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ABSTRACT

It is well known that there exist three singular points, U 2 c 5 6 f/k and U 5 c, where the corresponding
levels will be called inertia critical levels (ICLs) and the classic critical level (CCL), in the equation governing
a two-dimensional, rotating, continuously stratified, hydrostatic, back-sheared Boussinesq flow. Here U and c
are basic wind and phase speed, respectively; f is the Coriolis force; and k is the wavenumber. The effects of
these critical levels on flows over an isolated mountain ridge are investigated both analytically and numerically,
based on a broad range of Rossby numbers (Ro) and Richardson numbers (Ri).

Each wave mode generated from the isolated mountain with a continuous spectrum has its own ICL. To
indicate the net effects of all ICLs, the authors define the effective ICL as the height above which the amplitude
of the inertia-gravity wave mode is very small. The findings for linear flows are summarized as follows. Regime
I is inertia-gravity waves. The flow behaves like unsheared inertia-gravity waves and the effective lower ICL
plays a similar role as the CCL does in a nonrotating flow. Regime II is combined inertia-gravity waves and
baroclinic lee waves. These waves behave like those in regime I below the lower effective ICL, and like baroclinic
lee waves near the CCL. In this regime, the horizontal warm advection by the baroclinic lee wave plays an
important role in the formation of the lee pressure trough. On the other hand, near the downslope of the mountain,
both the warm advection by the inertia gravity and the adiabatic warming also contribute significantly to the
lee trough. Therefore, Smith’s quasigeostrophic theory of lee cyclogenesis is extended to a nongeostrophic
regime. Regime III is combined evanescent and baroclinic lee waves. These waves still behave like baroclinic
lee waves near the CCL, but they are trapped near the surface. Regime IV is transient waves. Nongeostrophic
baroclinic instability exists, as evidenced by the positive domain-averaged north–south heat flux. There exists
no steady state. At earlier times, the flow behaves like trapped baroclinic lee waves.

For a relatively large Ri (e.g., Ri . 25), the flow falls into regime I when Ro is relatively large (e.g., Ro $
2). It then shifts to regime II, and finally to regime III as Ro decreases. For a relatively small Ri (e.g., Ri , 25),
the flow shifts from regime I to II, and then finally to regime IV when both Ro and Ri decrease.

1. Introduction

In a nonrotating fluid system, a critical level, where
the gravity wave phase speed is equal to the basic wind
speed, may exist. Mathematically, a singularity is pres-
ent in the governing equation at the critical level. Breth-
erton (1966) and Booker and Bretherton (1967) found
that the local vertical wavenumber increases and wave
absorption occurs when the wave approaches the critical
level. In addition, for flows over an isolated mountain,
Smith (1986) pointed out that when the Richardson
number (Ri) is considerably greater than ¼, the flow
behaves as it does in the unsheared problem as described
in Queney (1948) and Smith (1979a). The nonlinear
aspects of the critical-level problem in an adiabatic flow
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have been studied by several authors in the last three
decades [see Maslowe (1986) for a review]. The non-
linear effects become more and more important as one
approaches the critical level, since the perturbation wind
speed may easily exceed the basic wind speed. In studies
of mountain waves, the nonlinear effect has been shown
to play an important role in generating severe downslope
windstorms in a wave-induced shear layer with a critical
level (e.g., Clark and Peltier 1984; Smith 1985; Durran
1986).

However, the singularities of a rotating fluid system
differ from those of a nonrotating system. Jones (1967)
was the first to try to solve this problem. He found that
the vertical transport of angular momentum by inertia–
gravity waves is independent of height, except at the
critical levels at which the Doppler-shifted frequencies
are equal to 6 f, where f is the Coriolis parameter. These
levels were called Jones’s critical levels by Yamanaka
and Tanaka (1984), inertial wave critical levels by Smith
(1986), and Rossby singular levels by Wurtele et al.
(1996). In our study, the three steady-state singular lev-
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els will be referred to as the lower inertia critical level
(ICL) at U 5 f/k, the classic critical level (CCL) at U
5 0, and the upper ICL at U 5 2 f/k.

Yamanaka and Tanaka (1984) found that there exist
two important characteristics associated with the critical
levels in the inertia-gravity wave problem. One is the
valve effect across the Jones’s critical level, and the
other is the presence of a pair of turning levels between
the Jones’s critical levels. Waves between the turning
levels are nonpropagating. As Ri → `, the turning level
and Rossby singular level tend to merge. They inves-
tigated the behavior of waves that reach the Jones’s
critical level from the lower layer, but did not discuss
the effect of different wind shear with different Ri.

Wurtele et al. (1996) studied the wave propagation
properties when an inertia-gravity wave propagates up-
ward to all three singular levels. For an incident mono-
chromatic wave, they pointed out that the Rossby sin-
gularities can absorb wave energy in linear simulations
but tend to reflect wave energy in nonlinear simulations.
However, they found that the flow patterns are different
when the spectrum of the forcing is continuous. In this
case, the problem is essentially linear, and Rossby sin-
gular levels for each component are no longer singular
due to the cancellation among different wave compo-
nents. The latter was first shown by Eliassen (1969).
Also, Wurtele et al. showed that for sheared flows, the
flow patterns still exhibit differences between nonro-
tating and rotating systems, although Ro in the rotating
system may be relatively large (e.g., Ro 5 10 with a 5
10 km, f 5 1024 s21, and Uo 5 10 m s21 in their study).

Near the CCL, where waves are nonpropagating,
Grimshaw (1975) pointed out that the solution at that
level is always regular if f is held constant. However,
if f is not constant and varies with y, CCL is again a
singular level (e.g., Miyahara 1981). The CCL for a
neutral Eady mode is called a steering level (e.g., Gill
1982). This singular level for quasigeostrophic (QG)
flow is called a Rossby wave critical level (e.g., Dick-
ison 1970). In this study, we will assume a constant f.
Because the wind speed is small near the CCL, the
assumption of f/Uk k 1 is valid. Under this assumption,
the governing equation is reduced to the QG Eady mod-
el, which excludes the lower and upper ICLs. The equiv-
alent QG potential vorticity equation has been used to
study lee cyclogenesis by Smith (1984, 1986). A cat’s-
eye flow pattern was found near the wind reversal height
(H) for a steady, small Rossby number, back-sheared
flow. Smith called this mode a baroclinic lee wave,
which can be regarded as an orographically forced neu-
tral Eady wave with a resonant wavenumber k* 5 f/NH
where N is the Brunt-Väisälä frequency and H is the
wind reversal level. He further proposed a theory of lee
cyclogenesis that views lee cyclogenesis as the forma-
tion of the first trough of a standing baroclinic lee wave.
When lee cyclogenesis occurs, the atmospheric envi-
ronment baroclinically supports a free-standing baro-
clinic wave. Smith’s view that the lee cyclone is oro-

graphically forced in its early stage, rather than a trig-
gered instability, agrees with the numerical results of
Tosi et al. (1983). For nongeostrophic (NG) systems,
Smith (1986) pointed out that there exist two Rossby
numbers, Ro1 5 U/af and Ro2 5 Uk*/ f, and conjectured
that the lower ICL tends to prevent lee wave develop-
ment.

