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ABSTRACT

In part II of this series of papers, we review the responses of a stably stratified shear flow to a thermal forcing.
Observations indicate that this type of shear flow is closely related to a number of mesoscale circulations. The
mathematical method for solving a two-dimensional shear flow with a critical level to a prescribed thermal forcing is
described. The mathematical problem is then extended to a three-dimensional flow and applied to the dynamics of
mesoscale circulation associated with a mesoscale convective system. Generation and propagation of internal gravity
waves by the heating are discussed. The mathematical problem is then extended to solve a stably stratified flow over
ameso-0/f scale heat source. The vertical flux of horizontal momentum and wave energy associated with the thermally
forced inertia-gravity waves are discussed. Both quasi-geostrophic and semi-geostrophic approaches to the problem
are also reviewed. The solution is then applied to help understand the dynamics of coastal cyclogenesis.
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semi-geostrophic, baroclinic wave
l. Introduction

In part I of this series of papers, the responses of a
stably stratified uniform airflow to mesoscale thermal forc-
ing have been reviewed. Observations indicate that a num-
ber of mesoscale circulations are related to a shear flow over
aheat source. Occasionally, there exists a critical levelin a
flow over a heat source or sink. One example is the moist
convection associated with midlatitude squall lines (e.g.,
Thorpeetal., 1982; Seitter and Kuo, 1983; Raymond, 1984).
For the squall line analyzed by Ogura and Liou (1980), the
rightward mode exhibits a critical level near 6 km (Fig. 1).
That is, the propagation speed of the disturbance coincides
with the environmental wind speed at that level. Similar
phenomena have also been found in climatological studies
by Bluestein and Jain (1985; see Fig. 2) and Wyss and
Emanuel (1988). Thus, there exists thermal forcing below
and above the critical level as the condensational heating
may extend to aheight of 10km. Notice that the critical level
coincides with the level of wind reversal in a steady state
flow. Similar processes can also be found for moist south-
westerly monsoon currents over the Western Ghats of India
during the summer (Figs. 13 and 14 of PartI; Ramage, 1971;
Smith and Lin, 1983). Perpendicular to the coast line, the
basic flow reverses in the middle troposphere.

In some cases, the thermal forcing exists solely below
the critical level. Forexample, this problem isrelevant tothe

formation of a squall line in the vicinity of a dry ling over the
southern Great Plains (Rhea, 1966). The mesoscale circula-
tion across the dry line favorable for the fo ion and
maintenance of a squall line analyzed by Ogura apd Chen
(1977) and simulated by Sun and Ogura (1979) appears to

100 1 1

- T T
STREAM LINE )
200 4

500

600

PRESSURE (mb)

700

800

900

—180 =135 —90 -—45 0 45 90 1:_5 180

x (km) |

Fig. 1. Streamlines for a midlatitude squall line on 22 May 1?_?76‘ Three
important features are shown: (a) upshear tilt of the updraft, (b)
downdraft fed by the front-to-rear flow, and (c) flow overturning in

the middle layer. (From Ogura and Liou, 1980) |
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Fig. 2. Composite hodographs in a frame of reference moving along with
squall lines averaged over an 11 year period in Oklahoma. (From
Blyestein and Jain, 1985)

have a wind reversal near a low-level inversion (e.g., see
Figs. 6¢ and 10b in Sun and Ogura). Sun and Ogura also
found that upward motion is generated with sufficient inten-
sity to release the potential instability if the synoptic-scale
low-level wind is incident from the proper direction. Nu-
merical studies of sea breeze circulation (e.g., Estoque,
1962) also indicate that the location and shape as well as the
intensity|of sea breeze circulation are strongly affected by
the direction of the prevailing synoptic wind. Therefore, it

to the mesoscale flow in the vicinity of the coastal region
of the Carolinas during the winter when a cold synoptic-scale
anticyclgne exists to the north of this region. The horizontal
basic wind normal to the coastline reverses at about 2 km
as the inland low-tropospheric flow underlies the westerlies
in the middle and upper troposphere (Fig. 3). The low-level
sensible and latent heating associated with the strong tem-
perature contrast provides animportant energy source for the
mesoscale circulation, which can produce a subsynoptic
scale cyclone near the surface (Lin, 1989b, 1990a). Since
the Rossby number associated with the flow is less than
one, the response is quite different from that of a stratified
flow over a small-scale heat source with rotational effects
ignored. | Therefore, in order to understand the dynamics
of a flow over a meso-o/f scale heat source, the effects
of planetary rotation as well as baroclinicity must be in-
cluded.

