
Meteorol. Atmos. Phys. 59, 153-172 (1996) 
Meteorology, 
and Atmospheric 

Physics 
�9 Springer-Verlag 1996 
Printed in Austria 

Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, U.S.A. 

Structures of Dynamically Unstable Shear Flows and their 
Implications for Shallow Internal Gravity Waves Part II: 
Nonlinear Response 

Y.-L. Lin 

With 9 Figures 

Received January 15, 1995 
Revised May 5, 1995 

Summary 

The nonlinear response of a dynamically unstable shear 
flow with critical level to an initial temperature anomaly 
is investigated using a nonlinear numerical model. Both 
nonconstant and constant shear profiles of the basic flow 
are considered. Effects of the solid lower boundary on the 
dynamically unstable, nonlinear flow are also studied. It 
is found that in a dynamically unstable, linear flow with 
a hyperbolic tangent wind profile, the updraft is tilted 
upshear. The result in consistent with that of a linear stability 
model (LC). The upshear tilt can be explained by the Orr 
mechanism (1907) and the energy argument proposed 
by LC. In a dynamically unstable, nonlinear flow, the 
updrafts produced by a sinusoidal initial temperature pertur- 
bation are stronger in the lower layer and are more com- 
pact and located further apart compared to the correspond- 
ing linear flow. In addition, the perturbed wave energy is 
slightly smaller than the linear case. It is found that the 
growth rate is smaller during the early stage and much larger 
during the later stage. For  a localized initial temperature 
perturbation in a dynamically unstable flow, a stronger 
updraft with two compensated downdrafts are produced. 
Gravity waves are produced in a dynamically stable flow 
with both a hyperbolic tangent wind profile and a linear 
wind profile. For  a linear shear flow with Richardson num- 
ber less than 1/4, the disturbance grows in the early stage 
and then decays algebraically at later times, similar to that 
found in other linear theoretical studies. The influence of the 
solid lower boundary is to suppress the shear instability in 
a nonlinear flow with a hyperbolic tangent wind profile of 
Ri < 1/4. 

1. Introduction 

The study of responses of a stably stratified shear 
flow with a critical level to an imposed thermal 
forcing helps explain several mesoscale phenom- 
ena, such as the generation of clear air turbulence 
(Maslowe, 1972), the onset and initial growth of 
moist convection (Chimonas et al., 1980), the gen- 
eration of internal gravity waves (Smith and Lin, 
1982; Lin and Groff, 1988; reviewed in Lin, 1994a, 
b), and moist convection associated with midlati- 
tude squall lines (Raymond, 1986; Rotunno et al., 
1988; Nicholls et al., 1988). Part I of this series of 
papers (Lin and Chun, 1993; denoted as LC here- 
after) has investigated the response of a dynami- 
cally unstable shear flow with a critical level to 
periodic forcing using a linear stability model. 
They found that in a dynamically unstable flow, 
the energy equation requires an upshear tilt of the 
perturbation streamfunction and vertical velocity 
where U z is positive. This allows the energy con- 
version from the basic shear to the growing per- 
turbation wave energy. In this way, the Reynolds 
stress is negatively correlated with the shear, as 
found by Orr (1907) and known as Orr mechan- 
ism. The linear stability model of Part I (LC) may 
be applied to investigate the early development of 
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a squall line if one regards the propagation of 
a midlatitude squall line as a tropospheric internal 
gravity wave in a CISK-like process (Raymond, 
1984; Cram et al., 1992). However, the disturbance 
in the real fluid system, such as the atmosphere 
and ocean, often grows from a localized, finite- 
amplitude perturbation. Thus, an initial value 
problem needs to be addressed in order to under- 
stand the development of the shallow internal 
gravity waves generated by an isolated, initial 
thermal forcing. 

Lin and Smith (1986) solved an initial-value 
problem analytically for a linear, stably stratified 
hydrostatic, uniform flow with a localized heat 
source. Nicholls et al. (1991b) also showed that 
the structure of the propagating disturbances is 
similar to gravity waves produced in two-dimen- 
sional numerical simulations of Florida convec- 
tion (Nicholls et al., 1991a). It is well recognized 
(Orr, 1907; Case, 1960a; Pedlosky, 1987) that the 
discrete normal modes do not form a complete set 
of the wave spectrum since an arbitrary initial 
condition cannot be expressed as a sum of discrete 
normal modes of suitably chosen amplitude due 
to the neglect of the continuous spectrum of neu- 
tral modes. This type of non-model time depen- 
dency is typically a complicated mixture of 
algebraic modulations in amplitude of an oscilla- 
tory signal of variable frequency and vertical 
wavelength (Farrell, 1984). Energy extracted from 
the basic flow during the initial development of 
non-modal (algebraic) growth is responsible for 
exciting the persistent normal mode during the 
later stage. Examples can be found in the Couette 
flow (Orr, 1907), internal waves in constant shear 
flow (Phillips, 1966), Rossby waves in constant 
shear flow (Yamagata, 1976), and baroclinic 
waves in the Eady model (Farrell, 1984). An asymp- 
totic solution for a stably stratified flow with 
constant shear to an initial perturbation has been 
solved analytically by Case (1960b). It is found 
that there are an infinite number of discrete eigen- 
values plus two continua. After a long time, an 
initial perturbation becomes a sum of oscillatory 
terms plus a term which vanishes as t -1/2 for 
Ri  > 1/4. I f R i  < 1/4, then there exists either one or 
zero discrete eigenvalue plus, again, two continua. 
The latter result is an asymptotic t" - 1/2, where 
t~ = x / 1 / 4  - Ri,  behavior for an initial perturba- 
tion. The effects of wind shear on the structure and 
propagation of gravity waves have also been dis- 

cussed by Lindzen and Tung (1976), Tripoli and 
Cotton (1989a, b), Crook (1988) and Schmidt and 
Cotton (1990) among others. In this study, we are 
particularly interested in the time evolution of 
wave energy and the nonlinear response in a dy- 
namically unstable atmosphere with a critical 
level to an initial thermal forcing. 