Bannon and Zehnder (1989) showed that nongeo-
strophic effects become important for a high mountain,
even though their results are consistent with those in
Smith (1984) for a low mountain. In solving a semi-
geostrophic initial-value problem with a critical level,
they showed that the development of a baroclinic lee
trough is stronger and narrower than that in a QG theory.
Lin and Perkey (1989) extended Smith’s work using a
nonlinear numerical model. They concluded that Smith’s
theory is valid at least in the early stages of cyclogen-
esis. The flow-splitting effect due to higher mountains
and boundary layer effects were also investigated in
their study. Lin (1989) proposed a QG cyclogenesis the-
ory for a back-sheard flow with a critical level over a
diabatic heat source. He found that an analogy exists
for a QG flow over a mountain and over a region of
steady diabatic heating. A nonlinear QG calculation per-
formed by Schär (1990) suggests that Smith’s mecha-
nism may produce an initial perturbation on the scale
of a baroclinic lee wave within a relatively broad bar-
oclinic frontal zone, as the latter is deformed and re-
tarded by the mountain. Although these authors have
proven that Smith’s theory can be applied to some re-
alistic cases, however, it is questionable to apply the
theory to the Alpine area where Ro ; 0.5 (e.g., Bannon
and Zehnder 1989). Thus, we believe that the theory
deserves to be extended into the NG flow regime (i.e.,
Ro $ 0.5).

Although Wurtele et al. (1996) have investigated the
effects of critical levels on flows with relatively large
Ro and Ri for an isolated mountain, and Smith (1986)
has solved the QG problem for small Ro, the effects of
these critical levels on flows characterized by moderate
Ro and small Ri are still not well understood. Also,
smaller-scale NG instability shown in Stone (1966,
1970) and Nakamura (1988) has not been found in the
above-mentioned study. Our study will be based on rel-
atively broad ranges of Ro and Ri and will only focus
on linear responses. In section 2, a linear theory will
be developed, and a comparison between semianalytical
and analytical solutions will be made. The former can
represent the NG flow solutions of different length
scales, while the latter have been solved by other authors
under certain conditions. These solutions show the local
behavior of the flow near three critical levels. To un-
derstand the global behavior, we perform a number of
idealized two-dimensional numerical simulations. Sec-
tion 3 describes the numerical model, and section 4
discusses the results. Based on the numerical simula-
tions, four wave regimes will be proposed. Concluding
remarks can be found in section 5.
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2. Semianalytical solutions

For a two-dimensional, inviscid, Boussinesq flow on
an f plane, the linearized equation governing the vertical
velocity perturbation (w) can be written (e.g., see Lin
1994)

2D D D
2 2 2 2¹ w 1 f w 2 U w 1 N w 2 2 f U wzz zz x xx z xz21 2Dt Dt Dt

5 0, (1)

where D/Dt 5 ]/]t 1 U(z)]/]x. The energy equation
with the horizontal and vertical integrations over a cer-
tain domain may also be derived (see Lin 1994):

L /2 zT]E ]E ]T T5 2 U 1 (pu) dz dxE E [ ]]t ]x ]x
2L /2 0

z zT Tr gfo2 r uwU dz 1 yuU dzo E z E z21 2N Q0 0

2 pw(z ) 1 pw(0). (2)T

Here, ET 5 (ro/2)[u2 1 y 2 1 (gu/NQ)2] is the domain-
integrated total perturbation energy; L and zT the width
and height of the domain, respectively; and u, y , and u
the zonal and meridional perturbation winds, and the
perturbation potential temperature, respectively. The ov-
erbar indicates the average of a variable in the x direc-
tion. The term on the left-hand side of the above equa-
tion represents the local time rate of change in the total
perturbation energy contained in the system. The first
term on the right-hand side represents the sum of the
advection of total energy and the horizontal energy flux.
The second term on the right-hand side represents the
energy production due to vertical momentum flux trans-
fer associated with the basic wind shear, and the third
term represents the north–south heat flux transfer be-
tween the basic state and the perturbation. The fourth
term is the forcing exerted by the top boundary, which
is negative if a radiation upper boundary condition is
applied. The last term represents the forcing exerted by
the lower boundary. We will use this equation to analyze
the transient results of section 4.

If the flow is steady, then the Fourier transform of
Eq. (1) in the x direction becomes

2 2 2f 2 f U 2N Uz zz2 1 ŵ 2 ŵ 1 1 ŵ 5 0. (3)zz z2 2 2 3 21 2 1 2k U k U U U

It can be seen from the above equation that three sin-
gular points, that is, U 5 0 and U 5 6 f/k. In the
following, we will use the lower and upper ICLs to
identify the levels at which U 5 f/k and U 5 2 f/k,
respectively. The critical level corresponding to U 5 0
will be called the CCL. For long waves, these ICLs are
far from the CCL, while for short waves, these ICLs
are located very close to the CCL. However, for me-

soscale waves, which are in between long and short
waves, the ICLs are distinct from the CCL. For example,
if f 5 1024 s21 and Uz 5 0.004 s21, which are used in
Smith’s (1986) theory near the Alps, the height differ-
ences between the ICLs and CCL are 398 and 1990 m
for l 5 100 and 500 km, respectively.

The steady-state form of the energy equation [Eq. (2)
without vertical integration] is

] gf
pw 5 2r U uw 1 r U yu (4)o z o z 2]z N uo

and can be explained as the vertical divergence of en-
ergy flux (]pw /]z), which consists of both momentum
and heat fluxes. After a straightforward derivation for
a single Fourier mode (e.g., Smith 1979b), we obtain

2gf f
yu 5 uw . (5)

2 2 2N u U ko

Substituting (5) into Eq. (4) yields

2] f
pw 5 2r U 1 2 uw . (6)o z 2 21 2]z U k

Thus, the term f 2/U 2k2 can be regarded as the ratio of
heat flux to momentum flux. The heat flux is greater or
less than the momentum flux when f 2/ U 2k2 . 1 or
f 2/U 2k2 , 1, respectively. When U and f are fixed, the
heat flux becomes dominant if k is smaller ; that is, the
heat flux is more important for long waves. Similarly,
from the equation of motion in the x direction, the ver-
tical energy flux (pw) may be written as

2f
pw 5 2r U 1 2 uw . (7)o 2 21 2U k

This is a generalized form of Eliassen and Palm’s (1960)
theorem (e.g., Andrew and McIntyre 1976). Equation
(7) provides the basis to apply an upper radiation con-
dition and will be used in section 2b. In all cases pre-
sented in this study, we assume the basic wind to be U
5 (Uo/H)(H 2 z), where Uo is the surface wind and H
is the height of wind reversal, as shown in Fig. 1. Notice
that this basic wind has a constant linear shear, 2Uo/H.

a. Discussion of existing analytical solutions

In this section, we discuss analytical solutions for
nonrotating and QG flows. These solutions have been
obtained by others for nonrotating flows. However, for
QG flows we use a different mathematical approach to
obtain solutions and discuss how for small Ri the so-
lutions are still valid. These analytical solutions can help
verify our semianalytical solutions, which can be solved
for flows with a wide range of Ri and Ro and will be
discussed in the next section. ‘‘Semianalytical’’ means
that analytical solutions in Fourier space are transformed
back to physical space numerically.
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FIG. 1. Basic wind profile. Here H is the height of wind reversal
and Uo is the surface wind.

