonlinear theory
to be 1.18 (Miles and Huppert, 1969) as verified
by nonlinear numerical simulations (e.g., LW) for
uniform flow over a two-dimensional bell-shaped
mountain ridge. The discrepancy of F, in linear
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theory is due to the linear assumption and the use
of a linear lower-boundary condition (Laprise and
Peltier, 1989). Although the F, from linear theory
is not quite accurate, we will show later from the
results of nonlinear numerical simulations that the
curve shown in Fig. 2d is able capture the ten-
dency of the influence of shear on the flow
regime.

b) Nonlinear flow

We now adopt the numerical model described in
Sect. 2 to conduct experiments for studying the
effects of shear on two-dimensional, nonrotating,
orographically-forced flow. In the experiments
considering the effects of shear, the parameters
are specified as follows: Uy = 10 ms !, N=
0.01s7!, and varying peak mountain height (h)
and wind shear strength («). In these experiments,
two nondimensional control parameters, F =
Uy/Nh and Ri = (N/a)?, govern the hydrostatic
flow response for a constant aspect ratio (h/a). F
varies from 0.5 to 1.2, and Ri is chosen to be
either 20, 100, 400, 900, infinity, 900~ (super-
script denotes those cases with backward shear)
or 400~. The corresponding 4 and « for a certain
case can be calculated from F, Uy, N, and «. Note
that & < 0 when backward shear is considered.
The experiments with backward shear are con-
ducted in order to further verify some conclusions
we draw from cases with forward shear. However,

we will not discuss the cases of backward shear
with a critical level in this study. Since the
vertical domain of the numerical model is finite,
we can calculate the wind speed at top of the
domain in advance to avoid the case with a
critical level when backward shear is considered.
The major interest in this section is the role of
forward shear. The effects of critical level on
severe downslope winds will be studied in a
separate paper (Wang and Lin, 1999b). In all the
experiments in this section, the mountain half-
width is taken as 20 km.

Table 1 shows the nondimensional time for the
occurrence of wave breaking (T-break) and
upstream blocking (T-block). T-break and T-block
are defined as the time at which the total
horizontal velocity becomes zero aloft and along
the upslope surface, respectively. F is the only
flow regime control parameter if uniform U and N
are considered for hydrostatic airflow over a
mountain as shown in LW. Notice that as «
approaches 0, our solution approaches those in
LW. As proposed by LW, the results for cases
with uniform flow can be separated into four flow
regimes: (I) flow with neither wave breaking aloft
nor upstream blocking (e.g., F = 1.2), (II) flow
with wave breaking aloft in the absence of
upstream blocking (e.g., F = 1.1,1.0), (III) flow
with both wave breaking and upstream blocking,
but where wave breaking occurs first (e.g.,
F=0.9,0.8,0.7,0.6), and (IV) flow with both

Table 1. The nondimensional time for the occurrence of wave overturning aloft (bold numbers) and upstream blocking

(italicized numbers) for different F' and Ri

Ri 20 100 400 900 infinity 900~ 400~
F (a=0) (a<0) (a<0)
1.2 No No No No No 11.25 9.77
No No No No No No No
1.1 No No No 33.54 13.07 9.31 8.33
No No No No No No No
1.0 No No No 17.59 10.20 7.97 7.21
No No No No No No No
0.9 No No 14.01 11.77 8.46 6.86 6.19
No No No 46.12 49.58 25.91 25.90
0.8 No No 10.34 9.24 7.12 5.81 5.37
No No No 26.08 19.50 13.50 12.49
0.7 No No 7.91 7.35 5.89 4.92 4.58
No No 21.52 13.98 10.92 7.98 7.46
0.6 No 11.16 6.41 5.85 4.79 4.12 3.94
No No 5.04 7.53 5.07 4.72 4.51
0.5 No 6.51 5.06 4.66 3.91 3.40 3.27
No 2.78 3.55 3.20 3.15 2.95 2.90
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wave breaking and upstream blocking, but where
blocking occurs first (e.g., F = 0.5). For conve-
nience in discussion, we define F, F,, F3 as the
critical F values which separate flow regimes I
and II, II and 11, and III and IV, respectively.
From Table 1, F|, F; and F3 for cases with o« = 0
are the same as proposed by LW. However, if
forward shear is taken into consideration, it takes
a longer time for wave breaking to occur when Ri
decreases (« increases) for a certain F. For
example, when F = 0.9, T-break =8.46 for the
case with o« = 0, while T-break = 11.77, 14.01 in
cases with Ri = 900, and 400, respectively. Thus,
F1 decreases as the shear increases. This is con-
sistent with that predicted by linear theory (Fig.
2d); that increasing ambient wind speed aloft
reduces the possibility of wave breaking. What
about F, and F3, which are involved with the
occurrence of upstream blocking? Basically, the
time for the occurrence of upstream blocking is
delayed as forward shear increases. However,
careful readers may notice that cannot be applied
to cases with: (1) F = 0.6, Ri = 900 to 400 and
(2) F = 0.5, Ri =400 to 100. In these cases, T-
block decreases as « increases for a fixed F.
Notice that both cases are located in regime IV
where upstream blocking occurs prior to wave
breaking. According to linear theory, forward shear
magnitude increases the possibility of upstream
blocking since U, is smaller when Ri is smaller
(Fig. 2b). Values of Uy, found from numerical
simulations (not shown) for cases with F = 1.2 at
different Ri does support those found in Fig. 2b.
However, the implication of Fig. 2b for the pos-
sibility of upstream blocking apparently does
not apply to cases with smaller F' (as shown in
Table 1) since upstream blocking was not ob-
served in the cases with Ri =20 even when
F =0.5. The failure of linear theory to predict
the critical F for upstream blocking in the
nonlinear regime may have some physical basis.
As aforementioned, the decrease of Uy, pre-
dicted by linear theory (Fig. 2b) may be due to
positive vorticity generated in the y-direction by
forward shear, which alters the low-level circula-
tion. However, the effects of basic vorticity may
be significantly affected or over-predicted by the
perturbation vorticity generated due to strong
nonlinearity.

The above discussion provides evidence for the
effects of forward shear on decreasing the pos-

sibility of stagnation aloft. We may hypothesize
that backward shear may have the opposite
effects. Therefore, we conduct numerical experi-
ments with backward shear, as shown in the last
two columns of Table 1. When backward shear is
considered, T-break and T-block are reduced
compared to those for uniform flow. In other
words, decreasing ambient winds enhance the
possibility of stagnation both aloft and at upslope
surface. F,. separating regimes I and II is about
1.35 in cases with Ri =900~ and about 1.45 in
cases with Ri = 400~ according to our numerical
results with larger F (not shown). These two
critical F' are both larger than 1.18, which if F.
for the uniform flow case.

