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ABSTRACT

A linear theory for wave ducting is developed by solving a three-layer, steady-state nonrotating flow over a
two-dimensional mountain analytically. The reflection coefficient (Ref ), transmission coefficient, and the stron-
gest horizontal wind speed at the surface are calculated based on the linear theory as functions of the Richardson
number (Ri) and the depth of the lowest layer, with uniform wind speed. The relationship between the low-
level response and reflectivity is also investigated.

Based on this linear theory, a more general linear criteria is proposed for wave ducting, with the case considered
by R. Lindzen and K.-K. Tung being only its subset. The linear theory is then applied to investigate the wave-
ducting mechanism for long-lasting propagating waves in the atmosphere through a series of nonlinear numerical
simulations. In the presence of a critical level, wave ducting may occur over a relatively wider range of Ri, once
Ref is close to 1. That is, it is not necessary to have Ri , 0.25 in the shear layer for wave ducting to occur. The
effects of varying N2/N1, N3/N1, and 2U3/U1 on the low-level response in a three-layer atmosphere have also been
investigated. When a stable lower layer of thickness 0.25 1 n/2 times the vertical wavelength is capped by a nearly
neutral layer with 0.01 , Ri , 100, it may act as a wave duct due to the reflection from the interface of sharp
gradients in static stability. This wave duct exists even if there exists no vertical shear in the wind profile. The
wave-ducting criteria derived from the present linear theory could be applicable even to a nonlinear flow regime,
although the ducted wave may be strengthened by nonlinearity and new ducted wave modes may be induced.

1. Introduction

Atmospheric gravity waves are increasingly recog-
nized as an important source for energy and momemtum
transport, which may modify the atmospheric circula-
tions significantly (Lindzen 1981). Gravity wave gen-
eration mechanisms have been studied extensively,
which may include geostrophic adjustment, shear insta-
bility, convection, and topography. The subsequent evo-
lution of these waves, which are able to propagate for
long distances from their source regions, has also at-
tracted the attention of investigators. Three possible
wave maintenance mechanisms have been proposed: 1)
wave ducting (Lindzen and Tung 1976, hereafter LT76),
2) solitary wave mechanics (e.g., Lin and Goff 1988;
Rottman and Einaudi 1993), and 3) wave–CISK (con-
ditional instability of the second kind) (Lindzen 1974;
Raymond 1984).
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The major interest of this study is to examine the wave-
ducting mechanism. LT76 considered gravity wave re-
flection from a critical level and investigated a wave duct
wherein the waves may propagate horizontally without
a great loss of energy in the absence of an energetic
forcing mechanism. They showed that a stable duct ad-
jacent to the surface must be capped by a dynamically
unstable layer with Ri , ¼, where Ri is the Richardson
number, and a critical level. This type of three-layer at-
mosphere has been observed for waves lasting for 3–10
cycles [e.g., the Salem, Illinois, case of Uccellini (1975),
Marks (1975), Eom (1975)]. Examples of observed grav-
ity wave cases can be found in LT76 (their Figs. 12 and
13). Their linear solution also implies that the depth of
the stable duct should be (0.25 1 n/2)l, where l is the
vertical wavelength and n 5 0, 1, 2, . . . . They calculated
reflection and transmission coefficients quantitatively and
pointed out the regions of partial and overreflection in
terms of n [5(¼ 2 Ri)1/2]. According to their calcula-
tions, the critical level acts as an almost perfect reflector
when n is approximately 0.4. Lindzen and Tung (1978)
also showed that the layer below a low-level inversion
in the presence of a midlevel critical level may act as a
duct for internal gravity waves. Uccellini and Koch
(1987) suggested that gravity waves generated by geo-
strophic adjustment processes may maintain their coher-
ent structures and last for a long time by this type of
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ducting mechanism. Koch and Dorian (1988) have in-
dicated that the mesoscale waves observed during the
Cooperative Convective Precipitation Experiment were
ducted by a lower-tropospheric inversion or stable layer
in the presence of a critical level.

Ralph et al. (1993) performed an observational anal-
ysis of a ducted mesoscale gravity wave. They analyzed
the data collected during the FRONTS 84 field exper-
iment in the southwestern France from early May to
early July 1984. The observed characteristics of the
ducted gravity waves, which had a fairly long duration,
are summarized in their Table 2. The wave period, the
horizontal phase speed, and the horizontal wavelength
were approximately 90 min, 16 m s21, and 76 km, re-
spectively. The ducted vertical wavelength of 8.5 km
was inferred from 50-MHz radar observations and es-
timated to be 7.2 km from the linear dispersion relation.
The four necessary conditions for wave ducting pro-
posed by LT76 were checked and quoted by Ralph et
al.: 1) Adjacent to the ground there is a stable layer in
which the wave can propagate, 2) the stable layer is at
least one-quarter of a vertical wavelength deep, 3) above
the stable lower layer there is either an unstable layer
or a near-neutral layer, and 4) in or above the unstable
or neutral layer, there exists a critical level. Ralph et al.
indicated that the near-neutral layer above the stable
layer did not exist in the sounding when the wave was
very active (1039 UTC, their Fig. 13). The average
thickness of the stable layer was 1.8 km (from 0.2 to 2
km), which is exactly 0.25l if l is calculated from the
dispersion relation, but only 0.22l if l is calculated
from the 50-MHz radar observations. Therefore it may
be inferred that LT76’s conditions (2) and (3) were not
really met. Thus, the linear criteria proposed by LT76
deserves a further study.

In order to understand the dynamics of wave ducting
mechanism as proposed by LT76, it is important to in-
vestigate the roles played by critical level and low Rich-
ardson number layer in the three-layer atmosphere
adopted by them. The linear problem of adiabatic per-
turbations in a stably stratified shear flow with a critical
level, where the basic-state wind coincides with the hor-
izontal phase speed of a propagating wave disturbance,
has been studied extensively during the last three de-
cades. Bretherton (1966) found that the vertical wave-
number becomes large and the group velocity becomes
more horizontally oriented as the critical level is ap-
proached. Booker and Bretherton (1967) found that in-
ternal gravity waves are attenuated exponentially as they
pass through a critical level if the Richardson number
is everywhere greater than 0.25. The responses of a two-
dimensional unstructured shear flow with a critical level
to a mountain and a thermal forcing have been studied
analytically by Smith (1986) and Lin (1987), respec-
tively. Smith found that the back-sheared flow has two
length scales. It is possible to have significant ageo-
strophic motion near a mesoscale mountain and a qua-
sigeostrophic lee cyclone (Smith 1986; Lin 1989). Lin

found that the maximum disturbance is located at the
critical level if the thermal forcing exists there.

According to Booker and Bretherton’s theory (1967),
waves may be absorbed by the critical level when Ri .
0.25, whereas they may be overreflected when Ri , 0.25.
In the mean time, the Miles-Howard theorem (Miles
1961; Howard 1961) indicates that Ri , 0.25 is also a
necessary condition for shear (dynamic) instability.
Based on this, Lindzen and Tung (1978) and Lindzen et
al. (1980) proposed that shear instability may be viewed
as a quantization or proper phasing of the direct waves
and overreflected waves (Lindzen and Tung 1978; Lind-
zen et al. 1980). In this study, we will investigate the
relationship between low-level responses and the reflec-
tion and transmission coefficients. In particular, we are
interested in understanding the effects of basic wind and
stability profiles on the reflection and transmission co-
efficients.

Chun and Lin (1995) solved a small-amplitude,
steady-state response of a three-layer atmosphere to a
low-level diabatic cooling, similar to that used in the
normal-mode solutions of LT76 and Lindzen and Ro-
senthal (1983). Their results are consistent with LT76’s
linear theory. The upper radiation condition makes it
possible to obtain a steady-state solution, even though
the flow can be dynamically unstable. In this study, we
solve the linear steady-state analytical solution for non-
rotating flow over a two-dimensional mountain ridge in
a three-layer atmosphere similar to that of the diabati-
cally forced problem solved by Chun and Lin (1995).
This will provide a starting point to investigate the prop-
erties of wave reflection, transmission, and low-level
responses in a more general three-layer atmosphere.

Note that the criteria for a perfect wave reflector pro-
posed by LT76 are based on linear theory. Because non-
linearity exists in the real atmosphere, the gap between
the linear criteria and their application to the observa-
tions may need to be bridged by an idealized nonlinear
study. The nonlinear effects on an adiabatic flow with
a critical level have been studied by several authors in
the last three decades [see Maslowe (1986) for a review].
The nonlinear effects become more and more important
as one approaches the critical level, because the per-
turbation wind speed can easily exceed the basic wind
speed near the critical level. Based on nonlinear nu-
merical simulations, Breeding (1971) found that for a
shear flow with a critical level and periodic (in both
space and time) vorticity forcing, a considerable portion
of the incident wave is reflected by the critical level if
Ri , 2. For a larger Richardson number flow, the re-
sponse is similar to that in a linear flow. However, Lin
and Chun (1991) found that no obvious wave reflection
from the critical level is produced by a prescribed cool-
ing in their nonlinear numerical simulations. Thus, the
nonlinear wave reflection problem still remains to be
better understood. In studies of mountain waves, non-
linear effects have been shown to play an important role
in generating severe downslope windstorms in a shear



414 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

flow with a wave-induced critical level (Clark and Pel-
tier 1984; Smith 1985; Durran 1986; Durran and Klemp
1987; Bacmeister and Pierrehumbert 1988). However,
the impact of the nonlinearity on the wave-ducting
mechanism is still not well understood. To bridge this
gap, we will use a simple numerical model to investigate
the nonlinear effects on the wave-ducting mechanism.