1) NONROTATING FLOWS

If the Coriolis force is neglected, Eq. (3) becomes

Riŵ 1 ŵ 5 0. (8)zz 2(H 2 z)

Following the procedure described in Smith (1986), and
using the Frobenius series method (e.g., Kreyszig 1988),
the steady-state solutions can be obtained:

2pmahÏz U e1 o
w 5

2 2 2(a 1 x )
2 23 [(x 2 a ) cos(m lnz ) 2 2ax sin(m lnz )]1 1

for z . H, (9)

2ahÏz U2 o
w 5

2 2 2(a 1 x )
2 23 [(a 2 x ) sin(m lnz ) 2 2ax cos(m lnz )]2 2

for 0 # z # H, (10)

where z1 5 (z 2 H)/H, z2 5 (H 2 z)/H and m2 5 Ri

2 ¼. Figures 2a and 2b show the perturbation vertical
and horizontal velocities with Ri 5 6.25. The solutions
indicate that waves cannot penetrate through the CCL,
which is the height of wind reversal for steady-state
flow, and the streamlines exhibit (not shown) an over-
turning region near the critical level, as shown in Smith
(1986).

2) QUASIGEOSTROPHIC FLOWS

Smith’s (1984, 1986) theory for lee cyclogenesis is
based on the QG assumption which is valid for small
Rossby number, and large Richardson number only
(e.g., Nakamura 1988). However, the wind shear in
Smith’s study has a moderate Ri (i.e., 6.25 corresponding
to Uz 5 0.004 s21). In this section, we solve Smith’s

theory by using a different approach, as well as verify
his solutions for a moderate Ri.

For flows near the CCL, where Uk/ f K 1, Eq. (3)
becomes

2 22U k Nzŵ 2 ŵ 2 ŵ 5 0. (11)zz z 2U f

From the above equation, it is obvious that inertia crit-
ical levels have been analytically eliminated, and the
solutions exhibit evanescent modes1 for all wavenum-
bers. Equation (11) can be derived starting with either
a linear QG system or a weakly NG system that includes
wUz but neglects Dua/Dt in the equation of motion (see
appendix A for details). That is, the equations governing
the vertical velocity for both the linear QG system and
weakly NG system are identical, although equations
governing other fields for these two systems may not
be the same. Therefore, we can easily obtain the solution
of the vertical velocity for the weakly NG system if we
know the solutions for the QG system. Afterward, we
can investigate the effect of wUz on other fields when
the Ri is small or moderate, which is associated with
strong wind shear.

Following Smith’s (1984) procedure, we can obtain
the solutions for each variable:

3U Nk*o 2z /H*w(x, z) 5 4pĥ(k*) ze cos(k*x), (12)
f

2U Nk* zo 2z /H*u(x, z) 5 24pĥ(k*) 1 2 e1 2f H

3 sin(k*x), (13)

u Nf 1 2 z /Ho 2z /H*u 5 4pĥ 1 1 g e1 2gH Ri

3 sin(k*x), (14)

z /H
2z /H*p 5 24pĥrNf 1 2 g e sin(k*x). (15)1 2Ri

With g 5 0, which excludes wUz, the above solutions
are called a baroclinic lee wave with a resonant wave-
number k* 5 f/NH by Smith (1984, 1986). For the lee
wave, the condition of Uk/ f K 1 leads to NH/U k 1
because of k 5 f/NH. The latter is equivalent to Ri k
1 in our system. Therefore, the above solutions are valid
only when Ro K 1 and Ri k 1.2 Thus, the question is,
can we determine the criterion for Ri to satisfy the as-
sumption of Ro K 1? In Eqs. (14) and (15), only small
Ri corresponding to larger wUz can affect the magnitude
of mass fields (p and u). With a choice of O(z/H) # 1
for Uk/ f K 1, the effect of wUz can be neglected when

1 Equation (11) can be written as Ŵzz 2 (2U 2/U 2 1 N 2k2/ f 2)Ŵ 5
0, where ŵ 5 Ŵ exp(# Uz/U dz).

2 If we define Ro 5 Uok/ f, Ro K 1 leads to Ri k 1 for lee waves.Ï
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FIG. 2. Analytical solutions for nonrotating flow with a critical level: (a) vertical velocity and
(b) horizontal velocity perturbation. The basic-state flow parameters are Uo 5 20 m s21, H 5
5000 m, N 5 0.01 s21, hm 5 500 m, and a 5 100 km (Ro 5 `, Ri 5 6.25). The symbol ‘‘int’’
means contour interval and unit is m s21. [Replotted from Smith (1986)].

Ri . 10. We may therefore conclude that the local be-
havior for flows with Ri . 10 near the CCL, where Uk/ f
K 1, is governed by the linear QG dynamics. Thus, the
choice of Ri 5 6.25 in a QG model by Smith (1986)
still seems reasonable.

Figure 3 shows the results of u and w [Eqs. (12) and
(13)] with Ro 5 0.2 and Ri 5 25. It can be seen that
the w maximum occurs at the height of wind reversal
(z 5 H). The streamline field of total wind (not shown)
contains a cat’s-eye near the level of wind reversal, as
found by Smith (1986).

b. Semianalytical solutions

For an NG flow, it is very difficult to solve Eq. (3)
analytically. Recently, Wurtele et al. (1996) solved this
type of problem analytically. However, they did not dis-
cuss flow responses for small Ri and moderate Ro. In
this section, we will try to solve Eq. (3) semianalytically
for wider ranges of Ri and Ro. Equation (3) may be
transformed into an alternative form by letting h 5
(kU/ f )2:

1 Rih(1 2 h)ŵ 2 (1 1 h)ŵ 2 ŵ 5 0. (16)hh h2 4

This is a hypergeometric equation that has regular sin-
gularities at h 5 0, 1, and ` (e.g., Mathews and Walker
1970). Miles (1964), Yamanaka and Tanaka (1984), and
Wurtele et al. (1996) recognized the Gauss hypergeo-
metric function to be the eigenfunction of the above
equation. The hypergeometric function is defined as

ab
F(a, b, c; h) 5 1 1 h

c 3 1

a(a 1 1)b(b 1 1)
21 h 1 · · · . (17)

c(c 1 1) 3 1 3 2

Two linearly independent solutions in the neighborhood
of these singularities are, respectively, given by

for |h | . 1,

21 i 5 i
(1/4)2(i /2)m 21ŵ 5 h F 1 m, 1 m, im 1 1; h ,1 1 24 2 4 2
(1/4)1(i /2)mŵ 5 h2

21 i 5 i
213 F 2 m, 2 m, 2im 1 1; h ; (18)1 24 2 4 2

for |h | . 1,

21 i 5 i
(1/4)2(i /2)m 21ŵ 5 h F 1 m, 1 m, 1; 1 2 h ,3 1 24 2 4 2

21 i 3 i
(1/4)1(i /2)m 21ŵ 5 h F 2 m, 2 m, 1; 1 2 h ;4 1 24 2 4 2

(19)

for |h | . 0,

21 i 21 i 21
ŵ 5 F 1 m, 2 m, ; h ,5 1 24 2 4 2 2

3/2 (25/4)2(i /2)mŵ 5 h (1 2 h)6

5 i 5 i 5 h
3 F 1 m, 1 m, ; . (20)1 24 2 4 2 2 (1 2 h)

In the following, we will apply a fast Fourier transform
(FFT) algorithm and the path integration (e.g., Press et
al. 1990) to calculate these solutions, which will be
referred to as the semianalytical solutions.