The other feature apparent in Table 1 that both
T-break and T-block decrease as F decreases
when a certain Ri is considered, no matter
whether vertical shear exists or not. This is due
to the increase in nonlinearity when F decreases,
which speeds up the formation of both wave
breaking and upstream blocking. Based on the
above discussion, we may conclude that the
major effects of shear are to modify Fy, F, and F3
which separate the flow regimes. The dynamics
for sheared flow are similar to those of uniform
flow.

Table 2 shows the initial overturning height
(z¢c), which is nondimensionalized by A, =
27Uy /N. For uniform flow cases (o =0), z
increases as F decreases. The definition of z. is
the lowest height at which critical steepening
occurs in the steady state solution in Laprise and
Peltier (1989), while it is the height of the first
detection of negative horizontal wind velocity
aloft in the time integration in this study. Laprise
and Peltier (1989) suggested that z. = 0.75(0.76)
if a linear (nonlinear) lower boundary condition is
adopted in the hydrostatic version of Long’s
nonlinear solution. It is well known that z. is
independent of F' according to linear theory or
Long’s nonlinear solution. According to Table 2,
Z. increases from 0.69 to 0.76 when F decreases
from 1.1 to 0.5 for uniform flow. However, this
variation of z. with F is insignificant, in a sense,
since z. is always close to 0.75 for cases with
o = 0. When shear effects are considered, it is
found that forward shear enlarges z. and back-
ward shear reduces z. for certain F, e.g. for
F =0.6, z. increases (decreases) from 0.74 in
uniform flow to 1.11 (0.68) with Ri = 100
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Table 2. The nondimensional height (z.) of initial overturning for different F and Ri

Ri 20 100 400 900 infinity 900~ 400~
F (a=0) (a<0) (a<0)
1.2 0.64 0.60
1.1 0.79 0.69 0.65 0.61
1.0 0.78 0.70 0.66 0.62
0.9 0.83 0.73 0.71 0.67 0.63
0.8 0.85 0.74 0.70 0.68 0.64
0.7 0.80 0.76 0.72 0.70 0.66
0.6 1.11 0.82 0.82 0.74 0.72 0.68
0.5 0.96 0.88 0.84 0.76 0.75 0.75

(Ri = —4007). This is intuitively easy to ima-
gine, since the local vertical wave length under
forward (backward) shear is larger (smaller) than
that for uniform flow, and the stagnation aloft
usually occurs at the second phase of the hori-
zontal wind field.

Figure 3a shows the regime diagram in
F —log(Ri) space based on the results with
forward shear in Table 1. The flow behavior can
still be separated into four different regimes
similar to those proposed by LW. However, F, F;
and F5 are functions of Ri if shear is considered.
All these three critical F’s decrease as the shear
increases (Ri decreases). F. (same meaning as F)
shown in Fig. 2d, which is calculated from linear
theory, should be compared with the upper curve
in Fig. 3a. It can be seen that the tendency of F| is
captured well by the linear solution, although the
values are underestimated by linear theory due to
the use of the linear lower boundary condition.
Fig. 3b shows z. from both numerical simulations
and linear theory. The values obtained from linear
theory capture the results predicted by non-
linear numerical simulations surprisingly well.
Although z. varies with F slightly, the values
are always close to those predicted by linear
theory.

Figure 4 shows the total horizontal wind field
for cases with F' = 1.2 for different Ri, namely,
Ri = 100,400, 900, infinity, 900~, 400~ in Figs.
4a—f, respectively. For convenience, the vertical
domain height is fixed as 1.7)\;, where A\, =
27Uy /N and U is the surface wind speed. As
found from linear theory, the local vertical wave
length actually varies with height due to the
variation of the basic wind speed. The stronger
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Fig. 3. a Regime diagram for 2-D, nonrotating, hydrostatic,
continuously stratified forward shear flow over a bell-
shaped mountain. Four flow regimes are identified: (I) flow
with neither wave breaking aloft nor upstream blocking,
denoted as open circles, (II) flow with wave breaking aloft
and no upstream blocking, denoted as closed circles, (III)
flow with both wave breaking and upstream blocking, but
where breaking occurs first, denoted as open squares, and
(IV) flow with wave breaking and upstream blocking, but
where blocking occurs first, denoted as closed squares; b
The comparison of nondimensional initial overturning from
linear theory (solid line) and nonlinear numerical solutions
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Fig. 4. The horizontal wind fields at Ut/a = 50.4 for the cases with F = 1.2, and a Ri = 100, b Ri =400, ¢ Ri =900, d
uniform basic wind, e Ri = 900~ (with backward shear), and f Ri = 400~

the shear of the basic wind, the larger the local the case without wave breaking may be a good
vertical wavelength. The only case with constant indicator to determine how far the flow is away
local vertical wavelength is the one of uniform from wave breaking. The minimal wind speeds

basic flow (Fig. 4d). Since wave breaking requires (in ms~!) aloft are 8.68, 4.72, 2.29, and 1.96 in
stagnation aloft, the minimal wind speed aloft in Figs. 4a—d, respectively. The smaller the Ri, the
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farther away the minimal wind speed from
stagnation is. Notice that Ri increases from 100
in Fig. 4a to oo in Fig. 4d. Therefore, the pos-
sibility of stagnation aloft is reduced by increas-
ing ambient wind speed. As shown in Table 1,
backward shear enhances the possibility of
stagnation. There exists wave breaking for cases
with backward shear when F = 1.2 (Figs. 4e—f).
The internal jump develops with the occurrence
of wave overturning, and then propagates down-
stream to produce severe downslope winds on the
lee surface. Uy, is 2.32 in Fig. 4e and 2.36 in
Fig. 4f, while it is only 1.48 in Fig. 4d. The
effects of shear on the magnitude of the lee slope
wind will be discussed later. No upstream block-
ing is observed for any case shown in Fig. 4. The
behavioral characteristics of those cases in Fig.
4a—d are considered as regime I (no wave
breaking and no upstream blocking), while those
in Fig. 4e—f as regime II (with wave breaking, but
no upstream blocking).

