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ABSTRACT

Four regimes are identified for two-dimensional, unstructured, nonrotating, continuously stratified, hydrostatic,
uniform Boussinesq flow over an isolated mountain ridge: (1) flow with neither wave breaking aloft nor upstream
blocking (F = 1.12, where F = U/Nh; U and N are upstream basic flow speed and Brunt—Viisili frequency,
respectively; and h is the mountain height), (II) flow with wave breaking aloft in the absence of upstream
blocking (0.9 < F =< 1.12), (III) flow with both wave breaking and upstream blocking, but where wave breaking
oceurs first (0.6 < F < 0.9), and (IV) flow with both wave breaking and upstream blocking, but where blocking
occurs first (0.3 < F < 0.6). In regime I, neither wave breaking nor upstream blocking occurs, but columnar
disturbance does exist. The basic flow structure resembles either linear or weakly nonlinezr mountain waves. It
is found that the columnar disturbance is independent of the wave breaking aloft. In regime II, an internal jump
forms at the downstream edge of the wave-breaking region, propagates downstream, and then becomes quasi-
stationary. The region of wave breaking also extends downward toward the lee slope. After the internal jump
travels farther downstream, a stationary mountain wave becomes established in the vicinity of the mountain
above the dividing streamline, which is induced by wave breaking. A high-drag state is predicted in this flow
regime. In addition, a vertically propagating hydrostatic gravity wave is generated by the propagating jump and
travels with it. Along the lee slope, a strong downslope wind develops. Static and Kelvin-Helmholtz instabilities
may occur locally in the region of wave breaking. The critical F' for wave breaking is about 1.12, which agrees
well with the value 1.18 found by Miles and Huppert. This study also found that the flow responses in this flow
regime, as well as in the other regimes, are similar for constant F.

In regime III, the downstream internal jump propagates downstream in the early stage, retrogresses in the
direction against the basic flow once blocking occurs, and then becomes quasi-stationary. The retrogression of
the downstream jump may be caused by the modification of the upstream boundary conditions. The layer depth
of blocked fluid is independent of F and h/a, where a is the mountain half-width. In regime TV, the internal
jump quickly becomes stationary over the lee slope once it forms. It is found that the presence of wave breaking
aloft is not necessary for upstream blocking to occur. A vertically propagating gravity wave is generated by the
upstream reversed flow and travels with it. The speed of the upstream reversed flow is proportional to h/a. The
surface drag increases abruptly from regime I to II, while it decreases gradually from regime II (III) to III (IV).
The surface drag is a function of h/a and is a minimum for h/a = 0.05 for constant F. The average dividing
streamline height generated by wave breaking is roughly 0.85x. (H,N/U = 5.34), and the level at which
overturning initially occurs is found to be about 4.4 in the high-drag state, where \. and H, are the dimensional
hydrostatic vertical wavelength and dividing streamline height, respectively. This indicates that the initial wave
overturning occurs at the level of the largest gradient of streamline deflection. It is found that nonlinearity tends
to accelerate the upslope flow, decelerate the flow near the mountain peak and top of the leeslope, and accelerate
the flow near the internal jump.
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1. Introduction

The response of a stably stratified flow over an iso-
lated mountain ridge has been studied extensively in
the last four decades (see Queney et al. 1960 and Smith
1979 for reviews). However, some phenomena, such
as wave breaking, upstream blocking, generation of se-
vere downslope winds, etc., are still not well under-
stood (see Baines 1987 and Smith 1989a for reviews).
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In one-layer hydraulic theory, there exist five flow re-
gimes: (a) supercritical flow with no hydraulic jumps,
(b) flow with both upstream and downstream propa-
gating jumps, (c) flow with upstream propagating jump
and downstream stationary jump, (d) completely
blocked flow, and (e) subcritical flow with no hydrau-
lic jumps (Long 1954, 1972; Houghton and Kasahara
1968). These flow regimes are determined by two pa-
rameters, namely, the shallow water Froude number
Fy= U/\/_é‘ﬁ and the nondimensional mountain height
h/H , where U and H are the upstream velocity and fluid
depth, respectively. However, the flow parameters in a
continuously stratified fluid are different. Three flow
parameters for a semi-infinite, continuously stratified
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fluid may be defined: U/Nh, h/a, and Na/U (Miles
and Huppert 1969), where N, h, and a are, respec-
tively, Brunt—Viisili frequency, mountain height, and
mountain half-width. However, only two of them are
independent, since the differential equation governing
the flow response is two-dimensional (Laprise and Pel-
tier 1989b). The nondimensional parameter U/Nh
(also denoted as F in this study) measures the degree
of linearity, h/a measures the steepness of flow stream-
lines, while Na/U measures the degree of hydrostat-
icity. Since the numerical model used in this study is
Boussinesq and hydrostatic, only one nondimensional
parameter is left. In this study we will use the first two
parameters (U/Nh and h/a) to construct our regime
diagram, although it is well known that the steady-state
response for unstructured, continuously stratified, hy-
drostatic flow over an isolated mountain ridge in the
absence of stagnation is controlled solely by the linear-
ity parameter U/Nh (Miles and Huppert 1969).

The flow may become stagnant in essentially two
regions: over the lee slope in the interior of the fluid
and along the upstream slope of the mountain. Since
the strongest part of the hydrostatic wave field occurs
directly above the mountain (e.g., see Queney et al.
1960), it is often assumed that stagnation also begins
aloft, rather than on the upstream slope (e.g., Smith
1989b). Stagnation over the lee slope is responsible for
wavebreaking, overturning, and the transition to a se-
vere downslope wind or high-drag state ( Clark and Pel-
tier 1977). Assuming that the upstream flow and
Brunt—Viisild frequency are uniform in the absence of
wave overturning aloft, Long (1953, 1955) was able
to solve the nonlinear steady-state problem analyti-
cally, for stratified flow of finite depth over an isolated
mountain ridge. Long’s solution advances our under-
standing of orographically forced flow considerably.
However, the constant upstream condition assumed by
Long may not necessarily be consistent with the flow
established naturally by transients, especially if block-
ing is involved (Garner 1995). Using results from nu-
merical modeling experiments for a wide range of U/
Nh of a stratified flow with finite depth, Lamb (1994)
was able to show that wave breaking occurs at ampli-
tudes significantly lower than Long’s model predicts.

Extending Long’s model to a semi-infinite plane,
Miles and Huppert (1969 ) found that the midlevel stag-
nation occurs at the critical value Nh/U = 0.85 (F
= U/Nh = 1.18) for two-dimensional, uniform, hy-
drostatic flow over a bell-shaped mountain. Solving a
nonhydrostatic version of Long’s model using the fully
nonlinear lower boundary condition, Laprise and Pel-
tier (1989b) showed that the critical steepening occurs
at a height close to 3/4 of hydrostatic wavelength, some-
what downstream of the obstacle’s crest. The mountain
height required to make the streamlines overturn in-
creases as the mountain width decreases and the flow
becomes less hydrostatic. They also found that the cel-
ebrated value of Miles and Huppert (1969) is valid
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only in the limit of very broad obstacles (Na/U > 1,
in the hydrostatic limit). Once wave overturning oc-
curs, local convection may be triggered since the flow
in this region is superadiabatic (Laprise and Peltier
1989a). Using a nested numerical model, Scinocca and
Peltier (1993, 1994) found that this type of local con-
vection is responsible for triggering the severe down-
slope wind, through a sequencial development. In the
first stage, local convection acts to neutralize the region
of overturned isentropes. During the next stage, a large-
amplitude stationary disturbance develops above the
lee slope of the topography. In time, small-scale sec-
ondary Kelvin—Helmholtz (K—H) (shear) instability
develops in local regions of enhanced shear associated
with flow perturbations caused by the large-amplitude
disturbance. In the final stage of development, these
modes of Kelvin—Helmholtz instability evolve to
larger a spatial scale and come to dominate the flow in
the mature windstorm state.