For h . 1 (outside the ICLs), we choose ŵ1 if k .
0 and ŵ2 if k , 0:
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FIG. 3. Analytical solutions for quasigeostrophic back-sheared flow. Parameters are the same
as Fig. 2 except for f 5 1023 s21 and N 5 0.02 s21 (Ro 5 0.2, Ri 5 25): (a) vertical velocity
perturbation and (b) horizontal velocity perturbation. [Replotted from Smith (1984)].

0 `

ikx ikxw 5 ŵ e dk 1 ŵ e dk. (21)E 2 E 1

2` 0

Wurtele et al. (1996) mentioned that this choice can
satisfy the upper radiation condition (i.e., pw . 0 as z
→ `). This is true if the hypergeometric function is a
real function under certain conditions. However, in gen-
eral, the hypergeometric function is a complex function.
By using the subroutine ‘‘HYPGEO’’ described in Press
et al. (1990), we calculate ŵ1 and ŵ2 in (k, z) domain
for h . 1. Afterward, we obtain w in the physical space.
Moreover, based on the two-dimensional Fourier anal-
ysis (see appendix B for details), we will examine
whether this condition really allows energy to propagate
upward or not.

For an isolated mountain forcing, a continuous spec-
trum of wave modes are generated. This indicates that
individual wave modes have their own ICLs at different
heights. To compare the responses between nonrotating
and rotating flows over an isolated mountain, we define
the effective ICL as the height above which the sum-
mation of the amplitudes for the inertia-gravity wave
modes are very small. First, we will verify the above
numerical method by calculating the semianalytic so-
lutions using a very small Coriolis parameter (10210 s21)
and compare them with the analytical solutions for a
nonrotating fluid. Figure 4a shows that the semianalyti-
cal solution is in very good agreement with the analytic
solution (Fig. 2a). The role of the lower effective ICL
at z 5 5 km in a rotating flow is similar to that of CCL
for a nonrotating flow.

The semianalytical vertical velocity field [Eq. (18)]
below the lower effective ICL for a steady flow with
Ro 5 4 and Ri 5 6.25 is shown in Fig. 4b. The flow
response behaves like unsheared inertia-gravity waves
with energy dispersion in the x direction (e.g., Queney
1948; Eliassen and Thorsteinsson 1984; Trub and Da-

vies 1995). Although the lower effective ICL acts to
inhibit upward wave propagation, the perturbation wave
energy can propagate downstream as the Coriolis force
increases (Fig. 4c). From Figs. 4a–c, we can easily see
that the height of the lower effective ICL decreases as
Ro increases. One may also find the phase lines below
the lower effective ICL to the left of the mountain tilt
upshear (to the right with height) in Figs. 4b and 4c.
These features may not satisfy the upper radiation con-
dition. Applying the ‘‘radiation condition’’ based on a
two-dimensional Fourier transform, we can eliminate
the upshear phase tilt, as shown in Fig. 4d, in which
we use the same parameters as those in Fig. 4c. From
these two figures, we can see that the unreasonable neg-
ative vertical velocity in the layer below the lower ef-
fective ICL upstream can be avoided. Moreover, the
height of the lower effective ICL in Fig. 4d is higher
than that in Fig. 4c. Numerical simulations (section 4)
will show that Fig. 4d is more accurate than Fig. 4c.
The choice of the solution to satisfy the upper boundary
condition in Fig. 4c is the same as that used by Wurtele
et al. (1996). Thus, we may conclude that the upper
boundary condition used by Wurtele et al. (1996) is not
suitable for flow with a small Ri (say Ri # 6.25). More
discussions for different Ri and Ro will be given in sec-
tion 4.

For QG flows, the semianalytical (Fig. 4e) and ana-
lytical solutions (Fig. 3a) with Ro 5 0.2 and Ri 5 25
are very similar, except for the slight phase shift. Near
the topography, the semianalytic solution is more ac-
curate than the analytic solution, since the latter can
only be applied far downstream due to the limitation of
lee-wave theory (e.g., Scorer 1949). Wurtele et al.
(1996) have not solved this problem. Moreover, the re-
sponse of a weakly rotating system (Ro 5 0.8 and Ri 5
6.25) near the CCL (not shown) is still similar to trapped
baroclinic lee waves.



3292 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 4. Semianalytical solutions for the per-
turbation vertical velocity w for (a) nearly
nonrotating flows (parameters are the same as
those in Fig. 2 except f 5 10210 s21); (b)
rotating flows with f 5 0.000 05 s21 corre-
sponding to Ro 5 4 and Ri 5 6.25; (c) rotating
flows with f 5 0.0002 s21 corresponding to
Ro 5 1 and Ri 5 6.25; (d) same as (c) except
with different upper radiation boundary con-
dition; and (e) a quasigeostrophic flow (pa-
rameters are same as Fig. 3).

In this section, we have presented semianalytical so-
lutions that indicate the flow response near the lower
effective ICL and CCL. However, it is difficult to math-
ematically apply the continuation condition to study the
global behavior, so we will use a numerical model to
obtain more general solutions based on relatively wider
ranges of control parameters. The semianalytical solu-
tions will help verify the numerical results.