The flow near the critical level in a quasi-steady 
system is highly nonlinear since a small perturba- 
tion in the horizontal velocity field will easily 
exceed the basic horizontal velocity near the criti- 
cal level in the reference frame moving with the 
basic flow. Using a nonlinear numerical model, 
Breeding (1971) showed that a significant amount 
of wave energy can be reflected from the critical 
level for a relatively small value of Richardson 
number (Ri < 2.0), while the response is similar to 
that of the linear flow for a large Richardson 
number (Ri>2.0). The theoretical study of 
Stewartson (1981) with weakly nonlinear effects 
included in the critical layer showed that the 
problem is extremely complicated and much re- 
mains to be done. An extensive review of linear 
and weakly nonlinear flows with critical level can 
be found in Maslowe (1986) and Lindzen (1988). 
According to the linear theory of Part I (LC), the 
upshear tilt of updrafts and streamfunction results 
from the extaction of wave energy associated with 
the basic shear flow in a dynamically unstable 
flow. It is essential to investigate the flow struc- 
ture, energy budget, and momentum flux in the 
nonlinear regime. 

In the real atmosphere, the energy generated by 
either an initial disturbance or a steady thermal or 
mechanical forcing should be allowed to radiate 
out. In linear stability models, such as that devel- 
oped in Part I (LC), a rigid top boundary is often 
used. This type of rigid upper boundary has also 
been adopted by Breeding (1971) in a nonlinear 
numerical model in studying the flow response to 
an imposed vorticity source existing at the upper 
boundary. In this way, the energy generated from 
the lower layer will be reflected from the upper 
boundary back to the physical domain and 
should be considered unrealistic. Thus, an upper 
boundary condition which allows the energy to 
propagate away from the physical domain, such 
as a sponge layer (Klemp and Lilly, 1978) or 
a radiation boundary condition (Klemp and 
Durran, 1983; Bougeault, 1983), is needed. Wave 
reflection from the rigid lower boundary in a uni- 
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form flow over a prescribed heat source has been 
shown in several studies (e.g., Smith and Lin, 1982; 
Lin and Smith, 1986; Raymond, 1986; Bretherton, 
1988). The influence of the presence and position 
of solid boundaries on the stability of an inviscid, 
stratified shear flow, with a hyperbolic tangent 
velocity profile and an exponentially decreasing 
density, was investigated by Einaudi and Lalas 
(1976). The presence of solid boundaries was 
shown to stabilize short wavelength and destabilize 
long wavelength. In this study, we will investigate 
the influence of the position of the critical level, 
where in the initial temperature perturbation is 
located, on the growth rate in a dynamically 
unstable atmosphere. 

The purpose of this study is to investigate the 
flow response of a stably stratified shear flow with 
critical level to an initial temperature anomaly 
using a nonlinear numerical model. The two- 
dimensional nonlinear model will be presented 
briefly in Section 2. The results will be discussed in 
Section 3. The nonlinear flow responses to a peri- 
odic temperature perturbation in a dynamically 
unstable flow will be compared with the results of 
linear modeling simulations and the linear stabil- 
ity model of Part I (LC). In this way, the nonlinear 
effects can be studied thoroughly. Both the flow 
field, energy budget, and momentum flux will be 
presented and discussed. Then the flow response 
of a flow with a constant shear to an initial 
temperature anomaly will be investigated. Flow 
with both large and small Richardson numbers 
will be discussed. At last, the lower boundary 
effects on the flow response will be studied. Con- 
cluding remarks are made in the last section. 

2. The Nonlinear Numerical Model 

In this two-dimensional nonlinear numerical 
model, we consider the following horizontal mo- 
mentum equation, hydrostatic equation, incom- 
pressible continuity equation, and thermo- 
dynamic equation in a nonrotating, Boussinesq 
fluid, 

0u c?u ( c3u) Uz+  

1 3p 
- v u ,  (1) 

Po Ox 

1 @ 0 
Po 9z - g 0o' (2) 

•u c~w 
+ = o, (3) 

80 ~0 ( ~0) Oo 
+u)Ux+w | =c- o q-v~ ( 4 )  & 

where U(z) and O (z) denote the wind velocity and 
the potential temperature of the basic flow, q the 
diabatic heating per unit mass, v the coefficient of 
Rayleigh friction and Newtonian cooling, and P0, 
0 o, and To are constant reference values. Other 
symbols have their usual meanings. The flow 
variables are separated into basic and perturba- 
tion parts which are represented by upper and 
lower cases, respectively. In this study, the Brunt- 
Vaisala frequency, N 2 =  (g/Oo)(~z, is assumed to 
be constant with height except in the sponge layer 
(10-15 kin) and the diabatic forcing (q) is set to 
z e r o .  