In this study, the wave-ducting mechanism of LT76
will be extended to more general criteria both theoret-
ically and numerically. The paper is organized as fol-
lows. The nonlinear hydrostatic numerical model is de-
scribed in section 2, and a steady-state linear theory is
developed in section 3. Effects of the basic-state Rich-
ardson number, static stability, and wind profiles are
presented in section 4. The criteria for wave ducting
proposed by LT76 are then generalized in section 5
using time-dependent numerical simulations. The non-
linear effects are discussed in section 6. Concluding
remarks can be found in section 7. Implications of wave
ducting to mechanisms of severe downslope windstorms
will be presented in Part II of this series of papers.

2. The numerical model

The two-dimensional version of the North Carolina
State University geophysical fluid dynamics model used
in this study is based on the nonlinear primitive equa-
tions in a nonrotating, continuously stratified, Boussi-
nesq flow in the terrain-following coordinate s 5 zt(z
2 zs)/(zt 2 zs), where zs(x) is the mountain geometry
and zt is the top of the computational domain. The hor-
izontal momentum equation, hydrostatic equation, in-
compressible continuity equation, and the thermody-
namic energy equation governing the finite-amplitude
perturbations are

]u ]u ]
1 (U 1 u) 1 ṡ (U 1 u)

]t ]x ]s

1 ]p ]p
1 1 G 1 nu 5 D ,u[ ]r ]x ]s0 (1)

1 ]p gu
5 , (2)

r ]s Hu0

] z ] zT Tu 1 ṡ 5 0, (3)1 2 1 2]x H ]s H

]u ]u ]
1 (U 1 u) 1 ṡ (u 1 u) 1 nu 5 D , (4)u]t ]x ]s

where

]s s 2 z ]z ]s zT s TG 5 5 ; H 5 5 .1 2]x z 2 z ]x ]z z 2 zT s T sz

A first-order closure formulation of the subgrid mixing
that depends on the relative strengths of stratification
and shear is adopted in this model (Lilly 1962). The

subgrid-scale effects are introduced through the terms
Du and Du,

D 5 (K A) 1 G(K A) 1 H(K B) ;u M x M s M s

D 5 [K (u 1 Gu )] 1 G[K (u 1 Gu )]u H x s x H x s s

1 (K Hu ) ,H s s

A 5 u 1 Gu 2 Hw ; B 5 Hu 1 w 1 Gw ,x s s s x s

1/2
KH2K 5 k DxDz |Def| max 1 2 R , 0 ,M i1 2[ ]KM

2 2 2 2 2R 5 N /Def , Def 5 A 1 B ,i L

]
2N 5 g [ln(u 1 u)].L ]s

In this study, we assume that k 5 0.21 and KH/KM 5
3. Some symbols are explained below, whereas others
have their conventional meaning:

u perturbation horizontal velocity
ṡ sigma vertical velocity
p perturbation pressure
u perturbation potential temperature
U basic-state horizontal velocity
u basic-state potential temperature
n coefficient of Rayleigh friction and Newtonian

cooling
r0 constant reference density
T0 constant reference temperature
KH eddy diffusivity of heat
KM eddy diffusivity of momentum
Ri Richardson number
NL Local Brunt–Väisälä frequency

In deriving Eq. (1), the hydrostatic equation has been used.
The governing equations are discretized and numerically
integrated over a two-dimensional grid in (x, s) space.
The horizontal (vertical) derivatives are approximated by
fourth-order- (second-order) centered differences. The
time derivatives are approximated by the leapfrog scheme,
with the exception of the first time step, which is computed
by forward differencing. Viscous effects are modeled
through the inclusion of Rayleigh friction and Newtonian
cooling terms, which for all cases reported in this paper
are taken to be zero in the physical domain.

The lower boundary condition in the terrain-following
coordinates is 5 0. The upper radiation boundary con-ṡ
dition is approximated by placing an artificial viscous ab-
sorbing layer (Klemp and Lilly 1978) on top of the phys-
ical domain. The Orlanski (1976) radiation condition is
applied at the lateral boundaries. A five-point (three-point)
numerical smoother is applied to every field at every time
step to damp 2Dx (2Dt) waves. The details of this version
of the model can be found in Lin and Wang (1996) and
Weglarz (1994). In the linear simulations, the nonlinear
terms in the model have been deactivated.
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FIG. 1. Schematic diagram of the model atmosphere. Shown are
the vertical profiles of the mean wind U(z) and the Brunt–Väisälä
frequency.

3. Linear theory

In this section, we present the linear steady-state an-
alytical solution for a three-layer, nonrotating flow over
a two-dimensional mountain in a three-layer atmosphere
similar to that in the diabatically forced problem of Chun
and Lin (1995). Although the solution is obtained with
orographic forcing, we will show that the general con-
clusions from the linear theory can also be applied to
freely propagating waves.

For steady-state, small-amplitude perturbations, Eqs.
(1)–(4) may be reduced to the following equations in
the Cartesian system of coordinates

Uu 1 U w 1 f 5 0, (5)x z x

f 5 b, (6)z

u 1 w 5 0, (7)x z

2Ub 1 N w 5 0. (8)x

In the above, f denotes the kinematic perturbation pres-
sure (p/r0); b the buoyancy perturbation (gu/u0), and
u0 is the constant reference potential temperature. Sub-
scripts x, y, and z indicate partial differentiation. The
hydrostatic assumption is considered to be good as long
as the hydrostatic parameter (Na/U, where a is the hor-
izontal scale of the mountain or disturbance) is large,
such as Na/U $ 7 (Lin and Wang 1996).

Equations (5)–(8) can be combined into a single equa-
tion for the vertical velocity,

2N Uzzw 1 2 w 5 0. (9)zz 21 2U U

The atmosphere is assumed to have a three-layer struc-
ture, as shown in Fig. 1. The basic wind is constant in
layer 1 (U1 . 0) and in layer 3 (U3 , 0), and varies
linearly from U1 to U3 in layer 2. Note that layer 3

extends to infinity. There exists a critical level—that is,
wind reversal level in a steady-state flow—at zc in layer
2. The Brunt–Väisälä frequency is assumed to be piece-
wise constant in each layer; namely, N1, N2, and N3 in
layers 1, 2, and 3, respectively. This basic-state profile
has been used by several authors who considered the
case U3 5 2U1 (e.g., LT76; Chun and Lin 1995). Fol-
lowing Queney (1948) and Smith (1979), we define a
one-sided complex Fourier transform pair

`1
2ikxŵ(k, z) 5 w(x, z)e dx, (10)Ep

2`

`

ikxw(x, z) 5 Re ŵ(k, z)e dk . (11)E[ ]
0

After taking the Fourier transform in x, (9) becomes

2N Uzzŵ 1 2 ŵ 5 0. (12)zz 21 2U U

Equation (8) is the Taylor–Goldstein equation for a
steady-state hydrostatic atmosphere. For the given linear
basic wind structure, Uzz has a nonzero value only at z
5 z1 and z 5 z2, which represents interfaces between
the shear layer and the uniform wind layers. Because
of this, the continuous interface conditions at z 5 z1 and
z 5 z2 can account for the curvature effect of the basic-
state wind without the inclusion of the Uzz term.

Thus, the governing equation (12) in each layer re-
duces to

2N1ŵ 1 ŵ 5 0 for 0 # z , z , layer 1, (13)1zz 1 11 2U1

Ri
ŵ 1 ŵ 5 0 for z # z , z , layer 2, (14)2zz 2 1 22(z 2 z )c

2N3ŵ 1 ŵ 5 0 for z $ z , layer 3, (15)3zz 3 21 2U3

where Ri denotes the Richardson number, which is de-
fined as Ri 5 / , Uz 5 2U1/(zc 2 z1), where zc is2 2N U2 z

the height of the critical level, and U3 5 Uz(z2 2 zc).
At the interfaces between the different layers in Fig. 1,
we require the continuity of perturbation pressure and
vertical velocity fields. These matching conditions im-
ply the continuity of and ŵ across the interfaces,f̂
which leads to the following:

]ŵ ]ŵ ŵ1 2 2ŵ 5 ŵ , and 5 2 at z 5 z ,1 2 1]z ]z z 2 z1 c

(16)

]ŵ ]ŵ ŵ3 2 2ŵ 5 ŵ , and 5 2 at z 5 z .3 2 2]z ]z z 2 z2 c

(17)

For two-dimensional, nonrotating flow over a mountain
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ridge, the linear lower boundary condition may be de-
rived (e.g., Smith 1979)

ŵ1 5 ikU1ĥs at z 5 0, (18)

where hs is the mountain profile, h0a2/(x2 1 a2). The
solutions in Fourier space can be written as

im z 2im z1 1ŵ 5 A e 1 B e for 0 # z , z ,1 1 1 1

(19)
1/21n 1/22nŵ 5 A (z 2 z ) 1 B (z 2 z ) for z # z , z ,2 2 c 2 c 1 2

(20)
im (z2z ) 2im (z2z )3 2 3 2ŵ 5 A e 1 B e for z # z,3 3 3 2 (21)

where m1 5 N1/U1, m3 5 N3/U3, n 5 (¼ 2 Ri)1/2 for
Ri , ¼, and n 5 i(Ri 2 ¼)1/2 for Ri . ¼. There exists
a branch point in the solution at z 5 zc. We pick the

branch (z 2 zc) 5 |z 2 zc| for z . zc and z 2 zc 5 |z
2 zc|eip for z , zc from causality (Booker and Breth-
erton 1967; Smith 1986). Thus, A1, B1, A2, B2, A3, and
B3 can be determined by the boundary and interface
conditions. The upper radiation condition, which re-
quires the wave energy to propagate upward, requires
B3 5 0 (Booker and Bretherton 1967). The other co-
efficients are found to be:

im U X1 1 2A 5 kĥ 5 a kĥ , (22)2 s 2 sX X 2 X X2 3 1 4

2im U X1 1 1B 5 kĥ 5 b kĥ , (23)2 s 2 sX X 2 X X2 3 1 4

1/21n 1/22nA 5 [a (z 2 z ) 1 b (z 2 z ) ]kĥ3 2 2 c 2 2 c s

5 a kĥ , (24)3 s

2im z ipn 21/21n 2ipn 21/22n1 1e e (21/2 1 n)a (z 2 z ) 1 e (21/2 2 n)b (z 2 z )2 c 1 2 c 1A 5 iU 1 kĥ 5 a kĥ , (25)1 1 s 1 s[ ]2 cosm z 2im cosm z1 1 1 1 1