The second possible stagnation region is on the up-
slope of the mountain and occurs because the oncoming
flow at the surface level encounters a reversed pressure
gradient force that reduces its speed. Stagnation in two
dimensions is responsible for flow recirculation, while
stagnation in three dimensions is responsible for flow
splitting. Using a nonlinear hydraulic theory, Smith
(1985) predicted that low-level blocking will begin at
Nh/U = 0.985 ~ 1 in the presence of wave breaking.
The critical values of Nh/U associated with upstream
stagnation for uniform stratified flow past three-dimen-
sional obstacles have been studied numerically by
Smith and Gronas (1993) and experimentally by
Baines and Smith (1993). For two-dimensional strati-
fied flow over a Gaussian-shaped mountain in a nu-
merical model, Pierrechumbert and Wyman (1985)
found that the steady-state flow is well described by
Long’s model up to the point of wave overturning (Nh/
U < 0.75; F > 1.33). For Nh/U > 0.75 (F < 1.33),
upstream columnar disturbances (e.g., Baines 1987) of
finite amplitude are generated, whose amplitude is a
function of Nh/U. Upstream blocking occurs near a
Gaussian-shaped obstacle for Nh/U > 1.5 (F < 0.67)
and near a bell-shaped obstacle for Nh/U > 1.75 (F
< 0.57), but upstream propagation of this blocked fluid
is not observed until Nh/U = 2 (F < 0.5). Using a
tank experiment, Baines and Hoinka ( 1985) found that
upstream columnar disturbances occur for Nh/U > 0.5
(F < 2) in a flow over a bell-shaped mountain. This
threshold value is independent of obstacle shape and is
not dependent on midlevel wave overturning [ which is
not observed until Na/U = 1.5 (F < 0.67)]. Upstream
blocking is observed for 1.3 < Nh/U =< 2.2, the actual
value depending on the obstacle shape. For symmetric
obstacles, this value is approximately 2. Wave over-
turning at midlevels occurs for Nh/U > 1.5 (F
< 0.67). Due to the differences found in these studies,
we plan to construct a flow regime diagram using care-
fully designed numerical experiments for uniform, con-
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tinuously stratified, nonrotating, Boussinesq, hydro-
static flow over a bell-shaped mountain in order to gain
insight into the flow response. Recent tank experiments
reveal that there exists a lower (upper) critical F below
which wave breaking does not (does) occur for flow
over a three-dimensional obstacle (Castro and Snyder
1993 ). Therefore, it is also important to investigate the
existence of such a critical F for two-dimensional fluid,
orographically forced flow.

In studying the dynamics of severe downslope
winds, Smith (1985) developed a steady-state nonlin-
ear hydrostatic theory based on Long’s equation by as-
suming a dividing streamline beyond which the fluid is
essentially quiescent. Between the dividing streamline
and its constant upstream height (H,), there exists a
well-mixed turbulent or wave breaking region. Smith’s
theory predicts that resonance will occur when the non-
dimensional critical heights are in the range (1/2
+ 2n)m < NHy/U < (3/2 + 2n)m, depending on the
mountain height. This result is different from that pre-
dicted by the linear theory of Peltier and Clark (1983),
which indicates that resonance will occur when NH,/
U= (lf2+n)mforn=0,1,2, ---, where H, is the
height of the wave-induced critical level. The critical
heights predicted by Smith’s theory agree with numer-
ical simulations using prescribed critical levels per-
formed by several authors (e.g., Durran 1986; Bac-
meister and Pierrehumbert 1988). Using tank experi-
ments, Rottman and Smith (1989) found that a severe
downslope wind state generally exists for mountain
height greater than 0.985U/N, since the effective
mountain height is reduced.

In the numerical simulations of flow over obstacles,
numerical smoothing or diffusion is often adopted to
avoid the nonlinear aliasing caused by the leapfrog time
difference and centered spatial difference schemes. In
performing numerical experiments during the course of
this study, we have found that the onset of downstream
propagation of the internal hydraulic jump tends to be
delayed by the presence of numerical smoothing. This
is analogous to the finding of Richard et al. (1989), in
which surface friction tends to delay the onset of strong
surface winds and prevents the downstream propaga-
tion of the zone of maximum winds. The sensitivity of
the numerical results will be addressed in a separate
paper and is important since numerical smoothing has
been incorporated in most numerical models. In this
study, we keep the cumulative effects of numerical
smoothing constant.

The objectives of this study are to (a) document the
flow regimes for orographically forced, unstructured
(constant N), two-dimensional, nonrotating, stratified,
hydrostatic, and Boussinesq fluid flow, (b) investigate
the occurrence of wave breaking and upstream block-
ing as a function of F and h/a, and (c¢) study the de-
pendency of surface drag, height of the dividing
streamline, and time and height of initial wave breaking
on F and h/a. Emphasis will be placed on the time
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evolution of internal jumplike disturbances in flows
with low F. The numerical model used to perform the
simulations is described in section 2, tested against
Long’s weakly nonlinear theory, and compared with
Peltier and Clark’s numerical results (1983). The flow
behavior for different flow regimes and the associated
transient dynamics is presented in section 3. Conclud-
ing remarks are made in section 4.

2. Long’s nonlinear theory and the nonlinear
numerical model

Long’s two-dimensional nonlinear theory for flow
over an isolated mountain ridge is presented here to
provide guidance for cornparisons of the flow fields
simulated by the nonlinear numerical model. Both the
similarities and differences will be discussed below.

a. Long's nonlinear theory

The vertical displacement governing the steady-
state, nonlinear response of two-dimensional, semi-in-
finite, Boussinesq flow characterized by flow velocity
(U) and Brunt—Viisili frequency (N) in the absence
of wave overturning in the interior over a finite-ampli-
tude mountain may be written as (Long 1953)

Tlu"'ﬂ::"l’fzﬂ =0, ()

where 1 = N/U is the Scorer parameter of the basic
flow. Performing a Fourier transform of Eq. (1) yields

M. + (I* = k35 = 0. (2)

The nonlinear lower boundary condition for Eq. (1) is
given by

n(x,z) =h(x) at z=h(x). (3)
The general solution for Eq. (2) is simply

7 = nlk, 0)e™, for [>k, (4a)

n=17(k,0)e ™, for k>1 (4b)

where
=yi?—=k*, m=k*-I’.

Notice that the upper radiation and boundedness con-
ditions have been applied to Egs. (4a) and (4b), re-
spectively, while the linear lower boundary condition
has been applied at z = 0, instead of at z = h(x). The
vertical displacement in physical space is

1
n= Re[f Ak, 0)e™e* dk
0

+J'a(k,0)e"'":efk-'dk] (5)
/

and may be obtained numerically by using a fast Fou-
rier transform. Notice that the upward propagation en-
ergy requires sign(k) = sign(\). The solution to Eq.
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(2) using the nonlinear lower boundary condition Eq.
(3) can be obtained using an iterative method following
Laprise and Peltier (1989b ). Notice that in the hydro-
static limit, X in the first integral is replaced by 1 and
that the upper limit of the integration is extended to =,
while the second integral is dropped. In the following
discussion we use the hydrostatic version of the solu-
tion.

b. The nonlinear numerical model

The North Carolina State University Geophysical
Fluid Dynamics Model is based on the two-dimen-
sional nonlinear primitive equations governing oro-
graphically forced finite-amplitude perturbations in a
uniform, nonrotating, continuously stratified, Boussi-
nesq flow in the terrain-following coordinate o = z,(z
— z,)/(z, — z,), where z,(x) is the mountain geometry
and z, is the top of the computational domain. The hor-
izontal momentum equation, hydrostatic equation, in-
compressible continuity equation, and thermodynamic
energy equation are taken to be

du du
F+(U+“)“+"$
110p dp
+ [6x+600]+uu D,, (6)
1 dp _ 39
— 7
po o HE' (7
0 (z @ 'z
2o 2(0)-0 o
-g—e+(U+u)a—9+ai(9+6)+Vﬂ—Dﬂ, (9)
where
_(90\ _o—-z0z do Zr
GA(O.K):HZT_Z,-BI' M C)Z ZT_Z,;‘

A first-order closure formulation of the subgrid mixing
that depends on the relative strengths of stratification
and shear is adopted in this model (Lilly 1962; Durran
and Klemp 1982). The subgrid-scale effects are intro-
duced to the calculations through the terms D, and D:

D, = (KyA), + G(KyA), + H(KyB),;
Dy = [Ky(8, + GO,)],
+ G[K!{(Ht + Ggrv)]n + (KHHga)nv

A=u+ Gu, — Hw,; B = Hu, + w,+ Gw,,
112
Ky = k:AxAzldef][max(l - —ERj, 0)]
Ky
= Ni/def?, def?=A?+ B?,
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i J
Ni =g In(8 +0)].