The major features of numerical schemes used 
to solve the above system may be briefly sum- 
marized in the following: 

(i) Leapfrog scheme in time. 
(ii) Fourth-order central spatial differencing in 

horizontal. 
(iii) Second-order central spatial differencing in 

vertical. 
(iv) Radiation condition at lateral boundaries 

(Orlanski, 1976). 
(v) Sponge layer on top of the upper boundary of 

the physical domain (Klemp and Lilly, 1978). 
(vi) Fourth-order diffusion or numerical smoother. 

In the model calculation, Eqs. (1) and (4) are 
used to predict the values of u and 0, respectively, 
for the next time step from the present and last 
time steps. Equation (3) is then integrated upward 
to obtain the vertical velocity with the lower 
boundary conditon specified. Meanwhile, the 
pressure field is obtained by integrating the hy- 
drostatic equation, Eq. (2), downward. The upper 
radiation boundary condition is simulated by 
a sponge layer within which the coefficient of 
Rayleigh friction and Newtonian cooling is in- 
creased from 0 to 5 x 10-4s -1 at the top of the 
model domain according to the sine square func- 
tion. A free-slip boundary condition is applied at 
the lower flat surface. This model has been adop- 
ted by Lin and Chun (1991) and Linet  al. (1993) 
for studying the generation mechanism of density 
currents in a shear flow with critical level over 
a prescribed cooling region. A more detailed 
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Table 1. Summary of Numerical Experiments 

Case 1A 1B 1C 1E 2A 2C 2D 3A 
Figure No. 1 2 3 4 5 6 7 8 
Nonlinearity no yes yes yes yes yes yes yes 
0 i (.3 K) periodic periodic box box box box box box 
Wind Profile tanh tanh tanh tanh linear linear linear tanh 
z i (kin) 5 5 5 5 5 2 2 2 
z 1 4 4 4 4 4 1 1 1 
z 2 6 6 6 6 6 3 3 3 
N(s- 1) .00237 .00237 .00237 .01 .00168 .00237 .00237 .00237 
Shear (s- 2) .0075 .0075 .0075 .0075 .0053 .0053 .0053 .0075 
(shear layer-km) (3 7) (3-7) (3-7) (3-7) (3-7) (0-4) (0-2) (0-4) 
Ri 0.1 0.1 0.1 1.8 0.1 0.2 0.2 0.1 
Shear yes yes yes no no no no very weak 
Instability 

* Other flow parameters: U o = 15 ms-  i, h = 2 km, b -- 25 kin. Nincreases linearly to 0.0237 s-  ~ at 15 km from the value at I0 km. 

description of the model is given in these two 
papers and in Weglarz (1994). 

The vertical model domain is 15kin and the 
vertical grid interval is 100 m for all cases. The 
sponge layer extends from 10 to 15 kin. The hori- 
zontal domain is 200 km and the horizontal grid 
interval is 5 kin. The time step used in all simula- 
tions is 5 s. The initial temperature anomaly is 
prescribed in the vicinity of the critical level either 
as a periodic function in the horizontal or as 
a warm bubble with a maximum magnitude of 
0.3 K. The structures of these initial temperature 
anomalies will be described in more detail along 
with the discussions. 

The basic wind has either a hyperbolic tan- 
gent profile or a constant shear in the whole 
layer or in a shallow layer, which are expressed 
either by 

U(z)=  Uotanh  ~ , (5) 

or  

g(z)  = - U o + Uzz, (6) 

where z i is the wind reversal level (critical level), 
h a vertical scale over which the wind shear is 
large, U o the basic wind speed at the surface, and 
U~ the constant wind shear. With a positive Uo, 
the basic wind blows from right to left in the lower 
layer (z <~ z~ or z <~ Uo/U~) and reverses its direc- 
tion in the upper layer. Notice that the critical 
level defined in this study is based on the basic 
wind velocity. 

3. Results 

The response of a stratified flow with a hyperbolic 
tangent vertical shear to an initial temperature 
perturbation will be presented in Section 3.1. 
Flows with both small and large Richardson 
numbers will be studied. The upshear tilt of the 
updraft and the nonlinear effects will be discussed. 
The response of a flow with a constant shear will 
be investigated in Section 3.2. Both deep shear 
and shallow shear will be considered. In Sec- 
tion 3.3, the influence of the solid lower boundary 
on the flow stability will be presented. The pa- 
rameters of these experiments are summarized in 
Table 1. 

3.1 Nonlinear Effects 

In order to investigate the nonlinear effects, we 
perform one linear numerical simulation (Case 1A) 
of an inviscid flow with a small Richardson number 
(Ri < 1/4) and a hyperbolic tangent wind profile 
as described by Eq.(5) with U 0 =  15ms -I ,  
z i ---5 kin, and h = 2 kin. The Brunt-Vaisala fre- 
quency is assumed to be 0.00237 s- 1 in the physi- 
cal domain (0 ~< z ~< 10 kin) and increased linearly 
to 0.0237s -1 at the top of the sponge layer 
(10 < z ~< 15kin). Since the shear is concentrated 
in the layer of z i - h  and zi + h, the Richardson 
number at z~ is roughly equal to (Nh/Uo) 2 = 0.1. 
The nonlinear terms of Eqs. (1)-(4) are deac- 
tivated in this experiment. In this way, it is easier 
to isolate the nonlinear effects and compare with 
the results of linear stability model of LC. 