B 5 [iU 2 a ]kĥ 5 b kĥ , (26)1 1 1 s 1 s

where

1/21n 21/21nX 5 im (z 2 z ) 1 (1/2 2 n)(z 2 z ) ,1 3 2 c 2 c

(27)

1/22nX 5 im (z 2 z )2 3 2 c

21/22n1 (1/2 1 n)(z 2 z ) , (28)2 c

ipn 1/21nX 5 2im e (z 2 z ) cosm z3 1 c 1 1 1

ipn 21/21n1 ie (1/2 2 n)(z 2 z ) sinm z , (29)c 1 1 1

2ipn 1/22nX 5 2im e (z 2 z ) cosm z4 1 c 1 1 1

2ipn 21/22n1 ie (1/2 1 n)(z 2 z ) sinm z . (30)c 1 1 1

The perturbation horizontal velocity in the Fourier space
can be obtained from ŵ through the continuity equation

i ]ŵ
û 5 (31)

k ]z

and the application of the inverse Fourier transform. The
Fourier transform of an isolated bell-shaped mountain
ridge with half-width a and mountain height h0 is

ĥs 5 h0ae2ka. (32)

The vertical velocity and horizontal perturbation veloc-
ity in physical space for this mountain profile can be
obtained:

2ah U0 1 2 2w (x, z) 5 [2axRe(C ) 1 (a 2 x )Im(C )],j j j2 2 2(a 1 x )

j 5 1, 2, 3, (33)

2ah U0 1u (x, z) 5 [aRe(D ) 2 xIm(D )],j j j2 2 2(a 1 x )

j 5 1, 2, 3, (34)

where Re and Im denote the real and imaginary parts,
respectively, and

im z 2im z1 1C 5 a e 1 b e , (35)1 1 1

1/21n 1/22nC 5 a (z 2 z ) 1 b (z 2 z ) , (36)2 2 c 2 c

im (z2z )3 2C 5 a e , (37)3 3

im z 2im z1 1D 5 im [a e 2 b e ], (38)1 1 1 1

21/21nD 5 a (1/2 1 n)(z 2 z )2 2 c

21/22n1 b (1/2 2 n)(z 2 z ) , (39)2 c

im (z2z )3 2D 5 im a e . (40)3 3 3

Equations (33) and (34) can be calculated numeri-
cally. The linear assumption near the critical level
breaks down because the vertical wavelength becomes
infinitely small and the horizontal wind perturbation be-
comes infinitely large as the wave propagates near the
critical level (Booker and Bretherton 1967). The above
solutions are, however, valid significantly above and
below the critical level. Booker and Bretherton (1967)
also found that as the wave propagates through the crit-
ical level, its wave energy is attenuated by a factor
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exp(2p Ri 2 ¼) for Ri . ¼, whereas the wave canÏ
extract energy from the basic flow through overreflec-
tion when Ri , ¼ (Jones 1968; Lindzen and Rosenthal
1983).

Figure 2 shows the comparison of the analytical so-
lutions from (33) and (34) and the results from corre-
sponding linear simulations with the time-dependent nu-
merical model (Lin and Wang 1996). In this figure, the
mountain and basic-state flow parameters are a 5 10
km, h0 5 50 m, U1 5 10 m s21, U3 5 210 m s21, N1

5 N2 5 N3 5 0.01 s21, z1 5 5280 m, zc 5 6280 m,
and z2 5 7280 m. Therefore, Ri 5 1 and N1h0/U1 5
0.05. Note that the nonlinearity in the lower layer would
be very small in this case because N1h0/U1 K 1. Figures
2a and 2d show the vertical velocity field [Eq. (33)] and
the horizontal perturbation velocity field [Eq. (34)], re-
spectively. There exists upward motion on the upwind
(left) side of the mountain and downward motion on the
downwind side. There is almost no disturbance above
the critical level because the energy of the upward-prop-
agating mountain wave is absorbed near the critical lev-
el. These properties are consistent with the results of
Bretherton (1966) and Booker and Bretherton (1967).
Figures 2b and 2e show w and u fields from linear runs
of the nonlinear numerical model. The domain size is
256 km 3 10 km, which is resolved by 128 and 41 grid
points in the horizontal and vertical directions, respec-
tively. The vertical resolution is 250 m. The basic struc-
ture of the vertical motion of the analytical solution (Fig.
2a) is captured in this simulation. If the vertical reso-
lution is increased almost three times (to 90 m), then
the results (Figs. 2c and 2f) compare better with the
linear theoretical results (Figs. 2a and 2d). Therefore,
for the other cases, we have used Dz 590 m. The hor-
izontal wind perturbation is extremely large between z1

and zc. The theoretical value approaches infinity at z 5
zc because of the singularity in the governing equation.
The numerically simulated horizontal perturbation wind
field with coarse (250 m) vertical resolution (Fig. 2e)
poorly simulates the behavior near the critical level as
predicted by linear theory (Fig. 2d), although there is
a better agreement at lower levels. With finer vertical
resolution (90 m) (Fig. 2f), the vertical gradient, ]u/]z,
between z1 and zc in Fig. 2d is resolved much better
than that in Fig. 2e. Note that the leakage of waves
through the critical level in the numerically simulated
results is due to both the lack of vertical resolution
(which requires almost 0 theoretically) and the vertical
smoothing applied in the numerical model.

4. Variations in the low-level response

For the problem described by a basic state such as
that shown in Fig. 1, the flow responses may be affected
by a number of nondimensional parameters, such as z̃1,
z̃c, Ri, N2/N1, U3/U1, N3/N1, etc. Note that these param-
eters are not necessarily independent—for example, z̃c

5 z̃1 1 Ri/2p . In this section, we will investigateÏ

most of these parameters in a systematic manner. In
particular, we intend to answer the following questions:
1) Under what conditions will the low-level response
be strongest? 2) How do these factors influence wave
reflection and transmission? 3) What is the relationship
between the magnitude of the low-level response and
wave reflection? To accomplish these tasks, we calculate
the reflection and transmission coefficients (Ref and
Tran) in the lower layer, as well as the strongest hori-
zontal wind speed at the surface (denoted as Umax here-
after) for numerous combinations of the parameters.
Here, Umax may be viewed as an indicator of the mag-
nitude of a composite wave produced by the superpo-
sition of the upward-propagating (incident) and down-
ward-propagating (reflected) waves. Ref and Tran are
defined, respectively, as

B A1 3Ref 5 ; Tran 5 ,) ) ) )A A1 1

where A1, A3, and B1 are obtained from (25), (24), and
(26), respectively. Ref 5 0 means no reflection; 0 ,
Ref , 1, partial reflection; Ref 5 1, perfect reflection;
and Ref . 1, overreflection. The physical meaning of
Tran can be inferred in a similar way. Of the parameters
pertinent to the flow configuration shown in Fig. 1, Ri
and z̃1 are the most important, although not the only
ones, that control the low-level response. We will show
later that Ref and Tran are independent of z̃1 and mostly
controlled by Ri, but the phase of the reflected waves
is primarily determined by z̃1. Hence, the results will
be discussed in the Ri–z̃1 space. It is very important to
determine z̃1 for which there exists the strongest low-
level response in the parameter space of Fig. 1, because
these values are related to severe downslope windstorms
and wave ducting in the real atmosphere. In the follow-
ing discussion all variables are considered in their non-
dimensional forms unless otherwise stated. The values
of z̃1, z̃c, and z̃2 are normalized by lz 5 2pU1/N1, the
hydrostatic vertical wavelength for z , z1, whereas Umax

is normalized by U1.

a. Richardson number

Figure 3 shows the vertical velocity fields for shear
flows with a critical level and Ri between 0.01 and 10
over a small-amplitude mountain (h0 5 50 m). In all
cases, z̃1 5 0.605. Other basic-state flow parameters are
U1 5 20 m s21, U3 5 220 m s21, N1 5 N2 5 N3 5
0.01 s21, and z̃c, which varies with Ri according to the
relationship z̃c 5 z̃1 1 Ri/2p . Several features can beÏ
found in Fig. 3: (a) wave energy is absorbed at the
critical level for Ri . 0.25 (Figs. 3a–c), whereas it can
be transmitted to the layer above the critical level for
Ri , 0.25 (Figs. 3d–f). (b) The amplitude of the low-
level (z , z1) disturbance increases as Ri decreases from
10 to 0.11, and then decreases as Ri further decreases
from 0.11 to 0.01. (c) Upward-propagating waves are
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FIG. 2. Comparison of linear analytical (a, d) and numerical modeling results with coarse (b, e) and fine (c, f ) vertical resolutions. The
parameters used are Ri 5 1, N1h/U1 5 0.05, h0 5 50 m, U1 5 10 m s21, U3 5 210 m s21, N1 5 N2 5 N3 5 0.01 s21, z1 5 5280 m, zc 5
6280 m, and z2 5 7280 m. (a)–(c) The vertical wind, and (d)–(f ) the perturbation horizontal wind field.
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FIG. 3. The vertical velocity field from Eq. (33) with Ri 5 10.0 (a), 1.0 (b), 0.5 (c), 0.24 (d), 0.11 (e), and 0.11 (f ). The contour interval
is 0.05 m s21. The vertical scale is nondimensionalized by 2pU1/N1.
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FIG. 4. (a) Umax, (b) Ref, and (c) Tran in log(Ri)–z̃1 map for a
mountain height of 100 m. The basic-state flow parameters are the
same as those in Fig. 3.