Figure 5 shows the horizontal wind fields for
cases with F = 1.0 for different Ri. The only
difference between this figure and Fig. 4 is the
value of F. Wave breaking is observed in Fig.
Sc—f, but not in Fig. Sa-b. However, there still
exists no upstream blocking. Therefore, the cases
shown in Fig. Sc—f are characterized as regime II,
while both cases shown in Fig. 5a-b belong to
regime I. If F is further decreased to 0.8, the case
with Ri = 100 (Fig. 6a) is still characterized as
regime I, but the flow with Ri =400 (Fig. 6b)
switches to regime II. A significant change of the
flow characteristics is observed in Fig. 6c—f.
There is a layer with negative horizontal wind
speed above the upslope surface, which means
some airflow recirculates upstream rather than
passing over the mountain peak. This phenom-
enon is the so-called upstream blocking.

Figure 7 shows the horizontal wind field for
cases with F = 0.5 for different Ri. Obviously,
there exists both upstream blocking and wave
breaking for all cases. Although the behavior of
those cases with both wave breaking and
upstream blocking in Figs. 6 and 7 look similar,
one major difference is the time of occurrence of
these two phenomena. According to Table 1,
upstream blocking occurs after the existence of
wave breaking for those cases shown in Fig. 6,
while it occurs prior to wave breaking for those
shown in Fig. 7. Therefore, the cases with both

upstream blocking and wave breaking in Fig. 6
belong to regime III, while those in Fig. 7 belong
to regime IV. If we look carefully, differences do
exist in the flow responses in these two regimes.
For example, the contour lines on the upstream
side (x < 0) are more horizontal for those cases
shown in Fig. 7 than those in Fig. 6. This may be
due to the columnar disturbances (Pierrehumbert
and Wyman, 1985) which propagate upstream
without dispersion, modifying the basic-state
profiles until x = —oc.

Table 3 shows Up,x for those simulations
shown in Tables 1 and 2. Basically, Uy, increases
as F decreases for certain Ri no matter whether
shear exists or not. Up,,x in regime I (denoted as
regular numbers in Table 3) is much smaller
compared to those in other regimes. Similar to
those predicted by linear theory (Fig. 2a), Upax 1S
reduced by forward shear in regime I for certain
F. For example, Up,x decreases from 1.85 to 1.36
in cases with F = 1.2, and from 1.93 to 1.43 in
cases with FF = 1.0 when the shear strength
increases. Notice that this comparison should
only be made for flows belonging to the same
flow regime. Uy, increases abruptly when F is
reduced slighly (0.1) to switch flow regimes from
I to II (denoted as bold numbers in Table 3). For
example, Up,x increases from 1.85 for F = 1.2 to
2.56 for F = 1.1 for the uniform flow case, and
from 2.04 for F = 0.7 to 3.41 for F = 0.6 for
those cases with Ri = 100. The increasing magni-
tude of Upax from regime I to II for the case with
Ri =900 is not as large as in other cases (Ri =
100,400, and oo), which is due to the delayed
formation of stagnation aloft as shown in Table 1.
In this case (Ri =900, F = 1.1), the end of the
simulation still corresponds physically to an early
stage in the development of wave breaking,
according to features in the horizontal wind field
(not shown). In other words, U,y is still increas-
ing and has not reached its maximum value yet.
The increments of Uy, responsible for transi-
tions from regime II to III and from regime III to
IV are not as significant as those from regime I
to II; instead, it is more like a gradually increase
due simply to the increasing nonlinearity as F
decreases. This result if consistent with that found
by LW. From this, it may be reasonable to
conclude that the upstream blocking may not
have strong effects on influencing the magnitude
of downslope winds. Roughly speaking, the
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Fig. 5. Same as in Fig. 4 except with F = 1.0
magnitude of the downslope wind is about 2.55— Surface drag (normalized by wpUoNh?/4) is a
3.5 times the basic wind speed at the surface good measure of the strength of the wave
when wave breaking exists. If the basic surface response. Miles and Huppert (1969) have shown
wind speed is 20 ms~!, the downslope wind speed that nonlinearity enlarges the drag values. The
can be as large as 50-70 ms~', which is as strong nonmalized surface drag based on the numerical

as those which occur in a hurricane. results is shown in Table 4. For cases in regime I,
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which can be considered as either linear or
weakly nonlinear, the vertical profile of the
horizontal momentum flux (not shown) is almost
vertical and is very close to the surface drag since
there is almost no interaction between the
perturbation and the basic state (Eliassen and
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Palm, 1996). However, a vertical gradient exists
in the momentum profile between the ground and
the top of the wave breaking region in other flow
regimes. It has been indicated that the drag can
reach several times its linear value for cases
characterized as high-drag states from uniform
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flow experiments (e.g., Clark and Peltier, 1984).
As shown in Table 4, the largest value of drag
occurs in regime II with F very close to Fy. It
is about four times the linear value for uniform
flow and about five times for the case with
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Ri = 400. The drag decreases as F decreases
further from the largest F' in regime II. Stein
(1992) suggested that drag is influenced by three
effects: (1) the increases in wave amplitude
generated by a higher mountain, (2) a drag
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Table 3. The nondimensional maximum wind speed at lee slope for different F and Ri. The cases for regime I, II, III, and IV are
denoted as regular, bold, italicized, and bold italicized numbers, respectively

Ri 20 100 400 900 infinity 900~ 400~
F (a=0) (a<0) (a<0)
1.2 1.36 1.67 1.68 1.80 1.85 2.32 2.36
1.1 1.39 1.69 1.87 2.09 2.56 2.51 2.40
1.0 1.43 1.84 1.93 2.87 2.65 2.53 2.50
0.9 1.45 1.91 3.03 2.93 2.66 2.69 2.66
0.8 1.47 2.00 3.03 3.08 3.02 2.80 2.80
0.7 1.51 2.04 3.22 2.96 3.15 3.01 2.88
0.6 1.61 341 3.76 3.20 3.46 3.05 3.02
0.5 1.68 4.50 3.93 3.28 3.42 2.92 3.02

Table 4. The nondimensional drag for different F and Ri. The cases for regime I, II, III, and IV are denoted as regular, bold,

italicized, and bold italicized numbers, respectively

Ri 20 100 400 900 infinity 900~ 400~
F (a=0) (a<0) (a<0)
1.2 0.39 1.23 1.41 1.48 1.15 3.28 3.37
1.1 0.38 1.12 1.62 5.34 4.09 3.77 3.21
1.0 0.35 1.25 1.58 4.98 3.76 3.34 2.99
0.9 0.35 1.27 5.04 4.70 3.32 2.91 241
0.8 0.32 1.25 4.41 3.65 3.32 2.79 1.94
0.7 0.31 1.22 3.72 3.52 3.25 2.88 2.21
0.6 0.41 4.92 3.51 3.31 3.02 2.50 2.44
0.5 0.50 6.55 4.57 2.79 2.71 2.41 2.27

amplification by the nonlinearities, and (3) the
decrease of the active height of the mountain due
to the blocked region that gives a lower force
against the flow (Rottman and Smith, 1989). He
explained the decrease in drag for lower F in a
way that the third effect exceeds the other two for
very high mountains and lowers the main
exponent of the drag.