Structures of Dynamically Unstable Shear Flows 157 

Detailed quantitative comparison is impossible 
because the initial condition is not assumed in 
the linear stability model. Thus, we will make only 
qualitative comparisons. TEe initial temperature 
perturbation is assumed to have a periodic tem- 
perature anomaly as 

. (2 x5 (7) O,=~ioSm~-~-]sin[(z _z l ) j ,  

where 0~o and b are set to be 0.3 K and 25 kin, 
respectively. 

Figure 1 shows the vertical velocity, perturbation 
horizontal velocity, perturbation pressure, per- 
turbation potential temperature, total stream- 
fmmtion, momentum flux, and energy budget 
after 2 h for this control case (Case 1A). The initial 
temperature perturbation is shown in Fig. lh. The 
vertical velocity (Fig. la) shows an upshear phase 
tilt which is required by the energy equation for 
a growing disturbance in a shear unstable flow 
(Orr mechanism) as also shown in LC. Near the 
tropopause (10 kin), the phase tilts upstream (left) 
with height. This feature is different from that of 
LC because a radiation condition, approximated 
by a sponge layer, is used in the present model. 
The addition of the sponge layer allows the dis- 
turbance generated from the physical domain 
(z ~ 10kin) to propagate upward. The negative 
momentum flux near the tropopause (Fig. If) in- 
deed indicates that an upward energy propaga- 
tion according to the Eliassen and Palm theorem 
(1960). The perturbation horizontal velocity and 
potential temperature fields (Figs. lb and c) show 
that both the maxima and minima are located at 
about 5 km. The actual critical level, based on the 
sum of basic and perturbation wind velocity, is 
displaced in the layer of 4 to 6 kin. The u field 
exhibits a downshear tilt in the shear layer (4- 
6 km), although it is tilted upshear in the whole 
layer. The vertical velocity and the perturbation 
horizontal velocity are out of phase by re/2 in the 
lower uniform layer and by rc in the shear layer 
and upper uniform layer. As explained in LC, the 
perturbation horizontal velocity is dominated by 
the local growth (~u/&) in the shear layer and by 
the horizontal advection (UOu/~x) in the lower 
uniform layer in relation to the vertical velocity, 
according to the horizontal momentum equation. 
However, the phase difference (re) in the upper 
uniform layer is different from that in the stability 
model (7r/2, LC) since the wave energy is able to 

propagate out of the upper boundary in the pres- 
ent model. The phase difference (rc) between u and 
w fields in this upper layer is required by the upper 
radiation boundary condition. The radiation of 
wave energy is also evidenced by the negative 
vertical momentum flux (Fig. lg). Notice that 
the vertical momentum flux is negatively pro- 
portional to the vertical energy flux (Eliassen 
and Palm, 1960). The vertical orientation in the 
lowest 2km is due to the reflection from the 
surface. 

In the shear layer, there exists a downshear tilt 
tbr both u and 0 fields. These results are similar to 
the linear stability model results of LC. It is 
suggested by LC that the downshear tilt of the 
u and 0 fields in the shear layer is due to the local 
growth (Ou/& and ~O/&) in response to the vertical 
motion, according to the horizontal momentum 
equation and the thermodynamic equation, re- 
spectively. Both the u and 0 fields are also tilted 
upstream near the tropopause (Figs. lb and c). 
Similar to that of LC, the pressure field has an 
upshear tilt in the layer and is out of phase from 
the vertical velocity by 7r/2 in the shear layer and 
lower uniform layer (Fig. ld). This pressure gradi- 
ent force is responsible for the overturning in the 
upper layer and the feeding of downdraft air from 
the fi'ont for air parcels flowing in from the right 
side of the lower layer (Fig. le; LC). The potential 
temperature perturbation is produced by the 
adiabatic warming and cooling. The cold (warm) 
region is located at the region of upward (down- 
ward) motion where the initial temperature per- 
turbation is positive (negative). The linear 
stability model of Part I (LC) may be applied to 
investigate the early development of a squall line if 
one regards the propagation of a midlatitude 
squall line as a tropospheric internal gravity wave 
in a CISK-like process (LC). 

As derived by LC, the energy equation is 

f Edz=-po.v vz"wez+kcpr-Z OoJ 
dz  + pw(O) - pw(z ), (8) 

where the total energy is made up by the kinetic 
wave energy (po/2)u 2 and the available potential 
energy @0/2) [gO/OoN] 2. Notice that the w 2 term is 
ignored in the kinetic wave energy in a hydrostatic 
atmosphere. The vertical momentum flux is nega- 
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Fig. 1, (Case 1A). (a) Vertical veloc- 
ity (ms- 1), (b) perturbation horizon- 
tal velocity (ms-1), (c) perturbation 
potential temperature (K), (d) pertur- 
bation pressure (Pa), (e) total stream- 
function, (f) vertical momentum flux, 
(g) wave energy budget, and (h) initial 
perturbation temperature for a lin- 
ear, unstable flow after 2 h. The initial 
temperature perturbation is de- 
scribed in Eq. (7) with 0io = 0.3 K and 
b = 25 kin. The initial temperature 
anomaly is confined in the layer of 
z l = 4 k m  to % = 6 k m .  The wind 
profile is described by a tanh curve 
and given by Eq.(5) with U o = 
15ms- l ,  z i = 5 k m ,  and h = 2 k m .  
Other flow parameters used are N = 
0.00237s -1, and 0io=0.3K. The 
Brunt-Vaisala frequency increases 
linearly to 0.0237s -~ at z = 15kin 
from z =  10kin. The Richardson 
number near z~ is about 0.1. The total 
perturbation wave energy, available 
potential energy, and kinetic energy 
are denoted by T, P, and K, respect- 
ively. There are three time steps de- 
picted in the momentum flux profiles. 
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tive in the whole domain (Fig. 1I), which provides 
a positive secondary energy source to the shear 
unstable flow since U~ is positive. The vertical 
momentum flux grows much more rapidly in the 
shear layer due to the shear instability (Eq. (8)). 
Unlike the stability model of LC, the vertical 
energy flux at the top boundary (zr) is positive 
since the vertical momentum flux is negative 
there, according to the Eliassen and Palm 
theorem. 