predominant in the lowest level when Ri . 0.11, where-
as downward-propagating (reflected) waves dominate
the lower levels when Ri , 0.11, which can be seen
from the phase reversal of w at lower levels. These two
wave modes are about the same strength when Ri 5
0.11, as evidenced in the absence of tilting of phase
lines in w at lower levels (Fig. 3e).

b. Static stability profile

1) UNIFORM N AND |U1| 5 |U3|

Figure 4a shows Umax in Ri–z̃1 space for a mountain
height of 100 m. The basic-state flow parameters are
the same as those in Fig. 3 except that z̃1 varies from
0.005 to 1.505 and Ri from 0.01 to 100. The largest
Umax occurs when Ri is about 0.11 and z̃1 is near 0.125,
0.625, or 1.125. For z̃1 near 0.125 1 n/2, Umax decreases
when Ri either increases or decreases from 0.11. For a
fixed Ri, Umax oscillates with z̃1 at an interval of 0.5.
However, we find that the value of z̃1 for which Umax

occurs is weakly dependent on Ri. For example, for Ri
5 0.11, the largest Umax occurs when z̃1 ø 0.125 1 n/
2, whereas for Ri 5 0.01 and Ri 5 100, it occurs when
z̃1 ø 0.175 1 n/2. LT76 predicts that the surface pressure
perturbation is a maximum when z̃1 5 0.25 1 n/2. The
discrepancy results from their neglect of u, the phase
shift, in their Eq. (10), which requires z̃1 1 u/4p 5
0.25 1 n/2 for the response to have pronounced peaks.
They claimed that the phase shift usually turns out to
be a small quantity—that is, |u/p | K 1—and therefore
was ignored. In their study, the static stability in layer
2 is considered to be near neutral. We will show later
in this section that the location of z̃1 with a peak of Umax

is as that predicted by LT76 when a similar profile is
considered. However, the phase shift is not necessarily
small when the static stability in layer 2 is not near
neutral and therefore needs to be considered in the pre-
diction of z̃1 for maximum surface disturbances. This is
very important in predicting the wave ducting and se-
vere downslope winds, as we will show later in this
paper and Part II.

Figure 4b indicates that Ref decreases as Ri increases,
but is independent of z̃1. When Ri , 0.1145, Ref . 1,
which means overreflection occurs. Jones (1968) has
numerically determined that the maximum Ri for over-
reflection is 0.115, which is very close to our predicted
value. However, as will be shown later, the critical Ri
for wave overreflection is modified by the static stability
structure. From the figure, it can be concluded that par-
tial reflection exists for large Ri. Jones (1968) also sug-
gested that there will always be a partial reflection at
the critical level with Ri . 0.25. From numerical sim-
ulations, Breeding (1971) showed that this occurs when
0.25 , Ri , 2. Therefore, the critical level may not
play a role only as an absorber, but also as a partial
reflector of the wave energy when Ri . 0.25.

Figure 4c shows the transmission coefficient Tran,
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FIG. 5. Umax in log(Ri)–z̃c map for the case shown in Fig. 4.

|A3/A1|. Similar to Ref (Fig. 4a), Tran is a function of
Ri but not of z̃1. When Ri , 0.0876, Tran . 1, which
means overtransmission occurs. Transmission is negli-
gible for large Ri, such as Ri . 5. Since Ref and Tran
are both independent of z̃1, the dependency of Umax on
z̃1 has to be due to the phase difference between the
upward- and downward-propagating waves.

The strongest surface disturbance occurs when Ri 5
0.1145, for which Ref 5 1. It may be questioned im-
mediately why the disturbance becomes weaker when
Ref . 1. LT76, in their normal mode analysis, also
found that the peak response in the case with Ri 5 0,
where Ref is about 1.13 (their Table 2 and Fig. 9) is an
order of magnitude smaller than those with Ri 5 0.11,
where Ref is about 0.996 (their Table 2 and Fig. 8).
They suggested that this does not mean a short lifetime
of waves in the cases with Ref . 1; instead, they be-
lieved that the lack of sharp selectivity in these cases
is probably meaningful, although they did not provide
any further explanation. We find that Tran increases fast-
er than Ref when Ri decreases from 0.11 to 0.01. This
may cause the decrease in strongest Umax in this Ri range,
because the strongest Umax is proportional to the value
of Ref 2 Tran. As indicated previously, we find that
the phase difference plays an important role in deter-
mining the magnitude of the low-level response. There-

fore, it may imply that the phase difference is related
to Ref 2 Tran.

A majority of investigators have used z̃c as an indi-
cator for the occurrence of high-drag flow states when
they studied the formation mechanisms of severe down-
slope windstorms (e.g., Clark and Peltier 1984; Durran
and Klemp 1987; Bacmeister and Pierrehumbert 1988).
Peltier and Clark (1983) proposed a simple linear theory
of resonant amplification, which suggests that when the
reflected waves from the ‘‘wave-induced critical layer’’
are in phase with the incident wave, the nonlinear moun-
tain waves are ‘‘self-tuned’’ to generate severe down-
slope winds. They also suggested that only if the non-
dimensional height of the reflecting critical layer above
the topography is near (0.75 1 n)l, where l is the
vertical wavelength, will the direct and reflected waves
interfere constructively to support a large amplitude res-
onant response. To verify their theory, Clark and Peltier
(1984) presented results from nonlinear numerical sim-
ulations with different z̃c, which showed that the high-
drag state occurs only when the prescribed critical level
height is located near 0.75 or 1.75 for Nh/U 5 0.75 and
Ri 5 2.25 (their Fig. 5). On the other hand, Bacmeister
and Pierrehumbert (1988) showed that for Nh/U 5 0.5
and Ri 5 1.0 the high-drag state occurs only when z̃c

ø 0.5 or 1.5. This obviously conflicts with Peltier and
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FIG. 6. Same as in Fig. 4a except N2/N1 5 2 (a), 0.5 (b), 0.01 (c).

Clark’s theory. These disagreements still exist in the
literature related to the mechanism of severe downslope
winds. We will investigate these discrepancies in Part
II (Wang and Lin 1998) and show that there really is
no conflict between the aforementioned studies. Also,
we will show here that z̃c may not be a good parameter
for determining the strongest low-level response for a
given Ri.

Figure 5 shows Umax in Ri–z̃c space for the case shown
in Fig. 4. It is clear that for largest Umax, z̃c is a function
of log(Ri). Based on other experiments, the relationship
of z̃c and log(Ri) for largest Umax is independent of the
nondimensional mountain height (not shown). There-
fore, z̃c with largest Umax is strongly dependent on Ri,
especially when log(Ri) . 21. For Ri . 0.25, the larg-
est Umax occurs when z̃1 ø 0.175 1 n/2. However, it is
very difficult to find a general formula for z̃c as a func-
tion of Ri for the strongest low-level response when Ri
. 0.25. Therefore, it is apparent that z̃1 is a better in-
dicator than z̃c for the prediction of the strongest low-
level response when Ri . 0.25.

2) EFFECTS OF N2/N1

LT76 proposed several necessary conditions for the
existence of a wave duct. One of these is that the stable
layer (N1) adjacent to the ground is capped by a very
weakly stratified layer—that is N2 is almost zero—that
has a very small Richardson number. In this subsection,
we investigate the effects of N2 on Ref, Tran, and Umax.

Figure 6a shows Umax in the same Ri–z̃1 parameter
space for N2/N1 5 2. The dimensional value of N1 is
0.01 s21. Compared with values in Fig. 4a, we note that
z̃1 for the largest Umax at a given Ri is lower, whereas
values of Umax are larger. On the other hand, z̃1 with the
largest Umax for a given Ri and N2/N1 5 0.5 and 0.01
(Figs. 6b and 6c) are higher than those in Fig. 4a, al-
though Umax are still larger. In particular, the magnitude
of Umax is almost independent of Ri for fixed z̃1 in the
case with N2/N1 5 0.01 (Fig. 6c). Skyllingstad (1991)
investigated the interactions of atmospheric cnoidal
waves with a critical level using a two-dimensional nu-
merical model. His results showed that a critical level
causes wave reflection with wave growth when the sta-
bility above the cnoidal wave is low, and increasing the
ambient stability above the cnoidal wave leads to a re-
duction of wave amplitude. This appears to be consistent
with our results. For the cases with N2/N1 5 0.01, z̃1

with the largest Umax is located at 0.25 1 n/2. This agrees
with the criteria for wave ducting proposed by LT76.

The reflectivity and transmissivity for different N2/
N1 versus Ri are shown in Fig. 7. This figure shows that
both Ref and Tran are inversely proportional to Ri for
a fixed N2/N1, and the largest Ref and Tran occur when
N2/N1 5 1 and Ri 5 0.01. The contours are symmetric
with respect to the line N2/N1 5 1. Therefore, Ref and
Tran for the cases shown in Figs. 6a (N2/N1 5 2) and
6b (N2/N1 5 0.5) are identical. As |log(N2/N1)| increases,
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FIG. 7. (a) Ref and (b) Tran for different N2/N1 in log(Ri)–log(N2/
N1) map.

Ref (Fig. 7a) increases for large Ri (Ri . 0.11) and
decreases for small Ri (Ri , 0.11). On the other hand,
Tran (Fig. 7b) decreases when |log(N2/N1)| increases for
all Ri, but the modification becomes insignificant when
Ri is large (Ri . 1). We find that Ref approaches 1 and
Tran approaches 0 as |log(N2/N1)| increases. In LT76, it
was proposed that a good reflector exists when Ref .
0.85 so that enough wave energy is reflected to sustain
the wave for a minimum of two cycles. If that is the
case, according to Fig. 7a, even a very large Ri, such
as 100, still provides a good reflector for wave ducting
when N2/N1 5 0.01. However, for such large Ri, the

shear strength is very small (e.g., 0.00001 s21), and the
critical level will be be located at an unrealistic altitude
(e.g., 2000 km). Therefore, in the real atmosphere wave
ducting may only be possible for low Ri.