In this section, we find:

1) There are four flow regimes for vertically
sheared flow over a two-dimensional mountain
ridge similar to those proposed by LW for
uniform flow. However, the critical F’s which
separate the flow regimes decrease by forward
shear and increase by backward shear. The height
of stagnation aloft is increased by forward shear
and decreased by backward shear. 2) Linear
theory is found to be able to predict the location
of the stagnation aloft and capture the tendency
of the modification of F,. for the occurrence of
wave breaking by vertical shear. These findings
will be applied to help explain an observed
severe downslope wind storm in Sect. 5.

4. The effects of sharp gradients
in static stability

a) Linear flow

In this section, we consider a two-layer atmo-
sphere with uniform flow U and discontinuity in
the Brunt-Viisild frequency, with N, in the upper
layer and N, in the lower layer. The height of the
interface is at z = z;. N, may be either larger or
smaller than N;. That is, A, defined as N, /Ny,
may be either larger or smaller than 1. Adopting
a linear lower boundary condition at z = 0, con-
tinuity of vertical velocity and perturbation
pressure as interface conditions, and imposing a
radiation upper boundary condition, the analytical
solution for the horizontal wind perturbation can
be obtained.

UhaX
x [a(sin A\;z + 2¢,cos A 2)
— x(2¢; — 1)cos \iZ]

u/l (x’ Z) =

for z < z3,
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ey — U
2 612 +)C2
X [(cos A\jz1 — 2¢,sin Ajz1)
X (asin Ay (z—z1)+xcos A (z — 21))
+sin Az (2¢c; — 1) (xsin A\ (z — z1)
—acos \(z—2z1))] forz >z,
(17)
where
N
A = UI (18)
N-
)\2 - ?27 (19)
_ (A2 — 1)cos A\jz; sin Az (20)

2(cos? \iz1 4+ A sin® A\jzp)
and

. (1 — Ap2)(cos? M\iz1 — A2 sin’ A1z1) 1)
l 2(cos? \izy + A2,y sin® \yzg)
where A2 = A2/A; = N, /N;. The comparison of
the analytical solutions in Eq. (17) and those
from the nonlinear numerical simulations are
shown in Fig. 8 for cases with F = U/Nh = 10,
A2 =04 or 2 (i.e., N; = 0.01 S_l,Nz = 0.004
or 0.02s7!, respectively), and z; = 0.75), where
A; = 27wU/N;. The depth of the lower layer (z;)
is taken as its nondimensional value in further
discussions in this section. Figure 8a shows i’
from Eq. (17) for the case with \j; = 0.4. It is
apparent that the vertical wavelength is larger in
the upper layer where the Brunt-Viisild fre-
quency is smaller than that in the lower layer,
since the vertical wavelength is 27U/N;. The
magnitude of ' in the upper layer is smaller than
that in the lower layer. The corresponding w’ (not
shown) has a larger magnitude in the upper layer
than that in the lower layer. This is due to over-
transmission since the transmission coefficient is
greater than one when there exists a less stable
upper layer. The transmission coefficient as a
function of A\, will be shown later in this section.
The vertical velocity w' in Fourier space is just
proportional to the transmission coefficient.
However, ' in Fourier space is proportional to
not only the transmission coefficient but also ;.
The relative magnitudes of ' in the upper layer
compared to those in the lower layer may be
determined by the net effects of the above two

parameters. Figure 8b shows u' from the ana-
Iytical solution for the case with A\ = 2.
Opposite to that shown in Fig. 8a, the vertical
wavelength is smaller in the upper layer than that
in the lower layer since there exists a more stable
upper layer. However, the magnitudes of «’ in the
upper layer are about the same as those in the
lower layer in this case. Figure 8c and d shows the
corresponding nonlinear numerical simulations
to those shown in Fig. 8a and b, respectively. The
basic features are similar in such a highly linear
case (F = 10), especially the flow responses in
the lower layer. The magnitudes of «' in the
upper layer from numerical simulation are
relatively smaller than those predicted by linear
theory. The differences may be due to the
numerical diffusion and the influence of the
upper boundary condition as indicated in LW.
Since F is fairly large in this case, nonlinearity
does not play an important role. The analytical
and numerical results agree well. Durran (1986)
suggests the nonlinear effects become significant
when the stability has a multi-layer structure. We
will discuss the nonlinear cases later in this
section.

Our interests in this section are the general
effects of sharp gradients in static stability on
the two-dimensional, nonrotating orographically-
forced flow response. Therefore we calculate the
strongest horizontal wind speed on the lee slope
(Umax), the smallest horizontal wind speed on the
upslope surface (Upnin), the reflection coefficient
(Ref), and the transmission coefficient (Tran) for
different combinations of A, and z;. Upax and
Unin can be obtained using the same approach as
that in Sect. 3 to obtain Egs. (15) and (16). The
reflection and transmission coefficients can be
calculated during the process of solving the
analytical solution of Eq. (17), they are

|1—/\12’
Ref =———| 22
© 14+ App ( )
Tran = . 23
1+ A2 (23)

Ref (Tran) is defined as the squared ratio of the
downward (upward) propagating wave amplitude
in the lower (upper) layer to that of the upward
component in the lower layer.