Figure lg shows the time evolutions of total 
perturbation wave energy (T), kinetic energy (K), 
and potential energy (P). Unlike the linear stabil- 
ity model, the initial available potential energy is 
not zero since the disturbance is triggered by the 
initial temperature anomaly. The initial kinetic 
energy is zero since there is no initial motion 
assumed. The growth of the disturbance is very 
different from the linear stability model of LC. 
Evidently, there exist two separate stages of wave 
development, a very slow growth during the early 
stage and a rapid growth during the later stage. As 
mentioned in the introduction, the slow (alge- 
braic) growth during the early stage is due to the 
continuous spectrum of wave modes, which is 
responsible for exciting the exponential (modal) 
growth at later times. 

In order to investigate the nonlinear effects, we 
perform a simulation similar to Case 1A except 
with the nonlinearity activated (Fig. 2, Case 1B). 
The maximum vertical velocity is about 0.72 ms - 1, 
which is about the same as that of Case 1A. 
However, the vertical motion is stronger in the 
lower layer below 5 km than that in the upper 
layer. In addition, the updrafts are more compact 
and located further apart compared 1!o the linear 
case. This may be explained by the nonlinear 
effects. For example, let us consider the time 
evolution of u at (x, z) = (10, 1 km) in Fig. 1. Since 
Ou/& oc -uOu/c~x, u will increase with time if the 
nonlinear horizontal advection term (i.e. - uc?u/c~x) 
is included in the simulation. Similarly, u will 
decrease at (x, z) = (30, l km). Therefore, the con- 
vergence (-~?u/c~x) at (x,z)= (20, 1 km) will in- 
crease at a later time. Due to mass continuity, the 
updraft will strengthen. This may have some im- 
pact on the later development of the disturbance, 
especially when the atmosphere is moist. The 
perturbations in the horizontal velocity, potential 
temperature, pressure, and vorticity fields are 
weaker than the linear case. In the shear layer, the 

maxima and minima of the u and 0 fields are 
colocated exactly at the critical level (Figs. 2b and 
c). This can be seen from that the phase coinci- 
dence of the maxima and minima ofu and 0 fields. 
The vertical momentum flux shows a similar pro- 
file as the linear case, but with a smaller value. 
This indicates that the vertical velocity is less in 
phase with the horizontal velocity in a nonlinear 
flow. The time evolution of the wave energy indi- 
cates that the growth of the disturbance is more 
rapid at earlier stages compared to the linear 
response, but slows down at later stages. 

Since the initial disturbance in the real atmos- 
phere is often observed to be localized, we perform 
an experiment (Case 1C) with an initial isolated 
temperature perturbation located in the box of 
x = - 15 to 1 5 k m a n d z  = - 4 t o  6km. Themag- 
nitude of the temperature perturbation is 0.3 K, 
same as previous cases. Figure 3 shows the non- 
linear response after 2 h. In general, the results are 
similar to one cell of the flow in Case iB. Again, 
the vertical velocity (Fig. 3a) shows an upshear tilt 
with two regions of weaker downdraft on both left 
and right sides. The updraft is stronger in the 
lower layer below the critical level. Notice that the 
downdrafts are not produced by the initial cold 
air as in cases with periodic temperature perturba- 
tions. Instead, these are compensating downdrafts 
accompanying the updraft, which are required by 
the mass continuity. One of the reasons for 
examining the response to a localized disturbance 
is that it is easier to understand the dynamics. The 
pressure field shows that the upshear tilted low 
(high) pressure is located to the right (left) side of 
the updraft. Unlike Case 1 B, the low pressure on 
the upshear side in the lower layer (left side) of the 
high pressure is very weak. In this way, the pres- 
sure gradient is concentrated on the downshear 
(right) side of the updraft, which gives a much 
stronger circulation (Fig. 3e). Since the flow is 
adiabatic, the pressure is directly related to the 
vertical integration of the temperature (or density) 
anomaly from above, according to the hydrostatic 
balance. This can be seen from the potential tem- 
perature field (Fig. 3c) which has a general cold air 
above the surface region of x = - 4 0  to 10kin. 
This area coincides with the surface high pressure 
region (Fig. 3d). The cold and warm regions are 
produced respectively by the upward and down- 
ward motions adiabatically. In order to investigate 
the sensitivity to the vertical resolution, a case 
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similar to Case 1C is performed with Az = 20m. 
The result is almost identical (not shown). 