3. The numerical model

This two-dimensional version of the North Carolina
State University Geophysical Fluid Dynamics Model is
based on the nonlinear primitive equations governing
orographically forced, finite-amplitude, hydrostatic per-
turbations in a rotating, continuously stratified, Bous-
sinesq flow in the terrain-following coordinate s 5 zt(z
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TABLE 1. Parameters for numerical simulations. Here h 5 hm a 2/
(a 2 1 x 2), hm 5 250 m, Uo 5 20 m s21, f 5 0.0001 s21, T is total
integration time, and L is domain half-width.

a (km)
T (h)
D x (km)
UoT/a
L /a
Ro(Uo /af )

50
13.9
10
20
12.8
4

100
27.8
20
20
12.8
2

200
55.6
40
20
12.8
1

250
55.6
50
16
12.8
0.8

334
556
66.8
12
12.8
0.6

500
55.6

100
8

12.8
0.4

1000
111.1
200

8
12.8
0.2

2 zs)/(zt 2 zs), where zs(x) is the mountain geometry
and zt is the top of the computational domain. The hor-
izontal momentum equations, hydrostatic equation, in-
compressible continuity equation, and thermodynamic
energy equation are

]u ]u ]u ]U
1 (U 1 u) 1 ṡ 1 ṡ 2 fy

]t ]x ]s ]s

1 ]p ]p
1 1 G 1 nu 5 D ,u1 2r ]x ]so

(22)

]y ]y ]y
1 (U 1 u) 1 ṡ 1 fu 1 ny 5 D , (23)y]t ]x ]s

1 ]p gu
5 , (24)

r ]s HQo

] z u ] z ṡt t1 5 0, (25)1 2 1 2]x H s H

]u ]u ]Q ]
1 (U 1 u) 1 y 1 ṡ (Q 1 u) 1 ny

]t ]x ]y ]s

5 D , (26)u

where

]s s 2 z ]z ]s zt s tG 5 5 ; H 5 5 . (27)1 2]x z 2 z ]z ]z z 2 zt s t sz

The details of the numerical model can be found in
Weglarz (1994) and Lin and Wang (1996).

The number of the horizontal and vertical grid points
for the physical domain are 128 and 161, respectively.
The grid interval Dx is chosen to allow L/a 5 12.8 for
all cases, where L is the length of half domain. The grid
interval Dz is 62.5 or 125 m. This fine vertical resolution
is used to simulate the behavior near the critical levels.
For some cases, larger Dz is chosen to investigate the
effect of the upper effective ICL. The basic wind profile
is taken to be U 5 Uo (H 2 z)/H, as mentioned in the
previous section. An idealized bell-shaped mountain
ridge is adopted throughout this study,

2h amh(x) 5 , (28)
2 2x 1 a

where a and hm are the mountain half-width and height,
respectively.

4. Numerical results

In this section, we will show a number of cases with
relatively wider ranges of Ro and Ri. To achieve this,
we fix Uo, f, and hm, but vary N and a to allow variations
in both Ri and Ro. We assume Uo 5 20 m s21, f 5 1024

s21, and hm 5 250 m. Here N varies from 0.004 to 0.04
s21, while a varies from 50 to 1000 km. Stone (1966)
pointed out that baroclinic instabilities dominate if Ri

$ 0.95; symmetric instabilities dominate if 0.25 , Ri

, 0.95; and Kelvin–Helmholtz (K–H) instabilities dom-
inate if Ri , 0.25. Our choice of ]/]y 5 0 and Ri $ 1
will eliminate both symmetric and K–H instabilities.
Table 1 summarizes the flow parameters for our simu-
lations. In the following, ‘‘stationary state’’ means that
flow patterns do not change with time, but the magni-
tudes may vary slightly with time. For large-scale moun-
tains, it takes a longer time to reach a stationary state.
We will discuss how to efficiently determine the total
integration time for all cases at the end of this section.
To compare the absolute magnitudes, we fix the total
integration time for some cases. Figures 5 and 6 show
the horizontal and vertical velocity perturbation fields,
respectively. The Richardson number varies from 1 to
6.25 to 25 to 100 from the first to fourth columns, while
the Rossby number varies from 4 to 1 to 0.6 to 0.2 for
the first to fourth rows. These panels will be labeled
from a–p. For unstable flows, shown in panels e, i, and
m, we double Dz to enlarge the physical domain in order
to study the effects of the upper effective ICLs.

In the first rows of Figs. 5 and 6, the disturbances
produced by the mountain are confined below the lower
effective ICL when Ro 5 4 and Ri 5 1 (Figs. 5a, 6a).
The flow pattern below the lower effective ICL is similar
to that in the nonrotating flow case and the vertical
wavelength of the disturbance decreases as Ri increases.
However, dispersive waves exist in the x direction,
which are caused by the Coriolis force (Queney 1948;
Eliassen and Thorsteinsson 1984). On the downstream
(right) side, the horizontal wavelength of surface u (hor-
izontal velocity perturbation) with Ri 5 25 and Ri 5
100 can be roughly estimated by 2pU/ f, which was
derived by Smith (1982) for uniform flow on an f plane.
It gives a value of 1256 km near the surface, as shown
in Figs. 5c and 5d. Both the horizontal scale and the
vertical wavelength become shorter as the disturbance
propagates upward. Near the lee slope, the horizontal
velocities become stronger and the vertical velocities
become weaker as Ri increases. In order to understand
the stability of the individual flow regimes, we perform
an energy budget analysis (Fig. 7). The total integration
times for all cases shown in Fig. 7 are equal or larger
than those of the corresponding cases with the same Ro

and Ri shown in Figs. 5 and 6. In the following, we will
discuss the flow fields (Figs. 5, 6) and energy budget
(Fig. 7) simultaneously. The energy budget has been
normalized by the numerical domain area. The energy
budgets between the nonrotating case (Fig. 7a) and the
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FIG. 5. Numerical results of horizontal perturbation velocity (u) for a rotating flow with critical levels. Parameter are shown in Table 1.
Contour intervals are denoted on top of each panel. Here N ranges from 0.04 to 0.004 s21, and f ranges from 0.000 05 to 0.001 s21. The
Richardson number varies from 1 to 6.25 to 25 to 100 from the first to the fourth column, while the Rossby number varies from 4 to 1 to
0.6 to 0.2 for the first to the fourth row. All plates show either the steady-state response or the early stage of instabilities. The physical
domain height is 10 km, except for (e), (i), (m), and (n), where height is 20 km.

weakly rotating case (say, Ro 5 4; Fig. 7b) appear to
be in good agreement. In the first hour of simulation,
there is an abrupt increase of the surface drag for these
cases. This can be explained by the start-up adjustment
of the flow field to the mountain terrain in the numerical

model because the mountain is introduced abruptly at
the first time step. Both results indicate that the surface
drags and momentum flux are in balance. However, by
including the Coriolis force, the negative contribution
from the advection term (label ‘‘resi’’ in the figure) is
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FIG. 6. Same as Fig. 5 except for the vertical velocity.

slightly stronger. The small positive heat flux is due to
the reflection by the lateral boundary. It will be zero if
we choose a larger domain.