In this study we assume that £k = 0.2]1 and K,/Ky, = 3
Some symbols are explained below, while others have
their conventional meanings:

u perturbation horizontal velocity

o sigma vertical velocity

p perturbation pressure

e perturbation potential temperature
U basic-state horizontal velocity

f(o) basic-state potential temperature

v(o) coefficient of Rayleigh friction and Newtonian
cooling

2o constant reference density

T, constant reference temperature

Ky eddy diffusivity of heat

eddy diffusivity of momentum
Ri Richardson number

N;  local Brunt— Viisila frequency

In deriving Eq. (6), the hydrostatic equation has been
used. The governing equations are discretized and nu-
merically integrated over a two-dimensional grid in (x,
o) space. The horizontal (vertical) derivatives are ap-
proximated by fourth- (second) order-centered differ-
ences. These schemes are identical to those employed
in the Cartesian model employed by Lin and Chun
(1991) and Lin et al. (1993). The time derivatives are
approximated through the leapfrog scheme, with the
exception of the first time step, which is computed by
forward differencing. Viscous effects are modeled
through the inclusion of Rayleigh friction and Newto-
nian cooling terms, which for all cases reported in this
paper are taken to be zero in the physical domain.

Within the terrain-following coordinate system, the
lower boundary condition is ¢ = 0. The upper radiation
boundary condition is approximated by placing an ar-
tificial viscous absorbing layer (Klemp and Lilly 1978)
on top of the physical domain. In this study we have
found that the flow behavior is sensitive to the depth
of sponge layer, especially when F is near the regime
boundary. This problem will be addressed in a com-
panion paper. After performing a large number of nu-
merical experiments, comparing the results against
Long’s theoretical solutions, and against the numerical
results of other authors, we found that very reliable
results can be obtained by using a total vertical domain
of 3.4 times the vertical wavelength (2rU/N), the up-
per half of which is the sponge layer. The lateral bound-
ary conditions are specified by the Orlanski (1976) ra-
diation condition. A five- (three-) point numerical
smoother is applied to every field at every time step to
damp 2Ax (2Ar) waves. The numerical smoothing co-
efficient has the value 1/256. In order to control the cu-
mulative effects of smoothing, the number of applica-
tions of the smoother is kept the same for all experi-
ments performed in this study.
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The time and horizontal grid intervals used in this
study are 5 s and 2 km, respectively. The horizontal
domain is 256 km. There are 81 vertical grid points,
with the interval depending on the vertical wavelength
of the case. In this way, any effects from the upper
boundary on the solution in the interior are identical.
An idealized bell-shaped mountain ridge is used
throughout this study:

hll

e

(10)

where A, and a are the mountain height and half-width,
respectively. The mountain is introduced impulsively
in the initially uniform flow.

To test the numerical model, we perform a simula-
tion and compare the results with Long’s nonlinear
steady-state solution for a semi-infinite domain. Figure
I shows the total potential temperature and horizontal
wind fields for a hydrostatic flow over the bell-shaped
mountain [ Eq. (10)] produced by numerical simulation
(Figs. la and 1b) and predicted by Long’s solution
(Figs. lc and 1d) at the nondimensional time Ut/a
= 100.8. The corresponding dimensional time is about
21.52 h. The mountain height—width aspect ratio is 0.1.
The linearity parameter ( U/Nh ) associated with the ba-
sic flow is 1.3 and, therefore, falls into the regime with
no wave breaking since this value is larger than the
critical value 1.18 predicted by Miles and Huppert
(1969). The corresponding dimensional parameters are
hy = 1 km, a = 10 km, U = 13 ms', and N
= 0.01 s~'. Long’s solution is obtained by solving the
hydrostatic version of Eq. (5) numerically using the
nonlinear lower boundary condition Eq. (3). The up-
stream phase tilt and development of the hydrostatic
mountain wave by Long’s theory are well simulated by
the numerical model. The slight difference between the
result from the numerical model and Long’s solution is
both numerical and physical. Numerical diffusion may
contribute to the formation of smoother isentropes in
the numerical model. In addition, the influence of the
upper boundary in the numerical model may also con-
tribute to the differences between the numerical and
theoretical results, especially for those cases near the
regime boundary, such as the present case. The model
is less sensitive to the influence of the lateral boundary
condition, as compared to the upper boundary condi-
tion and total depth of the vertical domain. The influ-
ence of the numerical schemes on the physical results
will be discussed in a companion paper. The upstream
flow can be permanently modified by the passage of an
upstream propagating columnar disturbance, which
may also be partly responsible for the differences be-
tween the numerical and theoretical results. Overall, the
numerical model is capable of simulating the basic fea-
tures of a stably stratified flow forced by an isolated
mountain ridge. The solution of Long’s nonhydrostatic
model (not shown) is almost identical to Long’s hy-
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FiG. 1. Potential temperature [(a) and (c)] and total horizontal ve-
locity fields [(b) and (d)] for a two-dimensional, continuously strat-
ified, nonrotating, uniform flow over a bell-shaped mountain at the
nondimensional time Utfa = 100.8 [(a) and (b)] and predicted by
Long’s steady-state hydrostatic solution [(c) and (d)]. The linearity
parameter (F' = U/Nh) and hydrostatic parameter (Na/U) associated
with the basic flow are 1.3 and 7.69, respectively. The corresponding
dimensional flow parameters are h = | km, a = 10 km, U = 13
ms Land N=001s".

drostatic model (Figs. 1c and 1d) since the hydrostatic
parameter (Na/U) for this particular case is 7.69,
which is smaller than those associated with all other
cases presented in this paper.

To test the capability of the numerical model to sim-
ulate a flow in the regime where F < 1.18, in which
an overturning layer exists, we run a case identical to
Peltier and Clark (1979). Figure 2 shows the total po-
tential temperature fields for a flow over a bell-shaped
mountain at the nondimensional times Ut/a = 8 and
11.2. The mountain height and width are 500 m and 3
km, respectively. The basic flow velocity and Brunt—
Viiisild frequency are 4 ms™' and 0.01 s~', respec-
tively. The linearity parameter U/Nh and hydrostaticity
parameter Na/U are 0.8 and 7.5, respectively. The mo-
del’s subgrid mixing is deactivated in the present case
for direct comparison with Peltier and Clark’s results.
Peltier and Clark (1979) also used a sponge layer to
simulate the upper boundary condition in their nonhy-
drostatic model. A region of wave overturning devel-
ops along the lee slope, and a standing mountain wave
develops for z = 2 km. The wave overturning region
extends downward toward the mountain and propa-
gates downstream at later times (not shown). In other
words, the results shown are not the true steady state.
These results do show, however, that the numerical
model is capable of simulating flow with F smaller than
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FIG. 2. Potential temperature fields for a two-dimensional, contin-
uously stratified, nonrotating, uniform, hydrostatic flow over a bell-
shaped mountain at the nondimensional times Ur/a = 8 and 11.2
produced by our hydrostatic model [(a) and (b)] and by Peltier and
Clark’s (1979) nonhydrostatic model [(c) and (d)]. The linearity pa-
rameter (U/Nh) and hydrostatic parameter (Na/l/) are (.8 and 7.5,
respectively. The corresponding flow parameters are U =4 ms ', N
=0.01s', and h, = 500 m.

the critical value. The results shown in Figs. 1 and 2
also suggest that the hydrostatic approximation is rea-
sonable for Na/U > 7.5, which is smaller than that used
in other studies; that is, Na/U > 10 (e.g., Laprise and
Peltier 1989b).

3. Flow regimes and transient dynamics

A large number of numerical experiments using the
numerical model described in the last section have been
performed for stratified, nonrotating, hydrostatic,
Boussinesq flow over an isolated two-dimensional bell-
shaped mountain ridge. The linearity parameter (U/
Nh) ranges from (0.3 to 1.3, while the mountain height—
width aspect ratio (h/a) ranges from 0.01 to 0.1. This
range of h/a corresponds to mountain height ranging
from & = 100 m to 1 km for a constant mountain half-
width of @ = 10 km. The nondimensional horizontal
model domain ranges from x = —12.8 to 12.8, which
corresponds to dimensional distances between —128 to
128 km. The nondimensional vertical domain is chosen
to be 3.4 times the hydrostatic vertical wavelength (A,
= 2w l//N). For convenience, the dimensional horizon-
tal and vertical distances are plotted on the figures, un-
less it is mentioned. However, the flow fields should
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be regarded as being fully nondimensionalized and can
therefore be compared directly with each other. A sum-
mary of the flow parameters associated with the nu-
merical experiments performed in this study are pre-
sented in Table 1. All flow fields produced by the nu-
merical model are shown at the same nondimensional
time, Ut/a = 50.4. This allows for direct comparisons
between different cases.