In order to investigate the role of shear instabil- 
ity on the flow response, we perform a simulation 
similar to Case 1C except with N = 0 . 0 1 s  -1 
(Case 1E). This gives a Richardson number of 
about 1.78 at % so that the flow is expected to be 
dynamically stable. Figure 4 shows the nonlinear 
response after 0.5 h. The Brunt-Vaisala frequency 
in the sponge layer (above 10 km) is linearly in- 
creased to 0.0237s-~ at the top. The other pa- 
rameters are kept the same as those in Case 1C 
(Fig. 3). The vertical velocity field (Fig. 4a) depicts 
two regions of updrafts in both upper (z < 5 kin) 
and lower layers. These updrafts are propagating 
away from the center of the initial temperature 
perturbation. Accompanying these updrafts are 
weaker compensative downdrafts. The disturbance 
is a pure gravity wave generated by the initial 
warm air as also found in the linear theory of 
a uniform flow over a pulse heating (Lin and 
Smith, 1986) in which a pulse heating is used. The 
response ofa quienscent fluid to a steady low-level 
heating (Nicholls et al., 199 la) also indicates both 
the left- and right-moving updrafts from the heat- 
ing center are produced. The downshear (to the 
right in the lower layer) propagating updraft is 
stronger and travels at a slower speed because it is 
against the basic flow. The updraft in the upper 
layer behaves like a jet emitted from the initial 
perturbation in the upper layer, while it is oriented 
vertically in the lower layer due to the wave 
reflection from the surface. This is similar to the 
response of a quiescent fluid to an initial diabatic 
heating (Nicholls et al., 1991b). Thus, the asym- 
metry of the gravity waves in the present case is 
due to the vertical wind shear. The u field (Fig. 4b) 
shows a convergence (divergence) at the bottom of 
the updraft (downdraft) and a divergence (conver- 
gence) at the top of the updraft (downdraft). The 
four-cell pattern near the center of the domain is 
produced by the strong temperature distur- 
bance (Fig. 4c). The distribution of perturbation 
pressure is directly related to the temperature 
perturbations hydrostatically. The warm air 
located in the layer of 4 to 6 km (Fig. 4c) is asso- 
ciated with the initial temperature perturbation. 
The upper and lower parts of this warm air are 
advected by the basic wind. Notice that a cold 
region is produced in the vicinity of the initial 
warm air in a dynamically unstable flow (Fig. 3c). 

Two regions of cold air are present above and 
below this warm region, which are required by the 
mass continuity. 

The streamfunction field (Fig. 4e) is disturbed 
only slightly since the flow is dynamically stable. 
In the vicinity of the critical level, there exists two 
regions of shallow flow overturning which is simi- 
lar to that found in Lin (1987). The vertical mo- 
mentum flux (Fig. 4I) shows an oscillation of the 
profile in the middle layer. The wave energy re- 
mains steady before 0.5 h and then decays linearly 
afterwards (not shown). The kinetic energy is 
increasing at the early stage, but the potential 
energy is decreasing in the whole time period since 
the system is dynamically stable. 

3.2 Flow with a Constant Shear 

Since a constant shear is often used in many 
numerical studies of mesoscale convective systems, 
it is important to investigate the flow response to 
an initial temperature perturbation in such an 
environment. The temperature perturbation may 
be viewed as a warm bubble released initially or 
the warm region generated by latent heating at 
later times. Figure 5 shows the nonlinear response 
of a case (Case 2A) similar to Case 1C except with 
a constant shear and a simulation time of 3h. 
The results may be compared with Case 1C. The 
initial isolated temperature perturbation (Fig. 5h) 
is assumed to be the same as Case 1C (Fig. 3h). 
The Brunt-Vaisala frequency and constant 
shear (Uz) are 0.00168 s -1 and 0.0053 s -1, res- 
pectively. The level of wind reversal is located 
at 5 kin, which gives a surface wind speed of 
- 2 5 m s - 1  The Richardson number associated 
with the basic flow is 0.1, which is the same as in 
Case 1C. 

The response is quite different from the case 
with a tanh wind profile (Case 1C), even though 
both cases have the same Richardson number of 
0.t in the shear layer. A pair of updraft and 
downdraft of about equal strength forms near 
x = 50 km (Fig. 5a). Both updraft and downdraft 
are oriented almost vertically, which are tilted 
upshear in the nonconstant shear case (Case 1C, 
Fig. 3a). This indicates that the system at 2 h is not 
at a growing stage according to the energy argu- 
ment of LC. In fact, the wave energy evolution 
does indicate that the system reaches its maxi- 
mum strength at about t = 1.75 h and then decays 
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(Fig. 5g). A region of very weak downdraft is 
located at about x = -  60km. It appears that 
these two regions of downward motion are the 
compensating downdrafts associated with the up- 
draft at the early stage. However, the initial warm 
region rises to a higher level of about 6.5 km and is 
advected by the basic wind toward right at that 
level at the early stage. This is evidenced from the 
perturbation potential temperature field (Fig. 5c). 
This also explains the downshear (rightward) 
movement of both the updraft and downdraft. 
The compensating downdraft on the downshear 
(right) side of the updraft can develop much stron- 
ger than that on the upshear (left) side since the 
updraft moves to the downshear side at t = 3 h 
which is already in the decaying stage. Part of the 
warm air is advected downstream (to the left) in 
the lower layer below 5 km (Fig. 5b, c, and e). The 
pressure distribution is similar to Case lC 
(Fig. 3d) except it is shifted to the right side of the 
domain, which is related to the rightward shift of 
the disturbance. Again, the perturbation surface 
pressure is roughly equal to the vertical integra- 
tion of the perturbation potential temperature 
above. Since the generated vertical and horizontal 
motions are relatively weak, there is no strong 
disturbance in the streamfunction field except the 
overturning region centered at (x, z) = (50, 5 kin). 
This circulation pattern is similar to that forced by 
a prescribed steady state heating in a flow with 
Richardson number greater than 1/4 as solved by 
Lin (1987) in which the heating is prescribed in 
a dynamically stabe flow. 