For all Ri, the lower effective ICL of Ro 5 1 appears
to be lower than that of Ro 5 4 (e.g., Figs. 5b,f). The
agreement of vertical velocity for Ro 5 1 and Ri 5 6.25
between semianalytic solutions (Figs. 4c or 4d) and nu-
merical results (Fig. 6f) is reasonably good. The vertical

velocity field for Ro 5 1 and Ri 5 100 (Fig. 6h) is
similar to that of Wurtele et al. (1996), even though
their dimensional mountain width, basic-state stratifi-
cation, and wind shear are different. The semianalytical
solutions for Ro 5 1, Ri 5 6.25, with a suitable upper
condition in Fig. 4d agree better with the numerical
results (Fig. 6f) than those shown in Fig. 4c. Thus, we
may conclude that the upper radiation condition based



3296 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 7. Energy budget. Here ‘‘pw0’’ indicates bottom surface drag, pw (0); ‘‘vquz’’ indicates the heat flux transfer, (rogf/N 2Q) yu Uz
zT#0

dz; ‘‘uwuz’’ indicates the momentum flux, 2ro uwUz dz; ‘‘pw’’ indicates top boundary forcing, 2pw (zT); and ‘‘resi’’ indicateszT#0

(U]ET/]u 1 ](pu)/]x) dz dx. All terms are normalized by the physical domain area. The scales are (a), (b) 5 3 1026; (c) 5 3 1025;L/2 z T2# #2L/2 0

and (d) 1 3 1026. The physical domain height is (a), (b), (c) 10 km; and (d) 20 km. (a) Ri 5 25 and Ro 5 `; (b) Ri 5 25 and Ro 5 4; (c)
Ri 5 25 and Ro 5 0.4; (d) Ri 5 1 and Ro 5 0.2.

on the two-dimensional Fourier analysis is better than
that used by Wurtele et al. For Ro 5 1 and Ri 5 25
(Figs. 5g, 6g), the energy budget analysis is similar to
that shown in Fig. 7b. The horizontal wavelengths of
the flow with Ri 5 25 and 100 (Figs. 5g,h) are still
approximately 2pU/ f, similar to the unsheared flow. For
Ri 5 1 or 6.25 (Figs. 6e,f), the flow below the lower
effective ICL still behaves like inertia-gravity waves in
an unsheared flow but becomes trapped near the CCL
downstream. The trapped baroclinic lee wave near the
CCL provides evidence that wave energy from the to-
pography can propagate upward to the CCL, because
its lower ICL exists below the surface and cannot absorb
the upward wave energy. The horizontal wavelengths
for these baroclinic lee waves are about 1800 km for Ri

5 1 and 3200 km for Ri 5 6.25. The latter is close to
the theoretical value of l 5 2p/k* 5 2pNH/ f predicted
by the QG theory (Smith 1986). However, the former

is greater than the QG theoretical value. This may in-
dicate the importance of ageostrophic effects for small
Ri (e.g., Nakamura 19883). We will further discuss re-
sults for Ri 5 1 but different Ro later. For a large Ri (25
or 100), there also exist the baroclinic lee-wave modes.
However, these baroclinic modes with small amplitudes
but long wavelengths due to high N, according to Eqs.
(12) and (13), may not appear in the chosen domain,
where inertial-gravity modes dominate. Basically, the
dynamics of lee-wave modes is similar to those for mod-
erate and small Ri.

When Ro decreases, the constant phase lines of the
waves are oriented more vertically (as shown for cases

3 He pointed out that small Ri can increase the Rossby radius of
deformation.
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with Ro 5 0.6). For a larger Ri, such as Ri 5 25 (Ro 5
0.6) and Ri 5 25, 100 (Ro 5 0.2), there also exist bar-
oclinic lee waves (e.g., Figs. 6n,o). In addition, the nu-
merical results can be interpreted in two ways: one is
similar to the semianalytical solutions below the lower
effective ICL (Fig. 4d), the other is similar to the sem-
ianalytical solution near the CCL (Fig. 4e). We may
conclude that the semianalytical solutions can give a
qualitatively correct description, although the quanti-
tative description may be less satisfactory if we do not
apply the continuation condition at the critical levels.
The energy budgets with Ro 5 0.4 and Ri 5 25 (Fig.
7c) indicate that the surface drag reaches a constant
value after Uot/a 5 20. This increase of total energy
due to the mountain (surface drag) at the earlier stage
has been identified as orographic instability by Tosi et
al. (1983) and orographic growth by Smith (1986).
Compared to the surface drag, the heat flux transfer
(denoted as vquz in Fig. 7c) is nearly zero before Uot/
a 5 10 and then becomes negative. The zero value of
the domain-averaged heat flux indicates that positive
and negative heat fluxes mainly due to the baroclinic
lee waves cancel each other at the early stage. During
this period, the waves are becoming stationary. When
the train of baroclinic lee waves extends downstream
from the mountain, the domain-averaged heat flux be-
comes negative.

Now, we will discuss the results for flow with Ri 5
1 and Ro 5 1 2 0.2. At the early stage, these wave
patterns (e.g., Figs. 5e, 6e) still behave like stationary
inertia–gravity waves or baroclinic lee waves. For Ro

5 1, the horizontal perturbation velocity shows that
there exist extrema at 12 km, which can be defined as
an upper effective ICL. Nakamura (1988) pointed out
this is due to the ‘‘absorbing’’ nature of the ICL. The
height of the upper effective ICL is estimated by U 5
2 f/k*, where k* is the wavenumber of the trapped lee
wave. As Ro decreases (Ro 5 0.6), the height of the
upper effective ICL shown in Fig. 5i is higher than that
with Ro 5 1 shown in Fig. 5e. As the Ro reduces to 0.2,
the energy budget analysis of this case (Fig. 7d) shows
that flow becomes weakly unstable at the earlier stage
corresponding to the positive north–south heat flux that
oscillates with time. The heat flux becomes a major
source term after about Ut/a 5 12, and the flow becomes
strongly unstable. These results show that there might
exist ‘‘baroclinic’’ instability. When the flow is at the
weakly unstable stage, say Ut/a 5 4, the flow patterns
of u and w are similar to those with Ro 5 1 and Ro 5
0.6. The height of the vertical velocity maximum occurs
at the height of the wind reversal, and the upper effective
ICL appears in the physical domain. After the flow be-
comes more unstable (e.g., Ut/a 5 8 as shown in Figs.
5m, 6m), the perturbation propagates upstream. The ver-
tical velocity indicates that the height of the maximum
value extends to 20 km. The energy budget analysis for
Ro 5 0.6 and Ro 5 1 is similar to that of Fig. 7d. The
heat flux oscillates with time at the earlier stage and

becomes a major source term after Ut/a 5 25 and Ut/a
5 30, respectively (not shown).

As Ri increases (e.g., Ri 5 100) and Ro 5 0.2 (Figs.
5p, 6p), the wave becomes evanescent in the lower lev-
els, similar to orographically forced QG flow (e.g.,
Smith 1979a; Trub and Davies 1995). Near the CCL,
the response still behaves like a trapped baroclinic lee
wave.

In Smith’s theory, the mechanism of lee cyclogenesis
is the horizontal warm advection by the baroclinic lee
wave. However, for Ro ; 1, adiabatic warming and the
horizontal warm advection by an inertia-gravity wave
at the lee slope may also be important. Figure 8 shows
the perturbation pressure (p) and potential temperature
(u) for Ro 5 1 (a 5 200 km) and Ro 5 0.6 (a 5 334
km). For pressure fields, both cases show that there exist
lee troughs located at about 1000 km on the lee side.
It is interesting that the patterns of the pressure fields
for both cases behave like a QG baroclinic lee wave,
although the Ros are not small. This will be explained
later. These pressure troughs result hydrostatically from
the warm air over the lee side. For Ro 5 0.6, the pattern
of u (Fig. 8d) is similar to a baroclinic lee wave. How-
ever, the inertia–gravity wave mode becomes important
for Ro 5 1 (Fig. 8b). In the following, we will investigate
the relative importance of the adiabatic warming and
warm advection by the inertia–gravity wave and the
warm advection by the baroclinic wave to the devel-
opment of the lee trough for moderate Ro (51).