Notice that the dimensional simulation time is in-
versely proportional to i/a for constant F. This implies
that the number of applications of the numerical
smoother increases for smaller values of h/a as com-
pared to larger A/a if the smoothing coefficient is kept
the same. Our numerical experiments indicate that nu-
merical smoothing tends to inhibit the onset time of
midlevel wave overturning. Since most of the existing
numerical models used to address the two-dimensional
orographically flow problem have incorporated some
type of numerical smoothing in additional to subgrid
mixing, this problem will be addressed in more detail
in a separate paper. In this study, we reduce the number
of numerical smoothing applications for smaller h/a
(cases A, B, and C), so that the cumulative effects of
numerical diffusion are the same for all the cases sim-
ulated. For example, the dimensional simulation time
for case A13 is 10 times longer than that for case D13,
since the basic flow velocity is 10 times smaller. Thus,
numerical smoothing is applied at every 10 time steps
for case A13, rather than applied at every time step for
case D13,

Based on the nondimensional times for occurrence
of wave breaking and blocking, four separate flow re-
gimes may be identified (Fig. 3): (I) flow with neither
wave breaking aloft nor upstream blocking, (II) flow
with wave breaking aloft in the absence of upstream
blocking, (I1I) flow with both wave breaking aloft and
upstream blocking, but where wave breaking occurs
first, and (IV) flow with wave breaking aloft and up-
stream blocking, but where upstream blocking occurs

TasLE 1. Basic wind speeds (m s') used in the numerical
experiments. The linearity parameter F is defined as U/Nh. The half-
width of the bell-shaped mountain is denoted by a. The other
parameters are N = 0.01 s™'; a = 10 km; A = 100, 200, 500; and
1000 m for cases A, B, C, and D, respectively.

Case A B C D

F  ha 001 0.02 0.05 0.1
13 1.3 1.3 2.6 6.5 13.0
12 12 1.2 24 6.0 12.0
11 1.1 1.1 22 55 11,0
10 1.0 1.0 2.0 5.0 10.0
9 0.9 0.9 1.8 4.5 9.0
8 0.8 0.8 1.6 4.0 8.0
7 0.7 0.7 1.4 3.5 7.0
6 0.6 0.6 12 3.0 6.0
5 0.5 0.5 1.0 25 5.0
4 0.4 0.4 0.8 20 4.0
3 0.3 0.3 0.6 1.5 3.0
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FiG. 3. Regime diagram for two-dimensional, nonrotating, hydro-
static, continuously stratified uniform flow over a bell-shaped moun-
tain ridge. Four flow regimes are identified: (I) flow with neither wave
breaking aloft nor upstream blocking, (I) flow with wave breaking
aloft and no upstream blocking, (IIT) flow with both wave breaking
and upstream blocking, but where breaking occurs first, and (IV) flow
with wave breaking and upstream blocking, but where blocking oc-
curs first. The bold numbers denote the nondimensional times for
wave breaking, while the outlined numbers denote the nondimen-
sional times for upstream blocking.

first. The time of upstream blocking is defined as the
time at which the total horizontal velocity drops to zero
on the windward slope of the obstacle. The potential
temperature and total horizontal velocity fields for h/a
= 0.01, 0.02, 0.05, and 0.1 for 0.3 < F < 1.3 at Ut/a
= 50.4 are shown in Figs. 4 and 5, respectively.

a. Regime |

Two-dimensional, stratified, nonrotating, Boussi-
nesq fluid flow over an isolated mountain ridge in the
absence of wave breaking aloft and upstream blocking
has been studied extensively using both linear and non-
linear theories and nonlinear numerical models during
the last four decades. This type of flow occurs when F
is large and the fluid has enough kinetic energy to over-
come the potential barrier of the obstacle (e.g., Smith
1979). The linear steady-state solutions have been re-
viewed by Queney et al. (1960) and Smith (1979). The
initial-value problem for a uniform flow over a moun-
tain, which is impulsively set into motion at t = 0, has
been studied theoretically by Palm (1953).

In this flow regime, the basic flow structure is similar
to linear mountain waves except that steeper isentropes
form in some weakly nonlinear cases, such as when
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F = 1.2 and 1.3. The numerically simulated vertical
wavelengths are very close to those predicted by linear
theory and Long’s weakly nonlinear theory. The up-
stream phase tilt and vertical development of the sim-
ulated mountain waves, as found in linear mountain
waves, are well captured by the model. Therefore, we
present only the weakly nonlinear cases with F = 1.2
and 1.3. As demonstrated in the last section, the results
for case D13 (Fig. 1) compare well with the nonlinear
theoretical solutions predicted by Long’s model. In this
flow regime neither wave overturning nor upstream
blocking exists. The numerically simulated flow fields
obtained with our hydrostatic-Boussinesq model are al-
most identical for constant F, even though h/a ranges
an order of magnitude from 0.01 to 0.1 (Figs. 4 and
5). This is consistent with the findings of Long (1953,
1955) and Miles and Huppert (1969).

Figure 6 shows the time evolution of the nondimen-
sional total horizontal velocities (1 + u/U) at the sur-
face for cases D13 (F = 1.3), D10 (F = 1.0), D8 (F
= 0.8), and D5 (F = 0.5). The transient responses of
the flow are discussed along with Figs. 7 and 8, which
show the time evolution of the total potential temper-
ature and perturbation horizontal velocity fields at the
nondimensional times Ur/a = 12.6, 25.2, 37.8, and
50.4 for cases in the D category (Table 1). Cases with
the same F identified in the flow fields as flows with
neither wave breaking nor upstream blocking (Fig. 4)
exhibit an almost identical behavior, even though the
aspect ratio covers a relatively wide range, 0.01 < h/
a = 0.1. Two transient waves, which propagate both
upstream and downstream, can be detected at early
times (Ut/a = 12.6) from the time evolution of the
total horizontal velocity field at the surface (Fig. 6a,
denoted by waves 1 and ) and the vertical cross sec-
tion of the perturbation horizontal velocity field (Fig.
8). These two waves appear to be generated by the
impulsive introduction of the mountain into the uni-
form flow. The upstream propagating wave travels at a
slower speed than the downstream wave due to the ad-
vection effect of the basic wind.

The third upstream propagating wave (denoted by
wave 3 in Fig. 6a) appears to be more horizontally
oriented (case D13 for Ut/a = 12.6 and 25.2 in Fig.
8). This wave may be regarded as a columnar distur-
bance (e.g., Pierrehumbert and Wyman 1985; Baines
1987) that permanently alvers the upstream temperature
and horizontal velocity ficlds as it passes through the
fluid. Pierrehumbert and Wyman suggested that the co-
lumnar disturbance is excited by wave breaking above
the mountain top. Unlike that described in Pierrehum-
bert and Wyman (1985), it appears that this distur-
bance is also associated with the impulsive introduction
of the mountain and the use of open upstream boundary
condition in this numerical model. This result seems to
be consistent with the recent findings of Garner
(1995). This abrupt change of the lower surface in-
duces an infinite number of forcing frequencies. This



146

A B C D
1.39 — 2.78 =—————6.94 —— 43.89
1,08 FPPV———2.08 F————=5.20 F———H19.4!
= p — .
8.69 PV ——m1.39 e ——=3.47 = 6.94
—_—— — e
8.35 %a.w 1.73 %3.47
2.00 9.00 — 0.08 0.00
1.28 ———2.56 - 6.41 ~ 2.81
0.9 FP——r——1.R V——o4-80 F———-—9-%
.64 26 7 3.20 = 6.41
——— —_——
@2.32 .64 1.60 %E.E@
2.00 .00 — 2.00 9. B0
147 35 ——g——5.87 —— 1.74
— —a——
0.88 26 a4 .40 %’a.m
e =
8.59 R ——— — PR T ———— —— Ly
0.29 59 :$*Ju? %sz
0.00 .80 0.00 9. 00
1.07 14 ——— 5.34 0.68
.80 .60 4.00 8.81
0.53 .07 2.67 E 5.34
8.27 .53 1.33 2.67
2.08 .00 0.08 0.00
@.96 .92 a.89 9.61
0.72 44 E 3.68 E 7.21
.48 .96 2.48 4.80
2.24 .48 1.20 2.49
2.00 .0 0.00 @.60
8.85 .7 8.54
0.6 28 B2y
e
.43 .85 .7
0.09 .00 0.00
0.75 .49 s 7.47 ———
0.56 = =1
|
0.37 0.75 ———3.74
0.19 2.37 =1.87
0.00 =p.00 0.00
0.64 =1.28 r——":,_r—uﬁ'“ e
— e
0.48 2.96 ———/——4.80
0.32 2.64 =3.20
2.16 9.32 . 1.60
2.0 0.00 8.00
.53 = 1.07 $5.34 ————
0.4 /—=~———0.80 E———, ——4.00 —— -~
—— E——_—— e
9.27 7 =—=0.53 — T ——— o —
0.00 =0.00 0.00
@.43 .85 4.27
E = ——— »
9,32 —————=0.64 .
e |
I o —— | S
@.21 9.43 F——2 .14 e
2.00 0.00 0.90
9.49 T : @.80 T P 4,00 oo
1 E——
S —— ————
0.30 F—————|0.60 e ———13.00 =
——A————— e
0.20 BP/————=10.40 2,00
@.00 0.00 - 4 2.00 ‘
128 .-64. @. 64.128. -128.-64, 0, 64,128. -128.-64. 0. 64.128. -12B.-64. 0. 64.128
h/a --> 0.01 0.02 0.05 0.1