In Section II, the response of a continuously stratified
shear flgw with a critical level to a meso-y scale heat

Fig. 3.

-120-

[

o ,v
v \E

(a) Surface, (b) 850, (c) S00 and (d) 300 mb maps for 1200 GMT 18
February Presidents’ Day snowstorm. Wind in ms’ |[pennant=25
ms”, full bar=5 ms™], temperature in °C. Heights, surface pressures
and isotherms are indicated by solid and dashed lines, respectively.
(From Bosart, 1981)



Airflow over Mesoscale Heat Sources, Part II

source will be described. Responses to both heating and
cooling will be included. The response of a three-dimen-
sional flow to a prescribed local heating will be described
and applied to the dynamics of V-shaped cloud tops over
severe storms. In Section III, we will review the response
of a flow over a meso-0/f3 scale heat source. The effects
of planetary rotation will be included in this section. Re-
sponses to both barotropic and baroclinic flows will be
discussed. The theory will then be applied to the problem
of coastal cyclogenesis.

Il. Shear Flow over a Meso-y Scale Heat
Source

As discussed in the introduction, diabatic heating in a
flow with vertical shear is a common element in various
mesoscale circulations (e.g., Lin, 1987). The mathematical
problem of adiabatic perturbations to a shear flow in a stably
stratified fluid has been studied extensively in the last three
decades. Bretherton (1966) found that the vertical
wavenumber becomes large and that the group velocity
becomes more horizontally oriented as the critical level is
approached. Booker and Bretherton (1967) found that the
gravity waves are attenuated exponentially as they pass
through a critical level at which the horizontal basic wind is
equal to the horizontal phase speed if the Richardson
number (Ri) is everywhere greater than 1/4, i.e., if the flow
is dynamically stable. The horizontal momentum is trans-
ferred to the basic flow. The critical level problem in an
adiabatic flow has been studied by several authors (see
Gossard and Hooke, 1975; Maslowe, 1986; LeBlond and
Mysak, 1978 for reviews). The response of a stably
stratified shear flow with a critical level to a mountain
(orographic forcing) has been studied by Smith (1984, 1986).
The solutions have been applied to the lee cyclogenesis
problem. The response to a diabatic heating has been
studied by Lin (1987) and Lin and Chun (1991). The
solutions have been used to explain the maintenance of a
midlatitude squall line and the formation of density current
associated with evaporative cooling.

Observations of large sheared cumulonimbus convec-
tion have also suggested that the environmental wind relative
to the storm movement often reverses its direction at some
height (e.g., Newton, 1966; Marwitz, 1972). In order to
understand the effects of latent heating associated with
cumulonimbus convection on environmental flow, it is im-
portant to study the three-dimensional response of both
uniform and sheared stratified flows to diabatic heating.
In solving the three-dimensional response to a pre-
scribed elevated heating, representing the latent heating
associated with isolated supercell thunderstorms, Lin
(1986a,b) and Lin and Li (1988) proposed that the V-shaped
cloud tops over severe storms (see Heymsfield and
Blackmer, 1988 for a brief review) are formed by the

thermally forced gravity waves.

1. Two-Dimensional Shear Flow with a Critical
Level

The equation governing the two- dlme:nsmn steady-
state, small-amplitude vertical velocity perturbation in a
stratified, nonrotating, Boussinesq fluid with dlabratlc heat-
ing can be simplified from Eq. (15) of Part I (Lm! 1994):

qaauzf“b“"'w i UUW +N wxx ijﬂ
(1)

The homogeneous part of the above equation fhas been
discussed in Bretherton (1966). To simplify the problem, we
may assume that the flow is in hydrostatic balancg and that
the basic wind shear is constant with height. After making
the Fourier transform in x, the above equation begomes
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In this section, we allow the basic wind to vanish af a certain
height. This will introduce a singularity to the eqtlzjon atthe
wind reversal level, which coincides with the critical level in
a steady state flow. The Brunt-Vaisala frequency, N, is
assumed to be constant with height, and U(z) is gfi_ven by

Uiz)=0z, —H,<z - (3)
where o= -U,/H,, U, 1s the basic flow at the surfav;%:re, and H,
is the depth from the surface to the critical level. TFor
convenience, the origin of the vertical coordinate is chosen
to be at the critical level. The diabatic heating represents
either low-level sensible heating or elevated latenl; heating,
and is assumed to have the form

q(x,2) = Qflx), —
= 0_‘ s Hl <z (4)