Figure 9a shows Up,x (normalized by basic
wind speed) in z; — log(\j2) parameter space for
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Fig. 8. a The horizontal perturbation wind field in a two-layer atmosphere from the analytical solution of Eq. (17) with
F=10,z, =0.75,and A\j = 0.4 (i.e., N; = 0.01s™', and N, = 0.004s7!); b same as in a except for A\|; = 2; ¢ Same as in a
except from a nonlinear numerical simulation; d same as in (c) except for Aj, = 2

cases with F = 10. log(\2) < 0 when A\ < 1
and log(Aj2) > 0 when Ay, > 1. It is obvious that
the largest Upm.x occurs in the case with
log(A12) = —2 when z; is near 0.25 +n/2 or in
the case with log((A12) = 2 when z; is near n/2,
where n=0,1,2,.... The magnitude of the
largest Up,y for a certain log(\») is proportional
to the absolute value of log(A;2). Figure 9b shows

the variation of Uy, with log(A;2) for those cases
with z; = 0.255 and z; = 0.505. For cases with
71 = 0.255, Upax decreases from about 2.48 to
1.0 as log(A2) increases from —2 to 2. The
variation of Uy, for cases with z; = 0.505 is
totally opposite of that for cases with z; = 0.255.
Unmax increases from about 1.0 to 2.48 as log(\1»)
increases from —2 to 2. Notice that when U =
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2.48, the response can be classified as a severe
downslope wind. For cases with smaller
[log(A12)], the location of z; with largest Upax
for that particular log(\j) is a little different
from that for cases with log(\2) = —2 or 2. For
example, the location of z; with largest Up,x is
near 0.3 4+ n/2 when log(\2) = —0.1 and is near
0.05 + n/2 when log(A2) = 0.1.

Figure 9¢ shows U, (normalized by U) in
z1 — log(A12) space for cases with F = 10. The
smallest U, occurs in the case with log(\j) =
—2 when z; is near 0.255 + n/2, or in the case
with log(A12) = 2 when z; is near n/2. Again, for
cases with smaller [log(A12)|, the location of
z; with smallest Upy, for that particular log(\2)
is a little different from that for cases with
log(A12) = —2 or 2. For example, the location of
z; with smallest Upi, is near 0.2 4+ n/2 when
log(A;2) = —0.1 and is near 0.45+ n/2 when
log(A12) = 0.1. The magnitude of the smallest
Unmin decreases as the absolute value of log(\,)
increases. Figure 9d shows the variation of Uy,
with log(\p) for cases with z; =0.23 and
z1 = 0.48. For cases with z; =0.23, Unin
increases from about 0.61 to 1.0 as log(Ap2)
increases from —2 to 2. The variation of U,y;, for
cases with z; = 0.48 is totally opposite of that for
cases with z; = 0.23. Uy, decreases from about
1.0 to 0.61 as log()\,) increases from —2 to 2.
Upstream blocking occurs when Uy, < 0. There-
fore, this may imply that the possibility of
upstream blocking increases by decreasing X\, in
cases with log(\2) < 0 and z; near 0.25 +n/2,
or by increasing X\, in cases with log(A12) > 0
and zy near n/?2.

Figure 9¢ and f show the Ref and Tran,
respectively, as functions of log(\;2). Notice that
both Ref and Tran are not functions of gz,
according to Egs. (22) and (23). It is apparent that
Ref is symmetric with log(A2) =0, i.e. Ref is a
function of |log(\12)|. Ref decreases from 0.98 to
0 when log(\2) increases from —2 to 0, and then
increases from 0 to 0.98 when log(\;2) further
increases from O to 2. However, Tran decreases
from 1.98 to 0.02 when log(\3) increases from
—2 to 2. When log(A2) =0, ie. N, =Ny,
Tran=1. The large Ref in cases with
log(A12) = —2 and 2 may explain the occurrence
of largest Unax and smallest Uy, in such cases
when z; is located at an optimal height as shown
in Fig. 9a and c.

One may be curious about whether the linear
theory results shown in Fig. 9 are applicable when
nonlinearity is taken into consideration. Figure
10a and b shows the comparison between Uppax
obtained from both analytically and numerically
for F=10,N, =0.01s"',0<z < 1.5, and
N, =0.004s7! (i.e., A2 =0.4; Fig. 10a) or
0.02s7!' (., A\ip =2; Fig. 10b). As indicated
in Fig. 9, Upnax from the analytical solution
oscillates with z; and repeats its value every 0.5
when F and A, are fixed. Basically, this oscil-
lation in the analytical solution is supported by
nonlinear numerical simulation results for cases
with F = 10, although there is a slight difference
in the magnitudes. The largest Up,.x occurs when
z1 isnear 0.3, 0.8, or 1.3 in Fig. 10a. On the other
hand, for cases with A, =2 (Fig. 10b), the
largest Unax occurs when z; is near 0.05, 0.55 and
1.05 where the trough of the Up, curve is
observed in such locations of z; for cases with
A2 = 0.4s7! (Fig. 10a). In other words, the
curves in Fig. 10a and b are almost totally out of
phase. The corresponding drag (normalized by
pmUN;h?/4) based on numerical simulations in
Fig. 10a and b is shown in Fig. 10c and d,
respectively. It is apparent that there exists an in-
phase property between the curves of Upax and
drag. The drag from highly nonlinear cases will
be investigated in the next subsection to check if
this in-phase property still exists when the non-
linearity is strong.

b) Nonlinear flow

The cases shown in Fig. 10 are very linear and
therefore the nonlinearity does not play an
important role in the flow response. The real
atmosphere may be strongly nonlinear, especially
when wave breaking occurs. Whether linear
theory can be applied may have to be carefully
checked for such cases. Wave breaking has been
found to be necessary for severe downslope winds
to occur (Clark and Peltier, 1984; Smith, 1985).
Here we discuss the nonlinear numerical res-
ponses. The linear theory in the previous subsec-
tion at least gives us a clear indication that both,
the interface height and the ratio A\, are im-
portant in influencing the flow behavior.

In order to investigate the nonlinear problem,
we use the numerical model described in Sect. 2.
Almost all numerical models adopted to study
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mountain problems involve a transformation from
Cartesian to a terrain-following coordinate sys-
tem, the one used here is without exception. The
most popular transformation is that proposed by

Gal-Chen and Somerville (1975) who define
the terrain-following coordinate o = z7(z — zy)/
(zr — z5), where z4(x) is the mountain geometry
and z7 is the top of computational domain. The
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governing equations in such a model are actually
calculated in (x, o) space instead of (x,z) space.
Therefore, the effects of coordinate transforma-
tion may have to be taken into consideration
when a (x,z) space linear theory is applied to
interpret the (x,o) space numerical results. For
example, linear theory applies the lower boundary
condition at z = 0 and predicts that there exists
the strongest low-level response at some certain
71 for flow over mountain in a two-layer atmo-
sphere as shown in Fig. 9a. These values of z;
should be interpreted as values of o in an (x, o)
coordinate system, since the lower boundary
condition is applied at 0 = 0 in such a system.
In the following, these effects will be considered
and the value of o is used as a control parameter.
However, we still use the symbol z;, which makes
the results easier to compare with linear theory.