To further investigate the effects of N2/N1, we vary
Ri by changing N2 and keeping the shear strength fixed
at Uz 5 20.01 s21. Figure 8a shows Umax in Ri–z̃1 space
for cases with N1 5 N3 5 0.01 s21, U1 5 20 m s21, U3

5 220 m s21, Uz 5 20.01 s21, and h 5 100 m. These
results differ significantly from those shown in Fig. 4a.
First, z̃1 for the largest Umax decreases from 0.205 1 n/
2 at Ri 5 0.01 to about 0.005 1 n/2 at Ri 5 100. Note
that N2/N1 5 0.1, 1, and 10 compared to Ri 5 0.01, 1,
and 100, respectively. These results support our earlier
arguments that a more (less) stable layer in layer 2 tends
to decrease (increase) z̃1 with the largest Umax for a given
Ri. Second, when Ri . 1, the largest Umax increases
with Ri. This may be explained by the variations of Ref
and Tran with Ri (Fig. 8b). Ref increases and Tran de-
creases when Ri increases from 1 to 100, whereas both
of them decrease when Ri , 1. Therefore, we conclude
that the critical level plays a role as an absorber when
Ri . 0.25, since Ref can be larger than 0.8 at Ri 5
100 for this type of velocity and stability profiles.

In summary, we may conclude that the effects of
varying N2/N1 are the following: 1) The lowest z̃1 with
the largest Umax for a given Ri and N2/N1 , 1 (N2/N1

. 1) is higher (lower) than cases for N2/N1 5 1. 2) The
largest Umax increases as |log(N2/N1)| increases. 3) When
the static stability in layer 2 is neutral (N2 5 0), z̃1 with
the largest Umax is equal to 0.25 1 n/2, Ref becomes 1,
and Tran is equal to 0.

3) EFFECTS OF N3/N1

In the real atmosphere, N3 may not vary over a wide
range. For example, if we consider layer 3 to be the
stratosphere, then N3/N1 only has a value of 2 or slightly
larger. However, we investigate the effects for a wide
range of N3/N1, so cases that may occur in the real
atmosphere can be inferred. Figure 9 shows Ref and
Tran for N1 5 N2 5 0.01 s21, U1 5 20 m s21, U3 5
220 m s21, h 5 100 m, and a variable N3. For Ri .
1, we find that both Ref and Tran are almost unaffected
by changing N3/N1. For Ri , 1, Ref decreases when
|log(N3/N1)| increases, and the contours are symmetric
with respect to line N3/N1 5 1. The critical Ri for perfect
reflection (Ref 5 1) decreases as |log(N3/N1)| increases
(Fig. 9a).

For Ri . 1, Tran remains unchanged as N3/N1 varies
(Fig. 9b). For Ri , 1, Tran decreases as log(N3/N1)
increases from 0, and goes to 0 for very large log(N3/
N1). However, Tran first decreases and then approaches
a finite value as log(N3/N1) decreases from 0. Because
there is an almost neutral layer extending to infinity in
layer 3 when log(N3/N1) K 0, such a case would not
normally be observed in the real atmosphere. Thus, we
shall not dwell on this further.
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FIG. 9. (a) Ref and (b) Tran for different N3/N1, in log(Ri)–log(N3/
N1) map.

←

FIG. 8. (a) Umax in log(Ri)–z1 map and (b) the variation curves of Ref and Tran with log(Ri). The flow parameters are identical to those
in Fig. 4 except Ri varies by changing N2 instead of changing Uz.

Figure 10 shows Umax in Ri–z̃1 parameter space for
N3/N1 5 2. Since both Ref and Tran (Fig. 9) are almost
constant with respect to N3/N1 varies for Ri . 1, Umax

is almost the same as the case of N3/N1 5 1 (Fig. 4a).
However, z̃1 with the largest Umax decreases and Umax

increases as Ri decreases from 1.

We conclude that the effects of varying N3/N1 are the
following: 1) For Ri . 1, Ref, Tran, and Umax are almost
unaffected by the change in N3/N1. 2) For Ri , 1, Ref
decreases as |log(N3/N1)| increases. 3) The critical Ri for
perfect reflection decreases as |log(N3/N1)| increases. 4)
For Ri , 1 and N3/N1 . 1, z̃1 with the largest Umax is
lower than that for N3/N1 5 1. 5) For Ri , 1, the largest
Umax for Ri , 1 is enhanced by increasing N3/N1.

c. Basic wind profile (U3/U1)

Normally, the basic wind speeds in layers 1 and 3
are different in the real atmosphere. Therefore, in this
subsection we study the effects of U3/U1. Figure 11
shows Ref and Tran for N1 5 N2 5 N3 5 0.01 s21, U1

5 20 m s21, h 5 100 m, and variable U3. We find that
both Ref (Fig. 11a) and Tran (Fig. 11b) are almost un-
affected by variation in U3/U1 when Ri . 1. However,
when Ri , 1, the modifications to Ref and Tran are
significant. The modifications to Ref for Ri , 0.1 are
somewhat similar to those for variable N2/N1 discussed
earlier (Fig. 7a). The contours are symmetric with re-
spect to line log(2U3/U1) 5 0 (Fig. 11a). When
log(2U3/U1) is large and negative [e.g., log(2U3/U1)
5 22] and Ri , 0.1, Ref is very close to unity (Fig.
11c) and Tran is almost zero. These conditions favor
the occurrence of wave ducting.

Figures 12a and 12b show Umax in a Ri–z̃1 space for
2U3/U1 5 10 and 0.01, respectively. For Ri , 1 and
2U3/U1 5 10 (Fig. 12a), z̃1 with the largest Umax is lower
and Umax larger than those in Fig. 4a for 2U3/U1 51. For
Ri . 1, the results are almost unaffected by the increase
in U3/U1. For 2U3/U1 5 0.01 and Ri , 1 (Fig. 12b), z̃1

with the largest Umax increases and Umax increases, com-
pared to those in Fig. 4a. Again, the responses for Ri .
1 are almost unaffected by decreasing 2U3/U1.

Therefore, we conclude that the effects of varying
2U3/U1 are the following: 1) When Ri . 1, Ref, Tran,
and Umax are almost unaffected by changing 2U3/U1.
2) When 2U3/U1 ø 0 and Ri , 0.1, Ref approaches 1
and Tran approaches 0. This favors wave ducting. 3)
When Ri , 1 and |U3| . |U1| (|U3| , |U1|), z̃1 with the
largest Umax for Ri , 1 is lower (higher) than that in
the cases with |U3| 5 |U1|. 4) When Ri , 1, the largest
Umax increases either by increasing or decreasing
|log(2U3/U1)|.

From the fact that the decrease of 2U3/U1 has a similar
effect on the modification of Tran as an increase of N3/
N1, we conclude that Tran is primarily controlled by m3

5 N3/U3, if all other parameters are fixed. However, the
modification of Ref is not controlled only by m3; the effect
on Ref by the decrease of 2U3/U1 versus the increase in
N3/N1 is different even though the resulting m3 is the same.
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The most significant difference is that the critical Ri, at
which Ref 5 1, is not changed by varying U3, whereas
it is modified significantly by varying N3.

5. General linear criteria for wave ducting

a. Numerical simulations of a free wave propagation

From the linear theory developed in section 3, the
favored condition for wave ducting is to have Ref ø 1,

which may occur in numerous situations. To verify this,
we investigate time-dependent free wave propagation
using the linear version of the numerical model de-
scribed in section 2. The numerical simulation is con-
ducted by initializing a wave disturbance from Smith
and Lin’s (1982) linear steady-state solution for 2D,
nonrotating, uniform flow over a layer of prescribed
diabatic cooling with compensated heating, and we then
examine the evolution of this wave with time. The initial
perturbation fields are the following:

x x
21 21p 5 P tan 2 tan [sinmz 2 0.5 sinm(d 1 z) 2 0.5 sinm(d 2 z)]i51 a b

2 2x 1 a
2 0.5 ln [2cosmz 1 0.5 cosm(d 1 z) 1 0.5 cosm(d 2 z)] for 0 # z # d

2 21 2 6x 1 b

x x
21 215 P tan 2 tan [sinmz 2 0.5 sinm(d 1 z) 2 0.5 sinm(z 2 d )]i51 2a b

2 2x 1 a
2 0.5 ln [2cosmz 1 0.5 cosm(d 1 z) 1 0.5 cosm(z 2 d )] for d , z # l , (41)w2 21 2 6x 1 b

p
u 5 2 , (42)

Uw

mu x x0 21 21u 5 P tan 2 tan [21 1 cosmz 2 0.5 cosm(d 1 z) 1 0.5 cosm(d 2 z)]i51 2g a b

2 2x 1 a
2 0.5 ln [sinmz 2 0.5 sinm(d 1 z) 1 0.5 sinm(d 2 z)] for 0 # z # d

2 21 2 6x 1 b

mu x x0 21 215 P tan 2 tan [cosmz 2 0.5 cosm(d 1 z) 2 0.5 cosm(z 2 d )]i51 2g a b

2 2x 1 a
2 0.5 ln [sinmz 2 0.5 sinm(d 1 z) 2 0.5 sinm(z 2 d )] for d , z # l , (43)w2 21 2 6x 1 b

2U m a bww 5 P 2 [21 1 cosmz 2 0.5 cosm(d 1 z) 1 0.5 cosm(d 2 z)]i2 2 2 2 251 2N x 1 a x 1 b

1 1
2 x 2 [sinmz 2 0.5 sinm(d 1 z) 1 0.5 sinm(d 2 z)] for 0 # z # d

2 2 2 21 2 6x 1 a x 1 b

2U m a bw5 P 2 [cosmz 2 0.5 cosm(d 1 z) 2 0.5 cosm(z 2 d )]i2 2 2 2 251 2N x 1 a x 1 b

1 1
2 x 2 [sinmz 2 0.5 sinm(d 1 z) 2 0.5 sinm(z 2 d )] for d , z # l , (44)w2 2 2 21 2 6x 1 a x 1 b

where b 5 5a 5 100 km, Uw 5 5 m s21, m 5 2p/lw,
lw 5 2pUw/N, N 5 0.01 s21, Pi 5 21.0 Pa, and d 5
0.25 lw. These initial perturbation fields contain a ver-
tically propagating wave in the layer 0 # z # lw, where

lw is the vertical wavelength of this small-amplitude
initial wave. The horizontal and vertical grid resolutions
for the numerical simulations are Dx 5 4 km and Dz
5 90 m, respectively. Because there are no other forc-
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FIG. 10. Same as in Fig. 4a except N3/N1 5 2.

ings specified in the numerical simulation, this initial
wave can be considered as a free wave.