0£Z<‘—H1

where H; may be positive or negative, depending upon
whether the top of the heating layer is below or above the
critical level. Substitution of the Fourier transform of the
above equation into Eq. (2) yields

2.’\
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_f(k), —-H,Szk-H,

=0., —H;Sz. (5)

The general solution of the above equatlogl may be
written as |
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requires C=0 (Booker and Bretherton, 1967) and W (z=
—H,)=0, respectively. The interface conditions at z=—H,
appear to|be that both W and W, are continuous across it.
Applying|the boundary and interface conditions to Eq. (6)
leads to & solution of W (k, z) in Fourier space. A per-
turbation streamfuncfion Y’ may be defined as —oy//ox=w".
The vertical displacement (7)) is related to be perturbation
streamfunction according to n=-y//U if U#0. The total
streamfunction can then be calculated by

|

The uppe}radiation condition and lowerboundary condition

y;:g?;+y/’=r U(z)dz+ V¥, ®
J-H,
or
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Using a Hell-shaped heating function with compensative
cooling, such as thatin Eq. (86) of PartI(Lin, 1994), one may
obtain solutions in the physical space of the form

w’:%[mx{z—;"[(com—cosm)
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i
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—-1<z<-H; (10a)
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I 2. glip T
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—(sinT1—sinT2)]+(z1sesinT1
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where

2s=y[z|/H, ; 20s=y/]z]; T1=fIn(|z|/H});
T2=fIn(H|z|); T3=pIn|z|;
INX =tan™ ' x—tan™! x/ b,;

M:%ln[(b§+x2)!(l+x2)].

The nondimensional variables are defined by (the tildes are
dropped in the above equation)

(z.8,)=(z/H,.H/H,); ¥=V¥IUH,;

&.by)=(x/by by 0y); 0,=0,81 H,/(c, T, U).
an

The total streamfunction has the nondimensional form
= 2 !
W—E(l—z )+ Y. (12)

Figure 4 shows the total streamfunction and the verti-
cal velocity for a shear flow with Ri=10, H;=0.2, and
0,=0.25. Notice that these parameters are nondi-
mensionalized. The corresponding dimensional parameters
may be considered as U,=6.3 ms™, H,=2000 m, H;=400 m,
and N=0.01 s™. The heat source is located below the critical
level, z=0. The heating depth is 1.6 km. Below the critical
level, a broad region of downward displacement is estab-

f =

|
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Fig. 4. (a) Streamlines for a two-dimensional shear flow with a critical
level (z=0) over an isolated heat source which is concentrated
within the daghed lines. The solution is given by Eq. (10) with
0,=0.25, Ri=10, H;=0.2, and b:=10. (b) Vertical velocity for (a).
Dashed lines indicate negative vertical velocity. (From Lin, 1987)

lished upstream of the heat source, followed by a region
of upward displacement downstream. The vertical motion
is almost symmetric with respect to the heating center
because the differential advection effect of the basic wind
is small due to the prescribed weak shear. On both the
upstream and downstream sides of the updraft, there exist
two weak compensated downdrafts. This response is
similar to the motions induced in a quiescent stratified
fluid (e.g., Lin and Smith, 1986; Nicholls ez al., 1991).
Above the critical level, the flow is almost undisturbed
because the thermally forced gravity waves are attenuated
exponentially as they pass through the critical level. This
result is consistent with the free wave solution of Booker
and Bretherton (1967) and the mountain wave solution of
Smith (1986). Beneath the critical level, the local vertical
wavelength decreases as the local horizontal basic wind
decreases.

Figure 5 shows a case similar to Fig. 4 except with
Ri=1. The corresponding dimensional parameters may be
considered the same as in Fig. 4 except with U,=20 ms™.
The response is significantly different from the previous
case. The vertical motion is much stronger than the pre-
vious case. A region of strong downward motion is estab-