A large number of systematic nonlinear
numerical simulations are conducted to investi-
gate the effects of two-layer structured atmo-
spheric flow over an isolated mountain ridge.
Figure 11 shows the normalized surface drag,
which provides a good measure of the strength of
the wave response, as a function of z;. Figure 11a
shows the drag for cases with FF=1.5 and
A2 = 0.4. If we define a high-drag state, based
on the simulated flow structure, as those with
surface drag greater than 2, it is found that the
high drag state occurs in cases with z; = 0.25,
0.3125,0.375,0.6875,0.75,1.375, and 1.4375.
Notice that F' = 1.5 is characterized as a low-
drag state if U and N are both constant with
height, according to LW or Long’s nonlinear
theory. Therefore, we may consider those high-
drag state cases in Fig. 11a as “tuned” by the
structured atmosphere. Comparing the drag curve
in Fig. 11a with that of Uy, in Fig. 10a, it can be
seen that these two curves have similar tendencies
in the locations of the crests and troughs. At
values of z; where there exist relatively large
Unmax in Fig. 10a, there is also found a relatively
large surface drag in Fig. 11a. This implies that
linear theory may be used to predict the possi-
bility of high-drag state flow, to a first approx-
imation.

Figure 11b shows the drag for cases with
F =12 and A; = 0.4. In these cases, F is very
close to the critical value (1.18) of the high-drag
state which is predicted for cases with uniform U
and N (Miles and Huppert, 1969). Compared to

the results in Fig. 11a, more cases can be charac-
terized as high-drag states in addition to those
found in Fig. 11a. However, the curve still has the
similar tendency to that predicted by linear theory
(Fig. 10a). Figure 11c shows the drag for cases
with F = 1.0 and A2 = 0.4. For such F, all cases
except the one with z; = 0.0625 are high-drag
state flows. Again, the curve has a similar ten-
dency to that predicted by linear theory (Fig.
10a), except for z; > 1. Notice that F = 1.0 is
located in regime II for a high-drag state flow in
the case with uniform U and N according to LW.

According to the results in Fig. 11a—c, we find
that F. depends on the location of z; if a certain
A1z 1s considered. For example, the critical F in
cases with z; = 0.0625 must be some value less
than 1, since a high-drag state flow is not
observed even when F = 1.0, although the drag
increases from 1.2 to 1.7 when F decrease from
1.5 (Fig. 11a) to 1.0 (Fig. 11c). For cases with
z1 = 0.25, the critical F is found to lie between
1.2 and 1.5 since the high-drag state is observed
in the case with /' = 1.2 (Fig. 11b) and not in that
with F=1.5 (Fig. 11a). F. for cases with
z1 = 0.375 is some value greater than 1.5, since
high-drag states are observed in cases with
F =15, 1.2, and 1.0. The range in which F,
may be located in cases with other z; can be
obtained using the same analysis as above.
However, the exact value of F. for different z;
may be practically difficult to obtain numerically,
since it requires an intensive number of simula-
tions. In addition, F. is different for different \;,.
Nevertheless, we may still conclude that the F,
for a high-drag state is larger when 71 is located
near 0.3 + n/2 than that when z; is located near
0.05 + n/2 if there exists a less stable upper layer
(e.g., A\12 = 0.4), according to the results from
Fig. 11a—c.

Figures 11d-f shows the drag obtained from
numerical simulations with the same parameters
as those in Fig. 11a—c, respectively, except with
A1z = 2. The curves in Fig. 11d-f have similar
tendencies as those predicted by linear theory
(Fig. 10b), with crests occurring when z; is near
0.05+n/2 and troughs when z; is near
0.3 + n/2. The range of F, for certain z; can be
obtained from the values of drag for different
using the similar analysis as before. F, is less
than 1 for cases with z; = 0.75, 0.8125, 0.875,
and 0.9375, since these cases are characterized as
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low-drag state flows when F' = 1.0 (Fig. 11f).
This means that these cases are strongly
“detuned” by the structured atmosphere since
F =1 is located in a high-drag state regime for
the uniform U and N case. We may conclude that
the F. for a high-drag state is larger when z; is
located near 0.05 + n/2 than that when z; is
located near 0.3 +n/2 if there exists a more
stable upper layer (e.g., A2 = 2), according to
the results from Fig. 11d-f.

From the above analysis, we find the similarity
between the curves of U, (Fig. 10a, b)
from linear theory and the curves of drag (Fig.
11) from nonlinear numerical simulations. This
similarity implies that Upax in z; — log(A12)
space shown in Fig. 2a may be very useful in
the qualitative analysis of the possibility of high-
drag state flows in different situations. We find
that when linear theory predicts a larger Uy, the
possibility of a high-drag state in the nonlinear
numberical simulation is also enhanced. In other
words, the F, is larger in cases with larger Upx
predicted by linear theory. According to the
results shown in Fig. 9a, even the case with very
large F' can be characterized as a high-drag state
flow when log(\2) = —2 and z; is near 0.25+
n/2, or when log(Aj2) =2 and z; is near n/2.
However, such cases may be of academic interest
only, since N, in the upper layer which extends to
infinity has never been so small (0.0001 s~!) or so
large (1.0s~!). The most realistic case in the at-
mosphere may be the one with log(\;,) between
0 to 0.5, which is usually applied to simulate the
stratosphere as a more stable upper layer.

In order to get further detailed information
about the flow behavior when “tuned” or
“detuned” effects exist, the horizontal wind
fields are plotted in Fig. 12 for certain cases.
Figure 12a and d shows the horizontal wind field
for cases with FF =1.5 and 1.0, respectively,
when U and N are both uniform with height as
control cases. Figure 12b, c, e, and f shows
the horizontal wind fields for the cases marked
in Fig. 11. The purpose of Fig. 12 is to show
the “tuned” and “detuned” effects on the flow
response in a two-layer atmosphere. Figure 12a
shows that the flow behavior has features of
typical linear mountain waves without severe
downslope winds. However, if there exists a less
stable layer A;» = 0.4 located at z > 0.75); (Fig.
12b), or a more stable layer Aj; = 2 located at

z > 0.5625),; (Fig. 12c¢), strong downslope winds
may be triggered due to the partial reflection from
the upper layer for such a fairly large F. These
results may be viewed as numerical evidence of
“tuned” effects in a two-layer atmosphere. On
the other hand, Fig. 12d shows that when
F = 1.0, there exists a high-drag state flow with
strong downslope winds for the case with uniform
U and N. However, if there exists a less stable
layer A = 0.4 located at z > 0.5625)\, (Fig.
12e), or a more stable layer \j; = 2 located at
z > 0.75); (Fig. 12f), strong downslope winds
may be significantly suppressed or even elimi-
nated due to partial reflection from the upper
layer. These results provide the numerical
evidence of “‘detuned” effects.