In the first experiment this wave is injected into an
environment with uniform flow U 5 10 m s21 and uni-
form N 5 0.01 s21. The intrinsic horizontal phase speed
(cpx) of this wave is about 25 m s21, which is defined
as the propagation speed of the wave in a quiescent
atmosphere and estimated by subtracting the advection
speed from the wave propagation speed. The time se-
quence of perturbation potential temperature is shown
in Fig. 13. The wave propagates horizontally at a speed
of about U 1 cpx 5 5 m s21, and the wave disperses
with time as it propagates downstream. The wave am-
plitude at lower levels drops to about 50% of its initial
value at t 5 25 600 s (Fig. 13b) and further drops to
about 25% by t 5 64 000 s (Fig. 13c). Note that upward-
propagating waves are produced above lw. This exper-
iment indicates that this wave cannot maintain its orig-
inal magnitude in an environment with uniform U and
N, because this imposed gravity wave is dispersive and
is not ducted. We will inject this same initial wave in
different environments to discuss the favored conditions
for wave ducting.

The second profile of N(z) and U(z) we impose is N1

5 N3 5 0.01 s21, N2 5 0.001 s21, and |U1 2 c| 5 |U3

2 c| 5 15 m s21—that is, U1 5 10 m s21 and U3 5
220 m s21, which gives Ri 5 0.11. The basic-state
profile is as that sketched in Fig. 1 and is similar to that

of LT76. The time sequence of perturbation potential
temperature for three cases with z1/lw 5 0.25, 0.5, 0.75
are shown in Figs. 14a–e, Figs. 14f–j, and Figs. 14k–
o, respectively. The same initial wave as that in Fig. 13
is used in these experiments. In such wind and stability
profiles, wave structures become much more compli-
cated than those in Fig. 13. Figures 14a–e show the
perturbation potential temperature at t 5 12 800,
25 600, 38 400, 51 200, and 64 000 s, respectively, for
the case with Ri 5 0.11 and z1/lw 5 0.25. First of all,
a transient start-up wave due to the imbalance between
the initial wave and its environment is produced in the
lower layer (z , z1). As shown in Fig. 14e, the lower
part of the start-up wave propagates to a location very
close to the right boundary, while the upper part of this
wave propagates only to a location near the center of
the computational domain at t 5 64 000 s. In addition,
this wave disperses as it propagates away from the initial
location. In other words, this start-up wave is not ducted.
In this case, Ref is about 0.94 and z1/lw 5 0.25. Ac-
cording to the linear theory, this is close to the optimal
condition for wave ducting to occur. From Figs. 14a–e,
a ducted wave does exist that has the characteristics
(e.g., intrinsic phase speed and wavelength) of the start-
up wave. Note that there is no vertical phase tilt of the
ducted wave, which is different from the initial wave.
This ducted wave propagates at a speed of about U 1
cpx in the layer z , z1 and its amplitude strengthens
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FIG. 11. (a) Ref and (b) Tran in log(Ri)–log(2U3/U1) map for cases
with N1 5 N2 5 N3 5 0.01 s21, U1 5 20 m s21 h 5 100 m and
varying U3.

slightly as it propagates to the east. The weak ampli-
fication may be caused by the adjustment of the original
wave in the new environment. It is also found that there
exists another wave disturbance on the upstream side
of the ducted wave (Fig. 14e). This wave is induced by
the interaction of the original wave and the less stable
shear layer. Theoretically, there should be an infinite
number of wave modes generated by the interaction. In
this case, most of the induced waves may not be ducted
and have very small amplitude. However, the induced
wave modes may also be ducted in other cases as will
be shown later.

Figures 14f–j show the time sequence of perturbation
potential temperature for parameters identical to those
in Figs. 14a–e except that z1 5 0.5lw. The transient
start-up wave is also observed in this case. However, in
this case a ducted wave with the characteristics of the
initial wave is not observed; instead, we find that the
initial wave decreases to about 25% of its original am-
plitude by t 5 64 000 s (Fig. 14j). According to the
linear theory for two-dimensional, nonrotating, oro-
graphically forced flow discussed in section 3, the small-
est low-level response exists when z1 is located at 0.5m1,
where m1 5 U1/N1. Obviously, z1/lw 5 0.5 does not
support wave ducting, even though Ref (5 0.94) is close
to 1 in this case. This simulation is consistent with the
linear wave-ducting theory. In this case, an induced
ducted wave is observed, which preserves its amplitude
as it propagates. However, this ducted wave has different
wave characteristics, such as vertical wavelength and
phase speed, from the original wave. The induced duct-
ed wave has a shorter vertical wavelength than that of
the original wave. The thickness of the ducting layer is
about 0.75 of this particular wavelength according to
the wave structure shown in Figs. 14f–j. In other words,
this induced ducted wave has a vertical wavelength of
about 1.33z1. According to the linear theory, the stron-
gest low-level response exists when z1 5 (0.25 1 n/2)l.
Therefore, this particular wave mode is ducted in this
case. There may exist additional higher frequency
modes, which are also ducted, but the magnitude may
be too small to be observed.

Figures 14k–o show the perturbation potential tem-
perature for z1/lw 5 0.75. In this case, the transient start-
up wave is not as obvious as that in the last two cases.
However, the dispersion and advection by the basic wind
of the start-up wave is still simulated. As for the ducted
waves, both the original and the induced ducted waves
are observed and both are able to maintain their mag-
nitudes as they propagate rightward. The original wave
mode is ducted because the criteria for ducting is met
according to the linear theory (Ref 5 0.94 and z1/lw 5
0.75). However, the amplitude of this ducted wave is
not strengthened as those in Figs. 14a–e. Again, the
induced ducted wave mode has a vertical wavelength
of about 0.8z1, which is different from the original wave.
Therefore, the thickness of the duct contains 1.25lw and
is therefore optimal for ducting this particular wave.

b. Linear criteria for wave ducting and the
application to an observed ducted mesoscale
gravity wave

Because the magnitude of the low-level response for
cases with Ref k 1 is less than that with Ref 5 1, the
favored condition for wave ducting is when Ref is close
to 1 and z̃1 is optimal for the strongest low-level re-
sponse. Therefore, we propose more general criteria for
wave ducting based on the results presented in this sec-
tion. The criteria, in terms of Ri and z̃1, for wave ducting
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FIG. 12. Same as in Fig. 4a except 2U3/U1 5 10 (a) and 0.01 (b).
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FIG. 13. Perturbation potential temperature from a linear simulation
at t 5 0 s (a), 25 600 s (b), and 64 000 s (c) in the case with uniform
U(z) and N(z). The contour interval is 0.02 K.

to occur in a three-layer atmosphere may be summarized
as (see Table 1) the following: 1) Ri ø 0.11, and z̃1 ø
0.125 1 n/2, where n 5 0, 1, 2, . . . , for N3 5 N2 5
N1, and U3 5 2U1; 2) Ri , 0.11, and z̃1 ø 0.25 1n/
2, for N3 5 N2 5 N1 and U3 ø 0; 3) 0.01 , Ri , 100,
and z̃1 ø 0.25 1 n/2, for N2 ø 0 and U3 5 2U1; 4)
Ri , 0.03, and z̃1 ø 0.5 1 n/2, for N2 5 N1, N3 k N1

and U3 5 2U1; and 5) Ri 5 ` (uniform wind), and z̃1

ø 0.25 1 n/2, for N2 5 0, N3 5 N1. Note that the case
considered by LT76 is a subset of case (3).

As described in the introduction, LT76’s conditions
2 and 3 were not really met for the gravity wave case
observed by Ralph et al. (1993). That is, the near-neutral
layer above the stable layer did not exist in the sounding
when the wave was quite active (at 1039 UTC, their
Fig. 13), although it was observed in the sounding after
the wave had passed (1401 UTC, their Fig. 13). The
thickness of the stable layer was 1.8 km (from 0.2 to 2
km), which is exactly 0.25l, if l is calculated from the
dispersion relation, but only 0.22l if l is calculated
from the 50-MHz radar observations. Therefore it may
be inferred that LT76’s conditions 2 and 3 were not
really met. For this particular case, our linear theory
presented in section 3 provides an explanation. Ac-
cording to section 4, the thickness of the stable layer
depends on the basic wind and stability profiles, espe-
cially the latter. When there exists a near-neutral layer,
the favored conditions for wave ducting exist over a
wide range of Ri, but the thickness of the stable layer
has to be approximately (0.5 1 n/2)l, n 5 0, 1, 2, . . . ,
whereas, when there exists no near-neutral layer, wave
ducting can still be observed over a narrower range of
Ri with a stable-layer depth less than 0.25l (e.g., for
N2/N1 5 1 wave ducting may occur when Ri 5 0.11
and z̃1 5 0.125).

c. Discussions of the general linear criteria for wave
ducting

LT76 suggested that for cases within the overreflec-
tion regime, the wave in the duct may extract energy
from the mean flow. In theory, these waves should last
indefinitely even in the presence of dissipation. In re-
ality, however, the environmental conditions are not ho-
mogeneous along the wave’s path, and the wave would
dissipate when it moves into a layer where it is no longer
able to extract energy from the mean flow. LT76 also
suggested that for a flow with a critical level, the lo-
cation of regimes for wave overreflection is independent
of the phase speed; once the Ri is within the range of
overreflection, all wave modes are overreflected. Thus,
it is possible to observe more than one wave mode in
a duct. Our results confirm LT76’s finding.