Fig. 5. As in Fig. 4 except with Ri=1. (From Lin, 1987)

lished upstream of the heating center. The region of
maximum upward motion is shifted downstream of the
heating region. The broad descent is produced by the
compensating down-draft associated with the updraft. Be-
low the critical level, the region of updraft is displaced
downwind. This is caused by the advection effect im-
posed by the basic wind due to stronger vertical shear,
which now exists as compared with previous case. Near
the top of the heat source, there exists a region of flow
recirculation. The thermally forced gravity wave is able
to propagate upward to the upper layer above the critical
leve] although the amplitude is relatively weak. The up-
stream tilt of the wave in this layer indicates that the wave
is able to propagate to infinity. Figure 6 displays the
momentum flux for the case of Fig. 5. The momentum flux
at the surface is zero as required by the lower boundary
condition. The momentum flux has a negative value with
increasing magnitude in the heating layer, i.e. -1<z<-0.2,
and a constant negative value above the heating top until
the critical level is reached. This result is consistent with
the theory of Eliassen and Palm (1960), which states that
the momentum flux does not change with height in a
region with no forcing, except possibly at levels where
U=0. The vertical flux of horizontal momentum increases
almost discontinuously to a small positive value above
the critical level as the basic flow reverses its direction,
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Fig. 6. The vertical momentum flux for the flow field of Fig. 5. (From Lin,
1987)

of the momentum flux across the critical level is associated
with the absorption of the wave energy by the critical level.
The above solution, Eq. (10), has been adopted by Crook and
Moncrieff (1988) in a study on the effect of large-scale
convergence on the generation and maintenance of deep
moist corfvection.

Latent heating always exists in the vicinity of the
critical lével in a moist convection. The procedure for
solving the mathematical problem of a shear flow over an
elevated |heat source which exists in the vicinity of the
critical ldvel is similar to the above case (Lin, 1987). Figure
7 shows|the response of a shear flow over an elevated
heating i a stratified, unbounded fluid. The existence of
thermal forcing in the vicinity of the critical level can
modify the flow significantly. In the vicinity of the critical
level (z=0), the fluid particle on the left hand side in the
lower layer experiences a strong upward motion near the
heating center (x=0), crosses the critical level, and then
returns to the left of the domain in the upper layer. In
addition, the flow near the concentrated heating region is
dormnatld by upward motion, as indicated by Fig. 7b. The
CODSIStE]IlC)’ of the vertical motion and the heating at the
heating base is important in order to support the existing
convection (Raymond, 1986). The heating base may repre-
sent the cloud base or the top of the moist boundary layer
where the surface air becomes unstably buoyant in 2
cumulus convection (Lindzen, 1974). The vertical mo-
tion in the vicinity of the critical level may be explained by
inspecting the thermodynamic equation [Eq. (40) of Lin
(1994)]:

and the d:Eurbancc is very weak there. The abrupt increase

13)

Fig. 7. (a) Streamlines for flow over an isolated heat sour¢e in an un-
bounded continuously stratified fluid. The heating is concentrated
in the region enclosed by dashed lines. (b) Vertical velocity for (a).
The Richardson number associated with the basic flow is 1. (From
Lin, 1987)

The above equation may be approximated by

’ g ’
w = q
¢, LN

(14)

in the vicinity of the critical level since U=0 there. This
indicates that the vertical velocity near the cnncal level is
proportional to the heating rate. Since the flow structure
resembles that associated with a midlatitude squall line, one
may conclude that the condensational heating in the vicinity
of the critical level plays an important role in the interaction
of the flow below and above the critical level.

Lin and Chun (1991) solved a similar problem analyti-
cally for a flow over a low-level heat sink and obtained a
result similar to that of Lin (1987). From a scale analysis of
the governing equations, a nonlinearity factor of the ther-
mally induced finite amplitude waves, g O, b,/ (¢, T, UN) ,
is found. The symbol U, denotes the basic wind at the
surface. This factor reduces to that found by Raymond and
Rotunno (1989) for the uniform flow case. Using a simple
nonlinear model, Lin and Chun (1991) found that the hydro-
static response of a shear flow with a critical level toa steady

— 12
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cooling can be categorized as either a stationary cold pool, or
a density current, depending upon the strength of the effec-
tive cooling. For a small Richardson number flow, the cold
pool is stationary with respect to the upstream flow because
most of the cooling is used to compensate the positive
vorticity generated by the positive wind shear (Fig. 8a). In
this case, the response is similar to the linear steady state case
(Fig. 32 of Lin and Chun, 1991). For a large Richardson
number flow, the cold pool is able to propagate upstream
because the effective cooling, which increases with time, is
strong enough to push the outflow against the basic wind
(Fig. 8b). It is interesting to observe that internal gravity
waves are produced and propagate upward at the head of
the density current. Similar results also were obtained by
Chen et al. (1992) in a nonhydrostatic numerical simulation
of gravity currents. From the comparison between linear
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Fig. 8. Potential temperature fields for a two-dimensional, hydrostatic,
continuously stratified shear flow with a critical level (z=2.5 km)
over a steady heat sink (b,=10 km, z<1.5 km) for (a) Ri=0.69 and
U,=30 ms™, (b) Ri=6.25 and U,=10 ms™. The basic wind blows
from right to left in the lower layer (z<2.5 ki) and reverses its
direction in the upper layer. Nofice that an upstream propagating
density current develops in the large Richardson flow. (From Lin

_ and Chun, 1991)

theory and nonlinear model results, it is found| that the
nonlinearity appears to reduce the wave disturbafice in the
layer between the critical level and the cooling top while it
tends to strengthen the density current or cold pool near the
surface.