Durran (1986) provided numerical results with
“tuned” effects for cases with F > 1.2. However,
he suggested that in some cases the amplification
of the linear solution produced by the layered
structure disappears when the flow is nonlinear,
while in other cases the damping associated with
the linear wave gives way to very strong ampli-
fication in the nonlinear regime, according to his
Table 1 and Fig. 1. We find part of the reason for
that is from the neglect of the coordinate trans-
formation in calculating the interface height.
Besides, linear theory should not be expected to
predict the exact F. for the occurrence of high-
drag states even in an unstructured atmosphere.

As aforementioned, wave breaking requires the
existence of stagnation aloft. Adopting the similar
method in previous section, we can obtain the u’
profile at x = 0. In order to find the minimum of
u'(0,z), one has to take vertical derivative of
u'(0,z) in both layers, and the locations of
extreme u' can be calculated by making the
derivative equal to 0. After the calculations, the
heights (normalized by 27U /N;) with minimal «’
in both the lower and upper layers are obtained
from Eq. (17)

1.1

T+ tan— 3
e = —— 2 (24)
27
and
1 |2¢,sin Ajzp — cos Az
T T s~ sinnz
22c = l = ’ (25)

27

respectively. From the results of uniform or
forward shear flow, we know that the first stage
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in the development of severe dewnslope winds is uniform (Clark and Peltier, 1984; Laprise and
the existence of stagnation at the second phase of Peltier, 1989). In the two-layer structured atmo-
the u' field of the wave (Scinocca and Peltier, sphere considered in this study, U and N are
1993). The stagnation aloft is found to occur near uniform in each layer. Therefore, we assume that

0.75 vertical wavelength when both U and N are stagnation occurs in the upper layer in cases with
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Fig. 13. The nondimensional initial overturning level (z,)
from nonlinear numerical simulations for the cases shown
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the cases with F = 1.5, close circles with = 1.2, and
open square with F'=1.0. The dash lines represent the
corresponding results from linear theory

71 < 0.75, while it occurs in the lower layer if
z1 > 0.75, that is, z. = zp. if z; < 0.75 and
Ze = z1¢ 1If 71 > 0.75.

Figure 13 shows the comparison of z. from
Egs. (24) and (25) and the nondimensional height
for the first detection of stagnation aloft from our
nonlinear numerical simulations shown in Fig.
11. Values of z. from linear theory is plotted as a
dashed line in Fig. 13. In cases with A\, = 0.4, z.
decreases from 1.875 to 0.75 as z; increases from
0 to 0.75 while it starts to oscillate with the center
at z. =0.75 when z; > 0.75. In cases with
A2 = 2, z. increases from 0.375 to 0.75 as z
increases from 0 to 0.75 and it starts to oscillate
with the center at z. = 0.75 when z; > 0.75. The

larger (smaller) z. in cases with Aj; = 0.4(2)
when z; < 0.75 is due to the larger (smaller) local
vertical wavelength in the upper layer than that in
the lower layer as indicated in Fig. 8. The heights
where the stagnation aloft is first detected from
the nonlinear numerical simulation are also
plotted in Fig. 13. They are found to agree very
well with those predicted by linear theory. There-
fore, we may conclude that linear theory gives a
good prediction of the location of stagnation
aloft.

In conclusion, we find that linear theory is very
useful in predicting the level of stagnation aloft
(z.) and in qualitative analysis of the possibility
of high-drag state flow in a two-layer atmosphere.
We will use the findings in this and previous
sections to investigate an observed severe down-
slope windstorm, in which there exists both shear
and multi-layer stability in the sounding, in the
next section.

5. The severe windstorm of 11 January 1972
in Boulder

The observational data for the severe windstorm
which occurred in Boulder, Colorado, on 11
January 1972 have been discussed many times
(e.g., Lilly and Zipser, 1972; Klemp and Lilly,
1975; Lilly, 1978; Peltier and Clark, 1979;
Durran, 1986). The data for this case are the most
well-documented of any published case study
concerning the height variations of the structure of
the wave field. The background wind and tem-
perature profiles which were obtained from the
Grand Junction sounding upstream of Boulder
during the windstorm are shown in Fig. 18 of
Peltier and Clark (1979). The wind speed
increases linearly from 10ms~! at the surface to
50ms~' at z = 10km and then decreases from
50ms~' at z = 10km to 20ms~' at about z =
12km, above which it is constant. In the tem-
perature profile, there exists an inversion between
2.7 and 4.7km and an isothermal layer for
z > 10km. Klemp and Lilly (1975) emphasized
the fundamental role of the inversion layer in
generating a large-amplitude response in their
linear theory. They suggested that this strong
amplification is associated with partial reflection
of upward propagating wave energy by variations
in thermal stability. Durran (1986) indicated that
if this inversion is removed from the upstream
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sounding, no windstorm develops, according to
his numerical simulation. He also found that when
the inversion is retained, but the change in
atmospheric structure at the tropopause is elimi-
nated, a significant windstorm still develops.
Considering this observed wind profile for
the Boulder severe downslope windstorm, Ri is
about 6.25 (a = 0.004, N is about 0.01s™") for
z < 10km. The surface wind speed in that profile
is 10ms~' and the mountain peak of the topo-
graphy west of Boulder is about 2 km. Hence, F
is about 0.5. According to the flow regime shown
in Fig. 3a, it is located in regime I without the
occurrence of wave breaking and there should be
no strong downslope wind if N is constant with
height. Therefore, the variation of stability may
play an essential role in this observed windstorm.
In this section, we use these observational wind
velocity and temperature profiles as the initial
data for our numerical model to investigate the
mechanism of partial reflection. Figure 14a
shows the simulated potential temperature field
at + = 12000s. It is apparent that the internal
jump forms and propagates downstream. The
largest horizontal wind speed on the lee surface is
56ms~! (not shown), which is very close to the
value observed in this windstorm (Lilly, 1978).
This figure should be compared with Fig. 10 of
Durran (1986). The basic features of the severe
downslope wind structure is similar except that
there is no lee wave in our results since we use a
hydrostatic model. However, Durran (1986) also
suggested that the lee waves play no fundamental
role in the development of strong downslope
winds, as demonstrated from his simulations with
a hydrostatic version of the model. Figure 14b
shows the potential temperature field for the
identical initial parameters as those in Fig. 14a
except that the inversion between 2.7 and 4.7 km
is removed from the initial sounding. Again, the
results are consistent with Durran’s study, and no
windstorm develops in this case. The largest wind
speed on the lee surface is about 35ms~!. The
above two simulations show the capability of our
model to reproduce the basic structure of the
observational windstorm, and show good agree-
ment with the results of other numerical studies.
According to the linear theory developed in the
last section, the low-level response is not only a
function of A, but also function of the location of
interface (z;). Although there are more layers in