Our numerical experiments provide evidence of the
wave-ducting mechanism and serve to explain the long-
lived propagating wave. However, according to the dis-
cussion above, we would like to emphasize that the
necessary condition for wave ducting is that the ducted
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FIG. 14. Time sequence of perturbation potential temperature from a linear simulation with Ri 5 0.11, N2 5 0.001 s21, and z̃1 5 0.25
(first column); 0.5 (second column); and 0.75 (third column). The thick lines indicate the locations of z̃1. The contour interval is 0.02 K.
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TABLE 1. General linear criteria for wave ducting. Here, RI and z̃l are the Richardson number and the height of the lower layer. Note that
LT76’s case is a subset of case 3.

Case Ri z̃l N(z) U(z) Profile

1 ø0.11 ø0.125 1 n/2 N3 5 N2 5 N1 U3 5 2U1

2 ,0.11 ø0.25 1 n/2 N3 5 N2 5 N1 U3 ø 0

3 0.01 , Ri , 100 ø0.25 1 n/2 N2 ø 0 U3 5 2U1

4 ,0.03 0.5 1 n/2 N2 5 N1, N3 k N1 U3 5 2U1

5 ` ø0.25 1 n/2 N2 ø 0, N3 5 N1 U3 5 U2 5 U1

stable layer must approximately equal (0.25 1 n/2)l
(LT76), instead of just greater than 0.25l, as incorrectly
quoted by some authors (e.g., Ralph et al. 1993; Powers
and Reed 1993).

According to LT76, another necessary condition for
wave ducting is that Ri must be less than 0.25 in the
shear (middle) layer above the ducted stable layer. To
verify this condition, we conduct experiments with the
same parameters used in Fig. 14, except with Ri 5 0.4
instead of 0.11. For these parameters, our linear theory
predicts that Ref will be 0.87. Figures 15a–c show the
perturbation potential temperature at t 5 64 000 s for
z1/lw 5 0.25, 0.5, and 0.75, respectively. The original
ducted wave mode still occurs for z1/lw 5 0.25 (Fig.
15a) and 0.75 (Fig. 15c), even though Ri is greater than
0.25. For z1/lw 5 0.5 (Fig. 15b), the behavior is also
similar to that in Fig. 14j where Ri 5 0.11 and there
exists no wave duct for the original wave mode. Thus,
waves may be ducted even for Ri . 0.25 in the middle
layer, which is less restrictive than the criteria proposed
by LT76.

LT76 analyzed the possibility of wave ducting by a
conditionally unstable layer without shear and found
that Ref is about [1 1 (2CD/N1D)2]21/2, where CD is the

phase speed of the wave relative to the mean flow in
the duct and D 5 z2 2 z1. In their calculation, D is
taken as 2.5 km, thus Ref is only 0.6 for the lowest
wave mode (CD 5 19 m s21). Therefore, they concluded
that in the absence of shear, the long lifetimes of the
observed mesoscale waves cannot be explained. How-
ever, we may hypothesize that for a wave with smaller
CD and/or larger D, it may still be ducted. The next set
of experiments is designed to verify this hypothesis. The
same initial wave used in previous cases is put into a
uniform flow with U 5 10 m s21, N2 5 0.0001 s21, and
(z2 2 z1)/lw 5 1. We specify a near-neutral layer, instead
of a conditionally unstable layer as considered by LT76,
because there is no moisture included in our numerical
simulations. Figures 16a–c show the perturbation po-
tential temperature fields at t 5 64 000 s for z1/lw 5
0.25, 0.5, and 0.75, respectively. The original wave
mode (centered at about x 5 320 km is able to maintain
its magnitude when it propagates eastward for cases with
z1/lw 5 0.25 and 0.75 (Figs. 16a and 16c), whereas it
decays in the case with z1 5 0.5lw (Fig. 16b). For the
induced wave modes, which are due to the interaction
of the original wave and the near-neutral layer, only
those with vertical wavelength equal to z1/(0.25 1 0.5n)
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FIG. 15. Perturbation potential temperature from a linear simulation
at t 5 64 000 s for the cases with Ri 5 0.4, N2 5 0.001 s21, and z̃1

5 0.25 (a); 0.5 (b); and 0.75 (c). The thick lines indicate the locations
of z1. The contour interval is 0.02 K.

FIG. 16. Perturbation potential temperature from a linear simulation
at t 5 64 000 s in the cases with uniform U, N2 5 0.0001 s21, and
z̃1 5 (a) 0.25; (b) 0.5; and (c) 0.75. The contour interval is 0.02 K.
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FIG. 17. Perturbation potential temperature from a nonlinear sim-
ulation at t 5 64 000 s with Ri 5 0.11, N2 5 0.001 s21, and z̃1 5
0.25 (a); 0.5 (b); and 0.75 (c). The thick lines indicate the locations
of z̃1. The contour interval is 0.02 K.

are ducted. Because the induced wave mode has dif-
ferent characteristics from the original wave, we shall
not discuss it further.

According to the discussions above, we conclude that
wave ducting may occur over a relatively wider range
of Ri in the presence of a critical level, once Ref is close
to 1, and the thickness of ducting layer is close to some
optimal value (e.g., 0.25 1 0.5n). However, we would
like to remind readers that the shear strength may be
very weak when Ri is large, which means that a very
thick shear layer is required in order to have a critical
level. The same situation may be applied to wave duct-
ing by a nearly neutral layer without shear where a very
thick and less stable layer may be necessary for wave
ducting to occur. Therefore, the criteria proposed by
LT76 is still useful in explaining the maintenance of
some long-lasting propagating waves in the real at-
mosphere, although it does not cover all possible ob-
served cases.

6. Nonlinear effects

All of the above experiments are based on numerical
simulations using the linear version of the nonlinear
model. In this section we will discuss the role of non-
linearity. Figure 17 shows the perturbation potential
temperature for cases identical to those in the last row
of Fig. 14 except with nonlinear terms activated in the
numerical model. In the case with z1/lw 5 0.25 (Fig.
17a), the transient start-up wave is similar to the cor-
responding linear case (Fig. 14e). However, the ducted
wave modes are much stronger than those in Fig. 14e
and keep generating new wave modes on both sides as
the wave packet propagates eastward. As can be seen
from Figs. 14a–e, the amplitude of the first wave mode
strengthens slightly with time in the linear simulation.
This amplification is much stronger in the nonlinear
simulation (Fig. 17a). Because the strength of nonlin-
earity is proportional to the magnitude of the distur-
bance, the nonlinear effects increase with time due to
the amplification of the ducted waves. The low-level
perturbation horizontal wind is as large as 2.1 m s21

(not shown), which is about one-fifth of the basic wind
speed in the lower layer. The nonlinearity is also re-
sponsible for wave breaking in the middle layer. The
nonlinear solution approaches the linear solution when
the amplitude of the initial wave decreases. For z1/lw

5 0.5 and 0.75, there exists no wave amplification in
our nonlinear simulations (Figs. 17b and 17c). In these
cases, the nonlinear results are very similar to the linear
results (Figs. 14j and 14o). The original wave decays
with time in the case with z1/lw 5 0.5, whereas its
amplitude is preserved in the case with z1/lw 5 0.75.
According to these nonlinear experiments, we find that
the linear wave-ducting criteria are still applicable even
in a nonlinear flow regime, although the intrinsic ducted
wave may be strengthened and new ducted wave modes
maybe generated when z̃1 is small.
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Based on the numerical evidence presented above, it
may be reasonable to conclude that wave ducting may
occur whenever the reflectivity of the basic state is close
to 1 and the depth of the ducting layer (z1) is at an
optimal value (e.g., z̃1 5 0.25 1 n/2) in favor of pro-
ducing a peak low-level response. The reflectivity and
the optimal z1 can be obtained from our linear theory
developed in section 3.

7. Concluding remarks

A linear theory for wave ducting was developed by
analytically solving a three-layer, steady-state, nonro-
tating flow over a two-dimensional mountain. The low-
level responses to the variations of Ri, static stability
profile, and basic wind profile were investigated by the
linear theory. The reflection coefficient (Ref ), trans-
mission coefficient (Tran), and the strongest horizontal
wind speed at the surface (Umax) were calculated to help
understand the sensitivity of the low-level response to
the variations of these flow parameters. Based on both
the linear theory and numerical experiments, general
linear criteria for wave ducting, which extends LT76’s
theory, were then proposed.

In a three-layer atmosphere with uniform N and |U1|
5 |U3| (Fig. 1), the wave energy generated in the lower
layer tends to be absorbed by the critical level when Ri
. 0.25, whereas it can be transmitted through the critical
level and reflected downward when Ri , 0.25. The
downward propogating reflected wave dominates when
Ri , 0.11. It is found that both Ref and Tran are in-
dependent of z̃1 and inversely proportional to Ri, but
the phase of the reflected waves is primarily determined
by z̃1. The value of z̃1 for which Umax occurs is weakly
dependent on the value of Ri, instead of z̃1 5 0.25 1
n/2, as proposed by LT76. This discrepancy results from
their neglect of the phase shift for strongest response,
which is related to Ref-Tran. For a fixed Ri, Umax os-
cillates with z̃1 and is periodic with an interval 0.5. In
addition, the strongest surface disturbance occurs when
Ri 5 0.1145 and z̃1 is at an optimal value, which gives
Ref 5 1.