Lindzen and Tung (1976) proposed that a stable
wave duct adjacent to the surface may exist if it is capped
by an unstable layer which contains a critical level. Chun
(1991) has investigated the steady response amalytically
in the same type of environment but with a diabatic cooling
in a three-layer atmosphere. The lower layer adjacent to
the surface has a uniform basic wind and serves ds a wave
duct when the conditions are met. They showed that when

the shear layer is dynamically stable (Ri=1/4), F\most all

of the wave energy is absorbed near the critigal level.
However, when the shear layer is dynamically junstable,
waves can be partially- or over-reflected from the
critical level, depending upon the strength of the stability
of the shear layer. The wave is almost enﬁreiy%?reﬂccted
when (Ri-1/4)"? is near 0.4. The transmission coefficient
increases as the reflection coefficient increases. Ini;addition,
the wave amplitude below the shear layer alsq|depends
upon the depth of the lower layer of uniform ﬂow. The
wave amplitude in the lower layer becomes maximum
when the ratio of the vertical wavelength and the depth
of the lower layer is n/2+1/4. These factors may modify
the vertical motion field significantly, which in turn will
either enhance or suppress the new cells produced by the
density current. |

2. Three-Dimensional Flow

Before we discuss the response of a three-dimensional
shear flow to elevated heating, it is essential to understand
the response of a three-dimensional uniform flow to an
elevated heating. Thus, we will review the work of Lin
(19864a) first and then the work of Lin and Li (1988). The
small amplitude equation governing the vertical velocity
for a steady state, three-dimensional, stratified, incompress-
ible, Boussinesq, non-rotating flow can be written as

a 2 ’ 2 S E ’
(Uz=+V) Vv + N2 Vaw =(%—T;)V;3q Joas)
where v is the coefficient of both Rayleigh friction and
Newtonian cooling. To solve the above equation, we deter-
mine the relevant Green'’s function as in previous sections.
Taking the double Fourier transform in x and y (x—k, y—=1)

of the above equation, we have

P e L1081 S P
= (Uk—-iv)? ¢, T(Uk=iv)i ™

(16)
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where K=(k*+1%)'? is the horizontal wave number.
Consider a bell-shaped heat source with circular con-

tours: |
i

q’(}c,y,z)=ﬁ6(z}, an
where i

r= déxz +y2)?
Taking tl:;e double Fourier transform of the above equation

and substituting into Eq. (16), we obtain
|

L+ A= Q0K et
T 27¢, T, (Uk—iv)*
E

|

i

al

8(z), z2-H (18)

where

| [N?=(Uk- zv)"]Kz

2
| (Uk=iv)

19)

An approllximate set of lower and upper boundary conditions
are w=0 ézt the surface (z=—H) and the radiation condition,
ie., W~e3 p(z’ﬂ.z) as z-->oo. At the interface z=0, one con-
ditionis thatW is continuous across the interface. Integrating
Eq (18}‘Ezcross the interface yields another condition that
w, is continuous. Thus, the solution of Eq. (18) can be
obtained:

ngObZKe-bK [eil(z+2H)_ef1|z|]
47c,T,(Uk—iv)[N*~(Uk—ivy]"

t.1,7)=

S

The vertical displacement, 77, defined by w=Udn/dx, may be
written as

?I(Jt.y,z)=J
4

ool (kx+1y) dkdl

gQDbZKe-bK[eil(HZH)__eiM z|]
e, T, UK Uk-iv) | N*~(Uk-iv)?