this static stability profile, we believe that the
height of the interface still plays important role in
the flow response. To verify this hypothesis, we
conduct a simulation with the inversion located in
a higher layer between 6.7 and 8.7 km. The result
is shown in Fig. 14c. We find that no severe
downslope winds exist when the inversion is
located at such a level. According to linear theory
for a two-layer system with uniform basic wind,
“tuned” effects occur when z; is near 0.05 + n/2
vertical wavelength and ‘““detuned” effects occur
when z; is near 0.3 4+ n/2 vertical wavelength
if A is much larger than 1 (Fig. 9a). Since the
local vertical wavelength varies with height when
there exists shear in the wind profile, the optimal
location of z; for “tuned” or ““detuned” effects to
occur in such cases becomes difficult to calculate.
However, we may still analyze these processes to
a first approximation. For the case in Fig. 14a, the
interface for the lowest two layers is located at
z = 2.7km and the mountain height is 2km. The
nondimensional interface height above the moun-
tain peak is about 0.04 times the averaged vertical
wavelength in terrain-following coordinates if
the mean vertical wavelength is calculated from
averaged U (30ms™!) and N (0.01s7!) at
z < 10km. Using the similar analysis, the inter-
face in Fig. 14c is at about 0.25 mean vertical
wavelength. Therefore, these results may be
viewed as evidence of a partial reflection mechan-
ism which may either enhance or suppress the
possibility of wave breaking. Details depend on
the location of the interface in a structural atmo-
sphere.

To further verify the partial reflection mechan-
ism, we remove the inversion from the sounding
and place a less stable layer (0.001s~!) between
9.7 and 11.7km (Fig. 14d). We find that a severe
downslope wind develops under this condition,
although it develops at a later time as compared
to the case shown in Fig. 14a. The interface above
the mountain peak between this less stable layer
and the lower layer is about 0.4 mean vertical
wavelength in terrain-following coordinates.
Notice that this interface height is close to the
optimal z; for “tuned” effects to occur in a two-
layer system, as shown in Fig. 9a. Thus, these
results verify the partial reflection mechanism and
provides an alternative condition for the devel-
opment of severe downslope windstorms without
the existence of a low-level inversion.
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Fig. 14. a The potential temperature field from a nonlinear simulation of the 11 January 1972 Boulder windstorm using the
upstream conditions observed at Grand Junction, at a model time 12000s; b same as in a, except the inversion has been
removed from the upstream sounding; ¢ same as in a, except the inversion has been moved to a higher layer between z = 6.7
and z = 8.7km; d same as in b, except a less stable layer has been added in the layer between z = 9.7 and z = 11.7km

6. Concluding remarks strated how a mountain wave and its associated
surface winds can be strongly influenced. The
We have investigated the effects of shear and linear theory for flow over an isolated mountain

sharp gradients in static stability and demon- ridge with forward shear and constant static
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stability shows that the horizontal wind speeds
along both the lee and upslope surfaces are
suppressed by forward shear. The critical F(F,)
for the occurrence of wave breaking decreases
when the strength of the forward shear increases,
while the location for the wave-induced critical
level is higher in cases with larger forward shear.
This linear theory is then verified and interpreted
by analyzing systematic nonlinear numerical
results. Four flow regimes similar to those pro-
posed by LW are also found for forward shear
flow. However, the values of critical F which
separate the flow regimes are lower when the
strength of the forward shear is larger. The loca-
tions of stagnation aloft (wave-induced critical
level) from numerical simulations are found to be
quite consistent with those predicted by linear
theory.

In considering the effects of two-layer stability,
the strongest horizontal wind speed on the lee
slope (Unax), the smallest horizontal wind speed
on the upslope surface (Unin, the reflection
coefficient (Ref), and the transmission coefficient
(Tran) for different combinations of A, and z;
are calculated from linear theory. Both Ref and
Tran are found to be functions of the value of
log(\12), but not the interface height (z;). Ref is
larger when Aj, is much different from 1, no
matter whether A\, is larger or smaller than 1.
However, Tran decreases when log(\1,) increases
and approaches 0 when log(\j») is large. The
magnitude of the largest Upax (smallest Upip)
increases (decreases) as |[log(A12)| increases. It is
found that the largest Up,,x occurs when z; is near
0.25 + n/2 for cases with a less stable upper
layer, or when z; is near n/2 for cases with a
more stable upper layer. These results are con-
firmed by nonlinear numerical simulations. We
find that linear theory is very useful in qualitative
analysis of the possibility of high-drag state for
different stability profiles. The locations of stag-
nation aloft in a two-layer atmosphere from
numerical simulations agree very well with those
predicted by linear theory.

The above findings are applied to investigate
the Boulder severe downslope windstorm of 11
January 1972. We find that the windstorm cannot
develop if the near mountain-top inversion is
located at a higher altitude. However, if there
exists a less stable layer right below the tropo-
pause, the windstorm can develop without the

existence of the low-level inversion. These results
indicate the importance of partial reflection due to
the structured atmosphere in influencing the occur-
rence of severe downslope windstorms, although
partial reflection may not be the responsible
mechanism for the generation of windstorms.

This study provides systematic numerical
simulations to discuss how the flow regime is
modified by wind shear and sharp gradients in
static stability. Linear theory is proved to be very
useful, in some sense, even in the nonlinear flow
regime. The information from this study may be
useful for improving the prediction of severe
downslope windstorms.
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