With the use of the thermal wind relation, the ther-
modynamic equation relation may be written as

]u ]u uo 21 U 5 ( fU y 2 N w). (29)z]t ]x g

The first and second terms on the right-hand side are
the horizontal temperature advection and adiabatic
warming or cooling, respectively. Figure 9b, which
shows the meridional velocity, can be compared with
Figs. 6f and 9a with an appropriate choice of the contour
interval of 0.5 m s21. From Fig. 9a, the net effects of
fUzy 2 N 2w produce high temperature (Fig. 8b) on the
lee side near the surface ranging from x 5 1.5a to x 5
7.5a. Near the downslope of the mountain (x from 0 to
2.5a), both the warm advection (Fig. 9b) and the adi-
abatic warming (Fig. 6f) have made positive contribu-
tions to the trough development. However, a comparison
among Figs. 6f, 9a, and 9b shows that horizontal tem-
perature advection dominates when x $ 3a. This indi-
cates that the adiabatic cooling associated with upward
motion (w . 0 in Fig. 6f), which occurs near x 5 3a,
is compensated by the strong warm advection (yUz .
0) associated with strong northerly wind (y , 0 in Fig.
9b).

By using a Fourier transform, we can decompose the
meridional velocity into an inertia-gravity wave mode
(Fig. 9c) and a baroclinic lee-wave mode (Fig. 9d).
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FIG. 8. (a), (c) Perturbation pressure; and (b), (d) perturbation potential temperature. (a), (b) Ro

5 1 and Ri 5 6.25; (c), (d) R o 5 0.6 and Ri 5 6.25.

Again, the inertia-gravity wave mode shows a dispersive
property, and there appear negative and positive merid-
ional velocities on the downstream side, which can con-
tribute to warm and cold advection, respectively. Since
the dominant wavelength of baroclinic lee waves, which
is roughly equal to 2pNH/ f, is independent of the moun-
tain half-width, it is not surprising to find that there
exist baroclinic lee waves for a 5 200 km only if the
spectrum of mountain wavenumbers is broad enough.
Comparing Figs. 9c and 9d suggests that the component
of the meridional velocity associated with the baroclinic
lee-wave mode is two times larger than that for the
inertia-gravity wave mode. According to Eq. (29) and
the hydrostatic equation, the magnitudes of u and p are
proportional to # y dx and ## y dx dz, respectively. Thus,
the contribution to the u and p by the inertia–gravity
wave mode is relatively small because of its periodic
property in both the x and z directions. This is the reason
why the pressure field (Fig. 8a) behaves like a QG bar-
oclinic lee wave. Therefore, we may conclude that the
lee trough for a moderate Ro (51) is still mainly caused
by horizontal warm advection, and this warm advection
is dominated by a baroclinic lee-wave mode. The in-
ertia-gravity wave confined by the lower effective ICL
appears to play a minor role in the formation of the

trough. However, near the downslope of the mountain,
both the warm advection by the inertia-gravity mode
and the adiabatic warming also have made positive con-
tributions to the trough development. Note that Smith’s
QG theory did not consider the last two mechanisms
that become more important when Ro becomes larger.

For linear flows, the dynamics for the same Ro, but
with different combinations of f and a, should be the
same. In Fig. 10, we keep Ro, Ri, and the total nondi-
mensional integration time constant (Ro 5 0.4, Ri 5 1,
and Uot/a 5 8), but vary f and a. Figures 10a and 10c
are the horizontal u velocities and energy budget anal-
ysis for a case with a 5 500 km and f 5 1024 s21. The
same fields for a 5 100 km and f 5 5 3 1024 s21 are
shown in Figs. 10b and 10d. Both cases show that the
flows behave like baroclinic lee waves, and more wave
energy is trapped near the upper effective ICL when an
instability occurs. Moreover, the unstable waves appear
to propagate upstream. From the energy budget analysis
shown in Figs. 10c and 10d, the time evolutions of the
energy budgets are almost identical. Therefore, we may
conclude that the use of an artificially high Coriolis
parameter gives us an efficient way to obtain steady-
state solutions if simulations require a wide range of
Ro. Also, this method provides guidance for choosing
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FIG. 9. Numerical results for Ro 5 1 and Ri 5 6.25. (a) Source term of Du/Dt in Eq. (32), fUzy
2 N 2w. The real contour interval is 2 3 1027 m s23, (b) meridional velocity (y). The contour
interval is 0.5 m s21, (c) inertia wave modes of y , and (d) lee-wave mode of y .

the total integration time for all cases listed in Table 1.
Shutts and Gray (1994) used the same idea to study the
geostrophic adjustment process following deep convec-
tion.

5. Concluding remarks

In order to investigate the effects of critical levels on
two-dimensional, rotating, backsheared, hydrostatic
flow over an isolated mountain ridge, we have obtained
‘‘semianalytical’’ solutions and performed a large num-
ber of numerical experiments. Semianalytical means
that we obtain solutions analytically in terms of hyper-
geometric functions in Fourier space and then transform
them back to physical space numerically using an FFT
algorithm.

For a nonrotating system, comparison between our
semianalytical solutions and the analytical solutions of
Smith (1986) is fairly good. Moreover, the semianalyti-
cal solutions help in understanding the dynamics of or-
ographically forced NG flows. The solutions show that
the lower effective ICL plays a similar role as the CCL
does in a nonrotating flow, and that its height decreases
as Ro decreases.

Between the upper and lower effective ICLs, the dom-
inant wave mode is nonpropagating (evanescent). Our
semianalytical solutions show that the flow with mod-
erate and small Ro near the CCL behaves like a trapped
baroclinic lee wave, which was not emphasized by Wur-
tele et al. (1996). The baroclinic lee wave can be iden-
tified as an orographically forced neutral Eady wave
with a resonant wavenumber k* 5 f/NH. By including
the vertical advection of the basic wind (wUz) in the
QG model, we can analytically show that the baroclinic
lee-wave solutions are still valid for moderate Ri, say
Ri 5 10. The resonant wavenumber of the baroclinic
lee waves indicated by the semianalytical solutions is
approximately equal to f/NH. Also, the behavior of the
baroclinic lee waves near the mountain in our solutions
is more accurate than the analytical solutions for the
QG flow, which are based on the lee-wave theory and
can be only applied far downstream.

Although the semianalytical solutions reveal the local
behavior near the critical levels, the continuation con-
ditions across the critical levels cannot be applied easily.
Therefore, we use a simple numerical model to study
and document the flow regimes. From the numerical
simulations discussed in section 4, four flow regimes
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FIG. 10. (a), (b) Horizontal perturbation velocity; and (c), (d) energy budgets with same Ro 5 0.4, Ri 5 1, and Uot/
a 5 8; but with different Coriolis parameter and mountain half-width. Physical domain height is 20 km for both cases.
(a), (b) a 5 500 km and f 5 1024 s21; (c), (d) a 5 100 km and f 5 5 3 1024 s21. The scales are (a), (b) 1027; and
(c), (d) 5 3 1027.