The effects of varying N2/N1, N3/N1, and 2U3/U1 on
the low-level response in a three-layer atmosphere have
also been investigated using the linear theory. The re-
sults were summarized at the end of sections 4b.2, 4b.1,
and 4c.

The linear theory was then applied to investigate the
wave-ducting mechanism for long-lasting propagating
gravity waves in the atmosphere through a series of
numerical simulations. We found that when Ref is close
to 1 in the presence of a critical level, wave ducting
may occur over a relatively wider range of Ri. In other
words, it is not necessary to have Ri , 0.25 for wave
ducting to occur, as proposed by LT76. Furthermore,
the thickness of the ducting layer has to be close to
some optimal value (e.g., 0.25 1 n/2, as proposed by
LT76 in their flow configuration) instead of any value

greater than one-quarter vertical wavelength, as previ-
ously misquoted by other investigators. A stable lower
layer with thickness of 0.25 1 n/2 capped by a near-
neutral layer with 0.01 , Ri , 100 may also serve as
a wave duct. This wave duct exists even if there exists
no shear in the basic flow. However, a very thick and
less stable layer may be necessary for wave ducting to
occur without shear. The same situation may be applied
to cases with ducting for large Ri: the shear strength
may have to be very weak when Ri is large, which
means a very thick shear layer is required in order to
have a critical level. Based on the linear theory devel-
oped in this paper, more general criteria for wave duct-
ing in a three-layer atmosphere were proposed. The de-
tails can be found in Table 1. Note that LT76’s case is
a subset of case 3 of Table 1. Furthermore, the wave-
ducting criteria is applicable even in a nonlinear flow
regime, although the intrinsic ducted wave may be
strengthened with time and new ducted wave modes
may be generated when z̃1 is small.

Acknowledgments. This work is supported by NSF
Grant ATM-9224595. The authors wish to thank Dr. R.
B. Smith of Yale University; Drs. M. L. Kaplan, S. E.
Koch, G. S. Janowitz, and F. H. Semazzi of North Car-
olina State University (NCSU); and three anonymous
reviewers for their valuable comments on the manu-
script. Proofreading of the manuscript by Dr. R. P. Weg-
larz and Mr. Bo-Wen Shen are appreciated. Part of the
computations were performed at the Carolina Super-
computer Center, and on the FOAMv workstations at
NCSU, which are funded by IBM.

REFERENCES

Bacmeister, J. T., and R. T. Pierrehumbert, 1988: On high-drag states
of nonlinear stratified flow over an obstacle. J. Atmos. Sci., 45,
63–80.

Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal
gravity waves in a shear flow. J. Fluid Mech., 27, 513–539.

Breeding, R. J., 1971: A nonlinear investigation of critical levels for
internal atmospheric gravity waves. J. Fluid Mech., 50, 545–
563.

Bretherton, F. P., 1966: The propagation of groups of internal gravity
waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466–
480.

Chun, H.-Y., and Y.-L. Lin, 1995: Enhanced response of an atmo-
spheric flow to a line-type heat sink in the presence of a critical
level. Meteor. Atmos. Phys., 55, 33–45.

Clark, T. L., and W. R. Peltier, 1984: Critical level reflection and the
resonant growth of nonlinear mountain waves. J. Atmos. Sci.,
41, 3122–3134.

Durran, D. R., 1986: Another look at downslope windstorms. Part I:
On the development of analogs to supercritical flow in an infi-
nitely deep, continuously stratified fluid. J. Atmos. Sci., 43,
2527–2543.
, and J. B. Klemp, 1987: Another look at downslope winds. Part
II: Nonlinear amplification beneath wave-overturning layers. J.
Atmos. Sci., 44, 3402–3412.

Eom, J. K., 1975: Analysis of the internal gravity wave occurrence
of 19 April 1970 in the Midwest. Mon. Wea. Rev., 103, 217–
226.



436 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid
Mech., 101, 509–512.

Jones, W. L., 1968: Reflexion and stability of waves in stably stratified
fluids with shear flow. J. Fluid Mech., 34, 609–624.

Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hy-
drostatic mountain waves. J. Atmos. Sci., 35, 78–107.

Koch, S. E., and P. B. Dorian, 1988: A mesoscale gravity wave event
observed during CCOPE. Part III: Wave environment and prob-
able source mechanism. Mon. Wea. Rev., 116, 2570–2592.

Lilly, D. K., 1962: On the numerical simulation of buoyant convec-
tion. Tellus, 14, 148–172.
, 1978: A severe downslope windstorm and aircraft turbulence
induced by a mountain wave. J. Atmos. Sci., 35, 59–77.

Lin, Y. L., 1987: Two-dimensional response of a stably stratified shear
flow to diabatic heating. J. Atmos. Sci., 44, 1375–1393.
, 1989: A theory of cyclogenesis forced by diabatic heating. Part
I: A quasigeostrophic approach. J. Atmos. Sci., 46, 3015–3036.
, and R. C. Goff, 1988: A study of a mesoscale solitary wave
in the atmosphere originating near a region of deep convection.
J. Atmos. Sci., 45, 194–205.
, and H.-Y. Chun, 1991: Effects of diabatic cooling in a shear
flow with a critical level. J. Atmos. Sci., 48, 2476–2491.
, and T.-A. Wang, 1996: Flow regimes and transient dynamics
of two-dimensional stratified flow over an isolated mountain
ridge. J. Atmos. Sci., 53, 139–158.

Lindzen, R. S., 1974: Wave–CISK in the Tropics. J. Atmos. Sci., 31,
156–179.
, 1981: Turbulence and stress due to gravity wave and tidal
breakdown. J. Geophys. Res., 86 (C), 9707–9714.
, and K.-K. Tung, 1976: Banded convective activity and ducted
gravity waves. Mon. Wea. Rev., 104, 1602–1617.
, and , 1978: Wave overreflection and shear instability. J.
Atmos. Sci., 35, 1626–1632.
, and A. J. Rosenthal, 1983: Instabilities in a stratified fluid
having one critical level. Part III: Kelvin-Helmholtz instabilities
as overreflected waves. J. Atmos. Sci., 40, 530–542.
, B. Farrell, and K.-K. Tung, 1980: The concept of wave over-
reflection and its application to baroclinic instability. J. Atmos.
Sci., 37, 44–63.

Marks, F. D., 1975: A study of the mesoscale precipitation patterns
associated with the New England coastal front. M.S. thesis, Dept.
of Meteorology, Massachusetts Institute of Technology, 42 pp.

Maslowe, S. A., 1986: Critical layers in shear flows. Annu. Rev. Fluid
Mech., 18, 405–432.
, and L. G. Redekopp, 1980: Long nonlinear waves in stratified
shear flows. J. Fluid Mech., 101, 321–348.

Miles, J. W., 1961: On the stability of heterogeneous shear flow. J.
Fluid Mech., 10, 496–508.

Orlanski, I., 1976: A simple boundary condition for unbounded hy-
perbolic flow. J. Comput. Phys., 21, 251–269.

Peltier, W. R., and T. L. Clark, 1983: Nonlinear mountain waves in
two and three spatial dimensions. Quart. J. Roy. Meteor. Soc.,
109, 527–548.

Powers, J. G., and R. J. Reed, 1993: Numerical simulation of the
large-amplitude mesoscale gravity-wave event of 15 December
1987 in the central United States. Mon. Wea. Rev., 121, 2285–
2308.

Queney, P., 1948: The problem of air flow over mountains: A sum-
mary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 16–
26.

Ralph, F. M., M. Corchet, and S. V. Venkateswaran, 1993: Obser-
vations of a mesoscale ducted gravity wave. J. Atmos. Sci., 50,
3277–3291.

Raymond, D. J., 1984: A wave–CISK model of squall lines. J. Atmos.
Sci., 41, 1946–1958.

Rottman, J. W., and F. Einaudi, 1993: Solitary waves in the atmo-
sphere. J. Atmos. Sci., 50, 2116–2136.

Skyllingstad, E. D., 1991: Critical layer effects on atmospheric sol-
itary and cnoidal waves. J. Atmos. Sci., 48, 1613–1624.

Smith, R. B., 1979: The influence of mountains on the atmosphere.
Advances in Geophysics, Vol. 21, Academic Press, 87–230.
, 1985: On severe downslope winds. J. Atmos. Sci., 42, 2597–
2603.
, 1986: Further development of a theory of lee cyclogenesis. J.
Atmos. Sci., 43, 1582–1602.
, and Y.-L. Lin, 1982: The addition of heat to a stratified airstream
with application to the dynamics of orographic rain. Quart. J.
Roy. Meteor. Soc., 108, 353–378.

Uccellini, L. W., 1975: A case study of apparent gravity wave ini-
tiation of severe convective storms. Mon. Wea. Rev., 103, 497–
513.
, and S. E. Koch, 1987: The synoptic setting and possible energy
sources for mesoscale wave disturbances. Mon. Wea. Rev., 115,
721–729.

Wang, T.-A., and Y.-L. Lin, 1998: Wave ducting in a stratified shear
flow over a two-dimensional mountain. Part II: Implications for
the development of high-drag states for severe downslope wind-
storms. J. Atmos. Sci., 56, 437–452.

Weglarz, R. P., 1994: Three-dimensional geostrophic adjustment of
homogeneous and continuously stratified atmosphere with ap-
plication to the dynamics of midlatitude jetstreaks. Ph.D. dis-
sertation, North Carolina State University, Raleigh, NC, 414 pp.
[Available from Prof. Yuh-Lang Lin, Department of Marine,
Earth, and Atmospheric Sciences, North Carolina State Univer-
sity, Raleigh, NC 27695-8208.]