JOURNAL OF THE ATMOSPHERIC SCIENCES

0.7

0.6

0.5

0.4

0.3

-

F

FiG. 4. Potential temperature fields produced by the nonlinear hydrostatic numerical model at Ut/a = 50.4
except at Utfa = 12.6 for cases with F' = 0.3, which correspond to the cases listed in Table 1. Columns A,
B, C, and D show cases with A/a = 0.01, 0.02, 0.05, and 0.1, respectively. The F ranges from 0.3 (bottom)
to 1.3 (top). The entire dimensional computational domain from —128 to +128 km is plotted against
dimensional height (km). The nondimensional physical domain height is 1.7A..

VoL. 53, No. 1



1 January 1996

e o

= -

2 | s -8 s

a8 850 8 56 8 8 & /8 & - 8 8 8 -8

a2 S

a s

e 2 o

aa ©

S % 8 8 88 9 &8 8 O3 8 8 «©

L)

(4]}

=
4 ﬁi
CTTb 7 [N

LIN AND WANG

op =

48

YN
AN

DY)

.88
a.41
.94
.47

.08
.81

.61
.41
.20

.ee
.74

.81
.87
.94

.2e
.68

18.81
.34
.67

.eg ¢
.61

7.21
.B@
.40

=—0.00
.54

.41
.27
' .14
9.00
47
.60
.74
.87
.00

B e e e = =

.41
.8
.28
.68
.ea

o =

34
.00
.67
.33
0. 00

—IWI]‘-PI\Wlijlli
)

h/a --> 0.01

e D 86 B8 5 6 B 8 9 5 8 -0 & ©

.27
.20
.14
.87

0.02 0.05

.ea
.89

.00 |
.20
.80
.80

FiG. 5. As in Fig. 4 except for total horizontal velocity fields.

0.7

0.6

0.5

0.4

0.3

S

147



148

-64

128

X (km)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 53, No. |

50.4

12,61

37.81

25.24 "

12.64

LA 128

54

64

X (km)

FiG. 6. Time evolution of the nondimensional total horizontal velocities (1 + w/U) at the surface for
cases: (a) D13 (F = 1.3), (b) D10 (F = 1.0), (c) D8 (F = 0.8), and (d) D5 (F = 0.5). The nondimensional
contour intervals are (.04 for (a) and 0.2 for (b)—(d). Some contours are labeled using a smaller font.
Transient waves generated by the impulsive introduction of the mountain are denoted as 1, 2, and 3 using
a larger font. Wave 3 may be regarded as the columnar disturbance.

wave mode has a much lower frequency (w), which
lies at an angle sin ~'w/N to the horizontal (e.g., Turner
1973). When this disturbance propagates farther up-
stream, the horizontal wavelength increases, which
eventually approaches infinity as f — o. The asymptotic
solution as ¢ — o is that the upstream solutions are
periodic in z and independent of x (e.g., Bretherton
1967).

The horizontal phase speed (¢,,) and group velocity
(¢, associated with a columnar disturbance in a hy-
drostatic flow can be calculated from the dispersion
relationship, which yields
= ¢, = U — Nik,, (11)
where k. is the vertical wave number of the columnar
disturbance. In the present case the vertical wavelength
of the columnar disturbance is approximately 6 km, as
can be estimated from Fig. 8. This gives a value of
—345ms ' forc, and ¢, with U = 13 ms 'and N
= 0.01 s~'. This value is close to the simulated speed
of —4.95 m s~'. This type of columnar disturbance is
also generated in other flow regimes (Fig. 8). How-
ever, the columnar disturbance is much weaker than
the disturbance associated with upstream blocking in
regimes III and IV and, therefore, is more difficult to
detect.

Cpx

The present result is consistent with the finding of
Baines and Hoinka ( 1985), which showed that the up-
stream columnar disturbances are observed for Nh/U
> 0.5 (F < 2.0) in stratified flow over bell-shaped
mountains. Baines and Hoinka also showed that this
threshold value is, in general, a function of the moun-
tain geometry. For example, Pierrehumbert and Wy-
man (1985) found that it requires Nh/U > 0.75 (F
< 1.33) for the columnar disturbance to form in strat-
ified flow over a Gaussian-shaped mountain generated
by wave breaking above the lee slope. Our results show
that no wave breaking exists over the lee slope in re-
gime 1. This is different from their results. However, it
is consistent with the tank experiments performed by
Baines and Hoinka (1985).

b. Regime 11

When 0.9 = F = 1.12, there exists wave breaking
aloft in the absence of upstream blocking. An internal
jump is able to form over the lee slope and propagates
downstream in this flow regime (cases D11 and D10,
Fig. 7). In this study a jump is defined as the flow
response when there exists a region of wave overturn-
ing (i.e. U 4+ u = 0 aloft) where the isentrope becomes
vertical and is able to restore its upstream height level
downstream. The flow patterns are still similar for con-
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stant F' (Fig. 4); that is, they are similar for 0.01 < h/a
< 0.1. In this flow regime, no upstream blocking exists.
This is also examined by extending the simulation time
(not shown). After the internal jump travels farther
downstream, a stationary hydrostatic gravity wave be-
comes established near the mountain, where structure
is similar to linear or weakly nonlinear mountain waves
(Fig. 9a). A vertically propagating gravity wave is gen-
erated by the internal jump and travels downstream
with it (Figs. 5 and 8). This propagating gravity wave
may be regarded as analogous to that generated by a
propagating density current (Lin and Chun 1991).
Along the lee slope, a strong downslope wind develops
(Fig. 5), which is evident from the time evolution of
the total horizontal wind fields (Figs. 6 and 8).

Similar to regime I, the upstream influence is set up
by the upstream propagating columnar disturbance
(Fig. 8). When Ut/a =~ 12.6 in cases D10 and D11
(Fig. 7), the flow starts to steepen in the layer from 1.5
to 4 km over the lee slope. The gravity wave actually
breaks in this layer before Ut/a = 25.2. A jumplike
disturbance forms at the downstream edge of this wave-
breaking region, which is analogous to the hydraulic
jump in a shallow water system (Houghton and Kasa-
hara 1968). Notice that unlike conventional hydraulic
theory, no upstream propagating jumplike disturbance
(bore) is generated, although Pierrehumbert and Wy-
man (1985) proposed that the columnar disturbance is
analogous to the upstream propagating jump in the
shallow water system. However, the columnar distur-
bance in a stratified fluid is significantly weaker than
the downstream propagating internal jump. A region of
strong upward motion downstream of the lee slope is
associated with this jumplike disturbance, which is ver-
tically erect from the surface to a height of about 4 km
for case D10 (Fig. 9a). The maximum vertical velocity
of this jumplike disturbance at Ut/a = 50.4 is about 2
m s~'. In addition to this region of upward motion,
there exists another major region of upward motion
over the mountain peak, which is associated with the
stationary hydrostatic mountain wave. Once the jump
forms, it propagates downstream as time proceeds. The
propagation speed for case D10 is about 1.0 m s ' dur-
ing the early stages of the response (Fig. 6b). However,
the propagation speed becomes smaller at later times.
This downstream jump eventually becomes quasi-sta-
tionary (Fig. 6b). After the internal jump propagates
away from the mountain, the flow in the vicinity of the
mountain reaches a quasi-steady state, and the low-
level isentropes exhibit a waterfall-like profile.