The momentum flux profile shows an oscillation 
in the vertical with the maximum centered at 
about 6.5 km which is the level of maximum dis- 
turbance (Fig. 5f). The vertical momentum flux 
becomes negative above 7.5 km, which indicates 
that the energy is able to propagate upward to the 
stratosphere according to Eliassen and Palm 
theorem (1960). The positive ~-w at z r (10km) 
and the positive value of the vertical integra- 
tion of the vertical momentum flux over the whole 
depth of the physical domain implies that the 
wave energy is decreasing with time at 2 h, accord- 
ing to Eq. (8). The response at 2h appears to 
be a transition stage from a growing stage to 
a decaying stage, which also can be seen from the 
time evolution of the wave energy (Fig. 5g). It is 
interesting to note that the total perturbation 
wave energy is almost dominated by the potential 

energy. The kinetic energy makes a minor contri- 
bution. 

The above result is consistent with linear the- 
ories of Orr (1907), Eliassen et al. (1953) and Case 
(1960). In solving the initial-value problem of a 
two-dimensional, constant shear flow, they took 
the Laplace transform in t and Fourier transform 
in x and then solved the Green's function for the 
inhomogeneous differential equation. Eliassen 
et al. found that there exists no discrete modes for 
- 3/4 < Ri < 1/4 and the constant shear flow is 
dynamically stable for Ri > 0. Based on an asym- 
ptotic solution for long time, Case found that the 
same result. In addition, an initial perturbation 
becomes a sum of oscillatory terms plus a term 
which vanishes as t-1/2. With Case's solution in 
mind, the growing stage in the early time in the 
present results (Fig. 5g) may be due to the oscilla- 
tory behavior. The decaying stage at later times 
indeed shows a slow decaying rate, although it 
does not decay exactly as t -  1/2 

In some numerical simulations of two-dimen- 
sional mesoscale convective systems, the impor- 
tance of a low-level shear has been demonstrated 
(e.g., Thorpe et al., 1982; Rotunno et al., 1988; 
Fovell and Ogura, 1989). Specifically, Thorpe 
et al. have argued that the nonlinear low-level 
wind profile is responsible for the upshear tilt of 
a midlatitude squall line. Figure 6 (Case 2C) 
shows the response of a low-level shear flow after 
2 h to an initial temperature perturbation which is 
confined in a box of x = - 1 5  to 15km and 
z = - 1  to 2 kin. This initial disturbance corre- 
sponds to a warm bubble which is often used in 
the initiation of a convective cloud in numerical 
experiments. The low-level shear layer extends 
from the surface to 4 km with U z = 0.0053 s-1. 
The wind blows toward the left at the surface 
with a speed of - 10.6 ms-1, reverses its direction 
at 2 km and stays at a constant speed of 10.6 ms - 1. 
The Brunt-Vaisala frequency is 0.00237 s- 1. Thus 
the Richardson number associated with the basic 
flow is 0.2. 

The vertical field shows the main updraft is 
located at about x = - 3 0 k i n ,  with two down- 
drafts on both sides. There exists no phase tilt in 
the lower layer below 2.5 km and in the middle 
layer. It is tilted upstream (left) in the upper layer 
just below the tropopause as required by the 
radiation boundary condition. The lack of phase 
tilt of the main updraft is due to the presence of the 
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Fig. 6. (Case 2C). The response of 
a low-level shear flow to an initial 
temperature perturbation. The low- 
level shear extends only to 4 km with 
U z = 0.0053 s-  1 and U o = 10.6ms- 1. 
The wind blows toward the left and 
reverses its direction at 2kin  and 
then stays constant (10.6ms-i )  
above 4km. The Brunt-Vaisala 
frequency is 0.00237 s -  1 below 
z = 10km and increases linearly to 
0.0237 s-  t at 15 km. The Richardson 
number is 0.2. The initial tempera- 
ture perturbation is confined in a box 
of x = - 1 5  to 15km and z = l  to 
3 km 
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solid surface which can reflect the wave back (Lin 
and Smith, 1986). A :region of weaker upward 
motion also forms at (x, z)= ( - 5 ,  1.5 kin). This 
low-level upward motion is associated with a re- 
gion of convergence (Fig. 6b), which may enhance 
the development of new convective cells if the air 
is moist. The 0 field (Fig. 6c) indicates that the 
initial warm bubble rises in the vertical and then is 
advected by the basic wind, which has a down- 
shear phase tilt. The maximmn temperature dis- 
turbance is located at (x, z )=  (10, 2.5 kin). This 
region of maximum disturbance forms at a slight- 
ly higher level than the initial temperature anom- 
aly since the initial warm air tends to rise. It is then 
advected by the basic wind which blows toward 
the right above z > z i (2 kin). There exists a weak 
cold region above the warm region as required by 
the mass continuity. This downshear orientation 
also can be seen from the pertubation horizontal 
velocity field (Fig. 6b). The pressure perturbation 
responds to the temperatm'e perturbations direc- 
tly, as can be seen from Figs. 6c and d. The flow 
response near the level of wind reversal (Fig. 6e) is 
similar to the deep shear case (Fig. 5, Case 1E). 
The vertical momentum flux and evolution of the 
perturbation wave energy (Figs. 6f and g) are 
similar to the early stage of the deep shear case 
(Figs. 5f and g). The perturbation wave energy 
decreases after 2 h (not shown). 