TABLE 2. Regime diagram. For two-dimensional back-sheared flow
over an isolated mountain ridge on an f plane, four wave regimes are
identified: (I) inertia-gravity waves (IG); (II) combined inertia-gravity
waves and baroclinic lee waves (IG&BL); (III) combined evanescent
and baroclinic lee waves (E&BL); and (IV) transient waves (U);
where E is evanescent mode, IG is propagating inertia-gravity mode,
BL is baroclinic lee-wave mode, and U is unstable mode.

Ri 5 1 Ri 5 6.25 Ri 5 25 Ri 5 100

Ro 5 4
Ro 5 2
Ro 5 1
Ro 5 0.8
Ro 5 0.6
Ro 5 0.4
Ro 5 0.2

IG
IG
U
U
U
U
U

IG
IG

IG&BL
IG&BL
IG&BL
IG&BL
E&BL*

IG
IG
IG

IG&BL
IG&BL
IG&BL
E&BL

IG
IG
IG
IG
IG

IG&BL
E&BL

* Although we identify this as a stable case, the positive surface
drag oscillates with time.

are identified and listed in Table 2 for basic flows with
different Ro and Ri: (a) regime I for inertia-gravity
waves, (b) regime II for inertia-gravity waves and
trapped baroclinic lee waves, (c) regime III for evanes-
cent waves and trapped baroclinic lee waves, and (d)
regime IV for transient waves.

For a relatively large Ro ($2), the wave pattern be-
longs to regime I. The flow behaves like unsheared in-
ertia-gravity waves below the lower effective ICL, and
the dispersion of wave energy in the x direction can be
found because of the presence of the Coriolis force. As
Ri increases (i.e., as N increases), the wavenumber be-
low the lower effective ICL increases, too. Most of the
wave energy is absorbed below the lower effective ICL.
From an energy budget analysis, it is found that the
surface drag and the momentum flux make positive and
negative contributions, respectively, to the time varia-
tion of total perturbation energy. When these two terms
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cancel each other, a steady state can be reached. This
wave regime has been discussed by Wurtele et al.
(1996).

For moderate Ro (;2–0.8) and large Ri (;25–100),
flow patterns are similar to regime I. For moderate Ro

and moderate Ri (;6.25), or small Ro (;0.8–0.4) and
moderate (large) Ri ($25), the flow patterns are clas-
sified as regime II. The wave behaves like wave regime
I below the lower effective ICL. There exists a baro-
clinic lee-wave mode near the CCL. The wave energy
of the lee waves appears to be able to propagate through
the lower effective ICL. However, in fact, this is because
the lower ICL of the lee wave is below the surface.
There exists no lower ICL in the domain to absorb the
wave energy of the lee waves. This feature is quite
different from that of a nonrotating flow and is char-
acterized by the QG dynamics. The CCL for the lee
waves can be regarded as a steering level. Roughly
speaking, in this regime, the flow patterns look like a
combination of inertia–gravity waves and baroclinic lee
waves, which occur below the lower effective ICL and
near the CCL, respectively. Wurtele et al. (1996) did
not investigate this wave regime in their study. Although
the surface drag still makes a positive contribution, the
north–south heat flux does make a negative contribution.
The existence of baroclinic lee waves for moderate Ro

may indicate that Smith’s theory of lee cyclogenesis
based on a QG model may still be applied for flow with
moderate Ro. Our analysis for Ro 5 1 shows that near
the downslope of the mountain, both the warm advection
by the inertia-gravity wave mode and the adiabatic
warming also have made positive contribution to the lee
pressure trough, although the trough is still mainly
caused by horizontal warm advection of the baroclinic
lee-wave mode.

Regime III occurs for flows with very small Ro (#0.2)
and large Ri ($25). In these cases, very broad mountains
will damp out all but the QG wave modes. In the lower
level, the wave appears to be evanescent, which is sim-
ilar to the wave behavior for orographically forced QG
uniform flow. The wave behaves like a baroclinic lee
wave near the CCL, and the lee waves are nonpropa-
gating with its lower ICL below the surface. Surface
drag and heat flux transfer are the major source and sink
terms. For small and moderate Ro (#1) and small Ri

(#1), there exists no steady state. These flows are clas-
sified as regime IV. The energy budget analysis shows
that a NG baroclinic instability may exist in this regime,
because the north–south heat flux transfer has a positive
contribution for flows with small Ri where the QG the-
ory is invalid. As Ro decreases, the onset of this insta-
bility occurs sooner. In a subsequent paper, we will dis-
cuss this instability in detail and will show that this
instability can be identified as the the inertia critical-
layer instability found by Nakamura (1988).
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APPENDIX A

Governing Equations for Weakly NG Flows

The QG equation set with vertical advection included
in the x direction is

]U 1 ]p
w 5 fy 2 , (A1)

]z r ]xo

]y
U 5 2 fu, (A2)

]x

]u ]w
1 5 0, (A3)

]x ]z

1 ]p u
5 g , (A4)

r ]z uo o

2]u fu N uo oU 1 (2U y) 1 w 5 0. (A5)z]x g g

The above equation set is reduced to the semigeostroph-
ic system if we replace y by y g in Eq. (A2), and is
further reduced to the QG system if we neglected Uzw
in Eq. (A1). After a straightforward manipulation and
taking the Fourier transform, we may obtain

Uz2 2 2 2 2 2f ŵ 2 ( f 2 U k )ŵ 2 (k N )ŵ 5 0.zz zU

By assuming f 2 k U 2k2, the above equation reduces
to Eq. (11) in the text.

APPENDIX B

Radiation Condition for a Rotating Flow

Following Eliassen and Palm (1960), we can show
that the vertical energy flux [Eq. (7)] can be expressed as

2r U f ]ŵopw 5 1 2 Im ŵ* . (B1)
2 21 2 1 22k U k ]z

Below the lower ICL (viz., f 2/U 2k2 , 1), we may as-
sume a wavelike solution,

ŵ 5 Aeimz 1 Be2imz.

Substituting into (B1) yields

21 f m
2 2pw 5 r U 1 2 (|A| 2 |B| ).o 2 21 22 U k k

If both k and U are positive, the exp(imz) mode, which
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represents a wave with lines of constant phase tilted
upstream, transports energy upward, whereas a solution
of the form exp(2imz), which represents a wave with
phase lines titled downstream, transports wave energy
downward. However, if k is negative, the solutions
exp(imz) and exp(2imz) transport wave energy down-
ward and upward, respectively. Since U . 0 below the
lower ICL, we choose the modes whose horizontal and
vertical wavenumbers have the same sign to allow the
energy to propagate upward. Thus the radiation con-
dition can be applied in a two-dimensional Fourier
space.
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