The fluid decelerates in the region of wave breaking,
which occupies a layer from about 1.5 to 4 km for case
D10. This well-mixed region may be classified as a
dead region (Smith 1985), although the fluid particles
above this region are allowed to flow freely in the pres-
ent numerical model rather than remain stagnant as
in Smith’s theory. The local Richardson number
(N?/u?) is less (greater) than 0.25 in this wave break-
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ing region (elsewhere) at Ut/a = 50.4 (Fig. 9b). This
implies that there exist possible static and Kelvin—
Helmbholtz instabilities in the flow system, which is ev-
ident from the increase of total perturbation energy
over time (Fig. 9¢). The occurrence of Kelvin—Helm-
holtz instability has also been found by Smith (1991)
using a two-layer version of Long’s model and by Scin-
occa and Peltier (1993, 1994) using a nonhydrostatic
numerical model. Scinocca and Peltier found that the
local convection triggered by wave overturning is re-
sponsible for sequentially producing the severe down-
slope wind, that is, the development of a large-ampli-
tude stationary wave, small-scale Kelvin—Helmholtz
instability, and subsequent downstream expansion. The
instability primarily remains locally within the region
of wave breaking, as shown in Fig. 9b. The isentrope
located at approximately 4.9 km (case D10, Fig. 7)
may be regarded as the dividing streamline analogous
to that predicted by Smith (1985). Below this well-
mixed region is a region of strongly accelerated air near
the lee slope. This flow acceleration is responsible for
producing the strong downslope wind, which reaches
a velocity of 28 m s~' near the surface for this case.
Notice that this value is about three times the basic flow
speed. Above the dividing streamline, an upward prop-
agating internal gravity wave is present over the moun-
tain peak. The response aloft above the flow-induced
dividing streamline produced by wave breaking ap-
pears to be much less nonlinear than that below the
dividing streamline.

Figure 10 summarizes the critical linearity param-
eter (U/Nh) for wave breaking, as found in the pres-
ent study in addition to other studies. The critical
value is found to be ~1.33 for flow over a Gaussian
mountain (Pierrehumbert and Wyman 1985) and 0.67
for flow over a bell-shaped mountain (Baines and
Hoinka 1985). The higher value found in the numer-
ical simulations by Pierrehumbert and Wyman may be
explained by the stronger nonlinear effect induced by
the steeper slope of the Gaussian mountain and pos-
sibly some wave reflection from the top boundary
since the depth of the sponge layer used in their sim-
ulations may not be adequate. The significantly lower
value found by Baines and Hoinka’s tank experiments
may be due to the very high aspect ratio h/a (Smith
1989a) and a shorter simulation time. In addition, the
fluid systems in laboratory experiments (e.g., Baines
and Hoinka 1985; Castro and Snyder 1993 ) are non-
hydrostatic, which may also contribute to the differ-
ences. The present result (F = 1.12) compares very
well with that (F = 1.18) found by Miles and Huppert
(1969). The slight difference may be due to the slight
change in the upstream condition after the passage of
the columnar disturbance and the transient waves gen-
erated by the impulsive introduction of the mountain,
in addition to the numerical approximations used in
the model.
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¢. Regime I

When 0.6 < F < 0.9, there exists both wave break-
ing aloft and upstream blocking. In this flow regime,
the downstream internal jump propagates downstream
at early times and then retrogresses in the direction
against the basic flow at later times (Figs. 6¢, 7, and
8). Eventually, the internal jump becomes quasi-sta-
tionary. Unlike flow regime II, upstream blocking oc-
curs. Smith (1985) predicted that low-level blocking
will begin at Nh/U = 0.985 =~ 1 in the presence of
wave breaking over the mountain peak. Our result is
consistent with Smith’s prediction, although the critical
F for wave breaking is smaller (F = 0.9). Notice that
the critical Forude numbers for upstream blocking are
found to be 0.57 (Baines and Hoinka 1985) and 0.67
(Pierrehumbert and Wyman 1985). It appears that the
difference is partly due to the relatively short simula-
tion times and partly due to different mountain shapes
(e.g. Fig. 10). This can be seen by inspecting the block-
ing time (Fig. 3). Notice that most of the numerical
simulations in Pierrehumbert and Wyman are shown at
Ut/a = 25.2. This will bring the critical F for upstream
blocking to be about 0.8, which is much smaller than
what it is supposed to be, for bell-shaped mountains in
the present case. Similarly, this will happen for Gauss-
ian mountains, which are used by Pierrehumbert and
Wyman. The major differences in upstream blocking
time for different mountain aspect ratio (h/a) at F
= 0.8 and 0.9 may be due to truncation errors. Notice
that the dimensional simulation times for A cases are
10 time longer than D cases. This is evidenced by the
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Fig. 11. (a) At Urla = 25.2, dw/dr, (b) at Utla = 50.4, duldt, (¢)
at Utla = 25.2, p, and (d) at Utla = 50.4, p for case D8 (F = 0.8,
hla = (0.1).

fact that major discrepancies occur only at relatively
larger blocking times for low mountain aspect ratio,
that is, A and B cases.

Once blocking occurs, the downstream propagating
jump starts to retrogress, that is, propagate upstream.
This can be seen from the time evolution of the total
horizontal wind at the surface (Fig. 6¢), on the vertical
plane (Fig. 7), and in the potential temperature field
(Fig. 8). This retrogression appears to be due to the
reduction of the effective mountain height when up-
stream blocking occurs, since the jump travels slower
for flows with higher U/Nh (Figs. 7 and 8). We have
calculated du/0t at Ut/a = 25.2 and 50.4, which rep-
resents the imbalance between the inertial force, — (U
+ wu)du/dx, and the pressure gradient force, —(1/
Po)Op/dx. The results for case D8 (Figs. I1aand 11b)
indicate that the fluid is accelerating over the lee slope
behind the jump at Ut/a = 25.2 and decelerating near
the internal jump at Ut/a = 50.4. This deceleration is
due to a pressure gradient force that is larger than the
inertial force across the internal jump (—x direction)
as can be seen from Fig. 11d. Notice that du/dr < 0
over the upslope is responsible for the layer of decel-
eration and blocked fluid. This type of retrogression is
not present in a flow with no upstream blocking (re-
gime II), in which Ou/dt is always positive (case D10,
Figs. 12a and 12b). Similar to regime II, a stationary
mountain wave forms in the vicinity of the mountain,
and a vertically propagating hydrostatic gravity wave
is also generated and propagates along with the internal
jump (Figs. 4 and 5). The flow is dynamically unstable
in the region of wave breaking.
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FiG. 12. As in Fig. 11 except for case D10 (F = 1.0, h/a = 0.1).

Figure 5 indicates that the speed of upstream prop-
agating reversed flow is proportional to A/a. In addi-
tion, the depth of the blocked fluid layer is a function
of F (Fig. 12). The maximum layer depth of the re-
versed circulation occurs at x = —32 km throughout
the whole period 0 < Ut/a < 50.4. However, there are
some inaccuracies in this estimation since the region of
recirculation may occur in just a very narrow and shal-
low region over the upslope side of the topography,
such as in case D9 (Figs. 5 and 8). Notice that these
simulations are not at all in steady state. For example,
Fig. 6¢ indicates that if one were to integrate somewhat
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FiG. 13. The depth of blocked fluid vs F for cases A (filled square),
B (open square), C (filled diamond), and D (open diamond).
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longer, it appears that UJ would become negative. The
nondimensional depth (z,/H) of the blocked fluid is
about 0.425, which is independent of both F and h/a
(Fig. 13). The present result is similar to that of Baines
(1979), in which he found that z,/h = 0.5. However,
he found that blocking occurs only when F < 0.5. As
mentioned earlier, our numerical simulations show that
blocking occurs when F < 0.9. In addition, this result
differs from Weil et al. (1981) in which they found
that z,/h = 1 — 2F.

d. Regime IV

When 0.3 < F = (.6, the flow behavior is different
from that in regime III. Although both wave breaking
and upstream blocking occur in this flow regime, the
upstream blocking occurs earlier than the midlevel
wave breaking (Fig. 3). This result is different from
that predicted by Smith (1988, 1989b) in which he
found that the presence of wave breaking aloft is nec-
essary for upstream blocking to occur. The upslope
blocking in this flow regime occurs much earlier than
in regime I11. This may be due to a more rapid advance
of the collapsed density surfaces onto the upstream
slope. As mentioned in the introduction, Castro and
Snyder (1993) found that there exists a lower critical
F below which there is no wave breaking in a stratified
flow over a three-dimensional obstacle, in addition to
an upper critical F below which wave breaking does
occur. The difference between our results and those of
Castro and Snyder appear to be related to the fact that
our flow is constrained to be two-dimensional, while
their flow has full three-dimensionality. In other words,
the wave breaking would be delayed or even absent in
a three-dimensional flow, since the low-level flow is
allowed to go around the mountain (Smith 1988,
1989b).