Figure 7 shows a case (Case2D) similar to 
Case 2C except the linear low-level shear extends 
only to 2 kin. There exists no basic flow above this 
level. This type of basic wind profile has often been 
adopted in numerical simulations of midlatitude 
squall lines (e.g., Thorpe et al., 1982; Rotunno 
et al., 1988; Fovell and Ogura, 1989). The vertical 
motion is similar to the previous case (Case 2C) 
except with more symmetric gravity waves devel- 
oped in the layer above the critical level (Fig. 7a). 
The warm air associated with the initial perturba- 
tion stays at the same location (Figs. 7b, c, and e). 
This also provides evidence for the warm bubble 
advection argument proposed in Case 2A (Fig. 5). 
Similar to the previous case, the pressure pertur- 
bation responds to the temperature perturbations 
directly (Figs. 7c and d). A pure gravity wave 
response in a quiescent fluid is also shown in the 
streamfunction field (Fig. 7e). The total perturba- 
tion energy decreases gradually with time, which 
indicates that the system is dynamically stable 
(Fig. 7g). 

3.3 Influence of the Solid Lower Boundary 

Figure8 shows a case (Case 3A) similar to 
Case 1C (Fig. 3) except the inflection point of the 
basic wind and initial warm air are located at 
2 kin. Even though the Richardson number is kept 
the same as 0.1, the response of the flow to the 
initial perturbation is significantly different from 
that in Case 1C. It appears that the flow is still 
dynamically unstable (Figs. 8a, f and g). The dis- 
turbance and growth rate are, however, much 
weaker than those shown in Case 1C. In response 
to the initial warm bubble, an updraft and two 
compensating downdrafts are produced. How- 
ever, this updraft is located at about x = - 35 kin. 
This is different from what found in Case 1C in 
which the updraft is located exactly at the original 
location of the initial perturbation. It is interesting 
to note that this updraft is propagating against the 
basic flow in the layer of z > 2 kin. This response 
in rather similar to the shallow constant shear 
case (Case 2C, Fig. 6), which indicates the system 
is in the transition stage toward a dynamically 
stable state. This is also evidenced in the time 
evolution of wave energy (Fig. 8g). Similar to 
previous cases, the pressure perturbation re- 
sponds to the temperature perturbations directly 
(Fig. 8d). The streamfunction shows a region of 
flow overturning near the inflection level 
(z = 2kin) (Fig. Be). However, the disturbance is 
much weaker than that in Case 1C. 

Figure 9a shows time evolutions of the pertur- 
bation wave energy associated with a hyperbolic 
tangent basic flow with the inflection point and 
initial warm air located at 5 km (Case 1C), 4kin, 
and 2 km (Case 3A) from the model results. The 
growth rate decreases as the inflection point is 
moved to a lower level. The results from a linear 
stability model (LC) also shows the same feature 
(Fig. 9b). These are consistent with the finding of 
Einaudi and Lalas (1976) in their theory in which 
they found that the presence of the solid lower 
boundary is able to stablize relatively shorter 
waves in an inviscid stratified shear flow. 

4. Concluding Remarks 

In this study, nonlinear responses of a dynami- 
cally unstable shear flow with critical level to an 
initial temperature anomaly are investigated us- 
ing a nonlinear numerical model. Both noncon- 
stant and constant shear profiles of the basic flow 
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are considered. Effects of the solid lower bound- 
ary on the dynamically unstable, nonlinear flow is 
also studied. 

The findings of this study may be summarized 
as follows: 

�9 In a dynamically unstable, linear flow with 
a hyperbolic tangent wind profile, the updraft is 
tilted upshear. The result is consistent with that 
of linear stability model (LC). The upshear tilt 
can be explained by the Orr mechanism (1907) 
and the energy argument proposed by LC. 
There exist two separate stages of wave devel- 
opment, a very slow growth during the early 
stage and a rapid growth during the later 
stage. 

�9 In a dynamically unstable nonlinear flow, the 
updrafts produced by a sinusoidal initial tem- 
perature anomaly are stronger in the lower 
layer and are more compact and located further 
apart compared to the corresponding linear 
flow. The vertical velocity and horizontal veloc- 
ity are less in phase. The growth of the distur- 
bance is more rapid at earlier stages compared 
to the linear response. In addition, the vertical 
velocity is less in phase with the horizontal 
velocity in the nonlinear flow. Although, the 
nonlinearity changes the detailed patterns of 
the flow, the difference from the linear re- 
sponse is not significant. In fact, the perturbed 
wave energy is slightly smaller than the linear 
case. 

�9 For a localized initial temperature perturbation 
in a dynamically unstable flow, a stronger up- 
draft with two compensating downdrafts is pro- 
duced. The present study may be applied to 
investigate the early development of a squall 

line if one regards the propagation of a squall 
line as a tropospheric internal gravity wave in 
a CISK-like process. 
For a constant shear flow with 0 < Ri < 1/4, the 
disturbance grows in the early stage and then 
decays at later times, similar to that found in 
linear theories of Orr (1907), Eliassen et al. 
(1953), and Case (1960). 
The influence of the solid lower boundary is to 
suppress the shear instability in a nonlinear 
flow with a hyperbolic tangent wind profile of 
Ri < 1/4, similar to the linear theory of Einaudi 
and Lalas (1976). 
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