The internal jump quickly becomes stationary over
the lee slope once it forms (Figs. 4, 5, and 6d). This
type of jumplike disturbance is analogous to the down-
stream stationary jump generated in a shallow water
system. However, unlike conventional hydraulic the-
ory, there is no upstream propagating jumplike distur-
bance (bore) generated. Once the upstream blocking
occurs, an internal gravity wave is produced and travels
upstream with the reversed flow (Fig. 5, case A7). No
significant strong wind develops over the lee slope.
Therefore, the downstream jump is not evident in the
time evolution of the total horizontal velocity at the
surface (Fig. 6d). The vertical velocity associated with
the jump (not shown ) is much weaker than those pro-
duced in regimes II and III. Again, the Richardson
numbers associated with Kelvin—Helmholtz instabil-
ity in the region of midlevel wave breaking are less
than 0.25.

e. Severe downslope winds

For the flow fields discussed above, some cases ex-
hibit severe downslope winds, such as in regimes IT and
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I1I. For example, the horizontal wind associated with
the downslope wind generated in case D10 is about
three times greater (28 m s ') than the basic-state flow
speed (10 ms'). Figure 14 shows the surface drag
produced by the flows for all cases shown in the regime
map (Fig. 3), which is nondimensionalized by (m/
4)pyNUR*. The surface drag increases abruptly from
regime I to regime II. For example, it increases from
1.86 for case D12 (F = 1.2) to 4.54 for case D11 (F
= 1.1) when h/a = 0.1. The surface drag decreases
gradually from regime II (III) to III (IV) when h/a
remains constant. The transition of the surface drag
from regime II (III) to III (IV) is rather smooth com-
pared to that from regime I to IL. For the present results
it is rather difficult to define a high-drag state since the
surface drag varies smoothly in Regimes II-1V. Figure
14 also depicts fairly small differences with changing
aspect ratio. In addition, the present results indicate that
a relatively high drag exists for Nh/U = 1.12 (F
= 1.12) (Fig. 14), which is very close to that found
by Rottman and Smith (1989 ) for Ni/U = 1 using tank
experiments.

For the response of a basic flow with critical level
and constant Brunt—Viisild frequency forced by a two-
dimensional mountain in a numerical model, Bacmeis-
ter and Pierrehumbert ( 1988 ) found that the high-drag
states conform well to the predictions of Smith (1985)
based on internal hydraulic analysis and cannot be ex-
plained in terms of linear resonance. Smith (1985) de-
fined the dividing streamline induced by wave break-
ing, to be distinguished from the dividing streamline
produced by blocking (e.g., Snyder et al. 1985), as the
particular streamline that originates at some level H,
above which only weak mountain waves are present,
with the fluid between the two dividing streamlines be-
ing well mixed. Nondimensional heights of the divid-

Drag

poonleonnQuarabeaen bonnelongnfones

U/ Nh

Fic. 14. Surface drags vs F. The surface drags are nondimension-
alized by (n/4)p,NUh*. Different curves represent different aspect
ratios.
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TasLE 2. Nondimensional initial overturning level (HN/U ).

Case A B C D

F ha 001 0.02 0.05 0.1
13 1.3 0.00 0.00 0.00 0.00
12 1.2 0.00 0.00 0.00 0.00
11 1.1 4.27 4.27 427 427
10 1.0 433 433 433 433
9 0.9 4.40 4.40 4.02 4.40
8 0.8 4.52 452 4.52 4.08
7 0.7 4.58 4.58 4.58 421
6 0.6 4.77 477 477 433
5 0.5 4.7 4.46 4.96 4.46
4 04 2.83 4.96 4.77 4.77
3 0.3 0.38 2.64 5.78 5.40

ing streamline ( H,;N/U) are estimated for the numeri-
cal experiments performed in this study for determining
the flow regimes. Unlike in theory (Smith 1985) or in
numerical experiments with an imposed zero-wind line
in the basic flow (Durran 1986; Durran and Klemp
1987; Bacmeister and Pierrehumbert 1988 ), it is rather
difficult to define a dividing streamline that is produced
naturally during the simulated evolution of the flow
itself. Therefore, the dividing streamline of wave
breaking shown in the present numerical results is de-
fined to be the isentrope that exhibits no jumplike be-
havior and below which there exists wave breaking and
mixing of the fluid. We find that the nondimensional
heights of the dividing streamline are almost indepen-
dent of both F and h/a (Fig. 4). For the cases per-
formed in this study the dividing streamline associated
with wave breaking has an average height of 0.85A.
(H;N/U = 5.34). Smith ( 1985, see his Fig. 5) predicts
that the nondimensional dividing streamline ( H,N/U)
increases almost linearly with Nh/U, whose values fall
in the range between n/2 and 37/2 for Nh/U < 1. It
is difficult to compare the present result with Smith’s
prediction because most of the cases in this study are
for Nh/U = 1.12, while Smith’s theory is valid only
for Nh/U < 1.

Clark and Peltier (1977) indicated that the initial
wave breaking begins near Nz/U = 3x/2 for a sym-
metric mountain and suggested that this result would
carry over to the final high-drag state. The analysis of
Smith (1985) suggested instead that this height is an
intrinsic property of the severe wind configuration.
Grimshaw and Smyth ( 1986 ) showed that the initiation
of a high-drag transitional flow begins with linear res-
onance. According to linear theory, the resonance oc-
curs at H)N/U = (12 + n)a,n = 1,2, 3, ---. In
solving a nonhydrostatic version of Long’s model with
the nonlinear lower boundary condition, Laprise and
Peltier (1989b) showed that the critical steepening oc-
curs at a height close to 3/4 of the hydrostatic wave-
length (27 U/N), that is, for HyN/U = 3n/2. To in-
vestigate this for a wider range of flow parameters, we
calculate the initial nondimensional overturning level
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(HyN/U) for all the cases shown in Fig. 3. The over-
turning level is defined to be the height at which the
total horizontal wind becomes negative. The results in-
dicate that the overturning level is about 4.4 (Table 2)
in regimes I1-1V, which is slightly lower than that pre-
dicted (37/2) by linear resonance theories (Clark and
Peltier 1984; Grimshaw and Smyth 1986) and Long’s
nonlinear model ( Laprise and Peltier 1989b ). Thus, the
initial wave overturning occurs at the level of the larg-
est gradient of streamline deflection. However, as dis-
cussed earlier, nonlinearity and Kelvin—Helmholtz in-
stability play essential rolzs in developing the internal
jump and severe downslope wind at later stages.

To investigate the importance of nonlinearity in the
development of the internal jump and severe down-
slope wind, we perform & corresponding linear simu-
lation for case D10. The results at Ut/a = 25.2 are
shown in Fig. 15. Comparing the potential temperature
and total horizontal velocity fields between these two
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case. The summation of the nonlinear terms, —udu/dx — wouldz,
from the linear and nonlinear simulations are shown in (e) and (f),
respectively.
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cases, we find that in the absence of nonlinear effects
(Figs. 15a—d) the internal jump is not able to develop
as far downstream as that for a nonlinear flow. It is
clear that nonlinearity will help steepen the wave. No-
tice that the individual nonlinear terms, —udu/0x and
—wdul/dz, do exhibit vertical wave structure (not
shown), but not their summation, since u and w fields
are out of phase by a half-wavelength. However, non-
linearity tends to accelerate the upslope flow, decelerate
the flow near the mountain top and along the upper part
of the leeslope, and accelerate the flow near the internal
jump (Fig. 15d). Thus, the upstream blocking pro-
duced in the linear flow (Fig. 15b) is diminished for
nonlinear flow (Fig. 15d). As shown by Scinocca and
Peltier (1993) using a nested grid nonlinear model, the
spatially growing modes of the K—H instability are re-
sponsible for the strong quasi-periodic surface gusts
observed by Neiman et al. (1988). However, the anal-
ysis of nonlinear terms in this study indicates that they
play an important role in accelerating the internal jump
downstream in early times (Figs. 15e and 15f). Notice
that the downstream acceleration due to nonlinearity is
located farther downstream at later times (not shown),
which is almost balanced by the pressure gradient
force.

4. Concluding remarks

A large number of numerical experiments are per-
formed for a semi-infinite, unstructured, two-dimen-
sional, hydrostatic, stratified fluid flow over an isolated
bell-shaped mountain in order to document the flow
regimes and to investigate the occurrence of wave
breaking and flow blocking based on the linearity pa-
rameter (F = U/Nh) and the mountain height—width
aspect ratio (h/a). The ranges of F and h/a vary from
0.3 to 1.3 and from 0.01 to 0.1, respectively. It is found
that the hydrostatic approximation is reasonable for
Na/U > 0.75. Four flow regimes are identified: (a)
flow with neither wave breaking aloft nor upstream
blocking (regime I), (b) flow with wave breaking aloft
in the absence of upstream blocking (regime II), (c)
flow with both wave breaking and upstream blocking,
but where wave breaking occurs first (regime III), and
(d) flow with both wave breaking and upstream block-
ing, but where upstream blocking occurs first (re-
gime [V).

In regime I (F > 1.12) neither wave breaking nor
upstream blocking exists. In this flow regime the basic
flow structure is similar to linear or weak nonlinear
mountain waves. The flow responses are independent
of h/a, in agreement with that found by Miles and Hup-
pert (1969), and compare well with Long’s semi-infi-
nite nonlinear solutions. The stationary mountain wave
tilts upstream and has a vertical wavelength close to
that predicted by linear theory. Several transient waves
form and propagate upstream, which appear to be gen-
erated by the impulsive introduction of the mountain
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into the uniform basic flow. One of these waves prop-
agates upstream at a much slower speed and has a rel-
atively large horizontal wavelength, and is defined as
a columnar disturbance. This columner disturbance is
much weaker in other flow regimes, compared with the
amplitude of the jumplike disturbances. Unlike Pierre-
humbert and Wyman (1985), the present results indi-
cate that the occurrence of the columnar disturbance is
independent of the midlevel wave breaking.

When 0.9 = F < 1.12 (regime II), wave breaking
occurs aloft in the absence of upstream blocking. The
region of wave breaking extends downward toward the
lee slope at later times. An internal jump forms at the
downstream edge of the wave breaking region and
propagates downstream in this flow regime. The jump
propagates downstream at a faster speed in the early
stage of the flow response and then becomes quasi-
stationary at later times. After the internal jump travels
farther downstream, a stationary mountain wave be-
comes established above the dividing streamline in-
duced by wave breaking, which exhibits characteristics
of linear or weakly nonlinear mountain waves. A high-
drag state is observed to exist in this flow regime. The
surface drag increases abruptly from regimes I to II. In
addition, a vertically propagating gravity wave is gen-
erated by the internal jump and travels downstream
with it. Along the lee slope, a strong downslope wind
develops. In the region above wave breaking, the Rich-
ardson number is less than 0.25. The total perturbation
energy increases almost linearly with time, which in-
dicates that the Kelvin—Helmbholtz instability remains
locally within the region of wave breaking. The nu-
merical simulations over long times indicate that the
critical F, which separates the regimes of flow with
neither wave breaking nor upstream blocking and flow
with midlevel wave breaking over the lee slope, is
about 1.12. This critical F for wave breaking is very
close to the value of 1.18 (Nh/U = 0.85) found by
Miles and Huppert (1969) but is different from the
value of (.67 found by the tank experiments of Baines
and Hoinka (1985). The slight difference between our
results and those of Miles and Huppert may be due to
the permanent modification of the upstream condition
after the passage of transient waves generated by the
impulsive introduction of the mountain and the ap-
proximations inherent in the numerical model. We also
find that the flow responses in this regime, as well as
in the other regimes, are similar when h/a varies and
F is held constant.

When 0.6 = F = 0.9 (regime III), there exists both
wave breaking aloft and upstream blocking, but where
the wave breaking occurs first. In this flow regime, the
internal jump propagates downstream during the early
stages of the flow response and then retrogresses in a
direction against the basic flow. Eventually, the jump
becomes quasi-stationary. The critical value of F = 0.9
for the onset of low-level blocking is smaller than the
value (0.985) found by Smith (1985) and is larger than
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that found by Baines and Hoinka (1985) and Pierre-
humbert and Wyman (1985). It appears that a rela-
tively short simulation time yields a lower critical F.
The retrogression of the downstream jump is explained
by the reduction in the effective mountain height once
blocking occurs, since the jump propagates at a slower
speed for flow with a higher F. This is shown by the
imbalance between the inertial and the pressure gradi-
ent force in the vicinity of the jump. Similar to regime
I, a stationary mountain wave forms above the divid-
ing streamline induced by wave breaking. A vertically
propagating hydrostatic gravity wave is also generated
by the propagating internal jump. In addition, the flow
is dynamically unstable in the region of wave breaking.
The depth (z,/h) of the blocked fluid layer is about
0.425 and is independent of F and h/a. This result is
similar to that of Baines (1979), for which he found
that z,/h = 0.5. Blocking occurs only when F < 0.5
for his cases. This result differs from Weil et al. (1981)
in which they found that z,/h =~ 1 — 2F. The speed of
the reversed flow is proportional to h/a.

When 0.3 < F < 0.6 (regime IV), upstream block-
ing occurs earlier than the midlevel wave breaking.
This result is different from that predicted by Smith
(1988, 1989b), in which he found that the presence of
wave breaking aloft is necessary for upstream blocking
to occur. The upstream blocking in this flow regime
occurs much earlier than that in regime III. This may
be due to a more rapid advance of the collapsed density
surfaces onto the upstream slope. In studying flow over
a three-dimensional obstacle, Castro and Snyder
(1993) found that there exists a lower critical F below
which there is no wave breaking, in addition to an up-
per critical F' under which wave breaking occurs. The
existence of wave breaking in our results may be due
to the assumption of two-dimensionality. In this flow
regime, the internal jump quickly becomes stationary
over the lee slope once it forms. An internal gravity
wave is generated by the reversed flow and travels up-
stream with it. This type of jumplike disturbance is
analogous to the downstream stationary jump gener-
ated in a shallow water system. However, no upstream
propagating jump forms. The Richardson numbers in
the region of wave breaking are less than 0.25. Notice
that the detection of wave breaking time at the regime
boundary III-IV may be improved by increasing the
model resolution. However, the decrease of the up-
stream blocking time is still faster than that of the wave-
breaking time for cases with constant h/a (Fig. 3).

For the flow fields presented in this study, some
cases exhibit severe downslope winds, such as those
flows in regimes II and III. The transition from regime
IT (IIT) to III (IV) is rather smooth, while it is abrupt
from regime I to II. The surface drag varies slightly
with h/a when F is held constant. The dividing stream-
line associated with wave breaking has an average
height of 0.85\. (H,N/U = 5.34). This value is slightly
higher than that (37/2) predicted by Clark and Peltier
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(1984) from numerical experiments and is also differ-
ent from that predicted by Smith’s theory (1985) in
which the nondimensional dividing streamline in-
creases almost linearly with N/ U and falls in the range
of /2 and 37/2 for Nh/U < 1. It is difficult to com-
pare the present result with Smith’s theory because
most of the cases presented in this study are for Nh/U
= 1.12, while Smith’s theory is valid only for Nh/U
=< |. The initial overturning level (H,N/U) is found to
be about 4.4 in the high-drag state, which indicates that
the initial wave overturning occurs at the level of the
largest linear wave disturbance. It is found that nonlin-
earity tends to accelerate the upslope flow, decelerate
the flow near the mountain top and along the upper part
of the leeslope, and accelerate the flow near the internal
jump.

In performing the numerical experiments, we have
found that the model results are sensitive to some nu-
merical settings—such as the numerical diffusion co-
efficients, height of the physical domain, depth of the
sponge layer that approxirnates the upper radiation con-
dition, etc.—when F is near the critical value. In par-
ticular, the impact of the upstream open boundary con-
dition on the flow regimes deserve further study. The
sensitivity of the numerically simulated results will be
investigated in a companion paper. In addition, this
type of study should be extended to a structured (lay-
ered ) atmosphere and a shear flow, since observations
indicate that strong downslope winds tend to occur
when the atmosphere has a multilayer structure (e.g.,
Klemp and Lilly 1975). The role of the wave-induced
critical level associated with wave breaking in affecting
the flow regimes should also be studied. A nonhydro-
static model may be needed for investigating the re-
sponses of flow over a steep mountain and also the
detailed structures of hydraulic jumps and transient ed-
dies, which may have a scale much smaller than the
mountain width.
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