2-H. (1)
The above equation may be nondimensionalized by
(%,5)=(x/b,ylb); (k,I,K)=(bk,bl,bK);
v=Vb/U; (#,%2,H)=(NN/U,2N/U ,.HN/U);
0,20,8b/(c, ,U?) (22)

to yield

G(K)K [eHa2H) _gilzl]

2k(k—iv)V1-M*(k—-iv)y

eel (ke+ly) didl, (23)

H(x,y,z)=J

Notice that the nonhydrostatic effect is represented by a
nondimensional number M (=U/bN), which is proportional
to the ratio of the period of a buoyancy oscillation (27/N)
to the time it takes for an air parcel to pass the heat source
(b/U). This reasoning is similar to the mountain wave
problem in which the horizontal scale is measured by the
mountain width. For simplicity, we assume that the flow is
hydrostatic (M<<1) in most cases. A two-dimensional
FFT (Fast Fourier Transform, see Smith, 1979 for a brief
review) algorithm can be employed to invert the above
solution back to the physical space.

Figure 9 shows an example of a hydrostatic flow
(M=0) over a shallow heat source with H =n. The dimen-
sional parameters may be considered as U=10 ms', N
=0.01s", b=5 km, and H=3.14 km. The response of the fluid
to the heating at the heating level (z=0) is a downward
displacement upstream of the prescribed heat source
followed by an upward displacement downstream. This
is similar to the two-dimensional flow as studied in
earlier sections. The region of disturbance widens in
general as one moves aloft and beneath the heating level. A
V-shaped pattern in the region of upward displacement
forms above the heating center at the level of z=/2. This
region of upward displacement is shifted upstream as one
moves further aloft as required by the upper radiation
condition. At the level of z=7, a new region of downward
displacement forms just downstream of the V-shaped
area of upward displacement. The response is almost
periodic in the vertical with a wavelength of 7 (¢.g., com-
paring Figs. 9a, c) like that in the hydrostatic mountain
waves (Queney, 1947; Smith, 1979). The amplitude of
the vertical dis-placement decreases vertically, which is
mainly due to the divergence above the heating region and
the viscosity.

The vertical cross section at y=0 for the above case
is plotted in Fig. 10a. The upstream phase tilt of the
disturbance above the heating level (z=0) indicates that the
wave energy is able to propagate upward (Eliassen and
Palm, 1960). The term exp(iA(z+2H)) in the numerator of
Eq. (23) represents the reflected waves from the surface,
which may cancel the direct upgoing wave, i.e., the term
exp (i4|z]) , above the heating level with certain values of
H. This is similar to the two-dimensional flow (Smith and

-126 -
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Fig. 9. Vertical displacement of a three-dimensional, continuously strati-
fied, hydrostatic, uniform flow over an isolated heat source which
1s added at z=0. The dashed circle is the heating contour at r=b. The
basic flow is directed from left to right in the positive x direction.
The solution is given by Eq. (23) with H=m, M=0, v=0.2. The four
:.-;\ézls)shown are: (a) -m/2, (b) 0, (c) &2, and (d)7. (From Lin,

a
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Fig. 10. (a) Vertical cross section along y=0 for Fig. 9 (H=m), (b) as in (a)
except H=2m. (From Lin, 1986a)

Lin, 1982). One example with H=27is shown in Fig. 10b,
in which the disturbance above the heating level (z=0) is
much weaker than the case of Fig. 10a.

The formation of the V-shaped pattern of the vertical
displacement can be explained by the group velocity argu-
ment (Lin and Li, 1988). The dispersion relation for an
internal gravity waves in a stagnant Boussinesq fluid is

N2+ 1) M?

B+Pem? 24)

W==+[

where @ and m are the frequency and the vertical wave
number, respectively. The group velocity can then be found:

__90_ —N knd’
Cox= ak_[k2+32]”2[f(2+lz+m2]312’ (252)
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The vertical velocity can be obtained immediately
from the dimensional relationship w'=Udn/ox for a steady
flow. Figure 12 shows the vertical velocities at the heating
base z; for (z1, 22) = (2, 18), (1, 9), (0.5, 4.5), (0.25, 2.25),
and (0.125, 1.125). The dimensional parameters may be
considered as N=0.01 s, z;=1 km, z,=9 km, b=5 km, and
U=5, 10,20, 40, 80 ms™. For a fixed heating depth (dimen-
sional), a smaller z,—z; corresponds to a higher basic wind
speed. Figure 12b corresponds to the case of Fig. 11. The
advection effect is more significant for cases with larger
basic winds, which give a more pronounced V-shaped
pattern. This figure indicates that an upward motion at
the cloud base as required by a wave-CISK mechanism may
be satisfied with a wide variety of basic wind speeds in the
present model, although the air still has to overcome the
downward displacement established upstream of the

Fig. 12. Vertical velocity at z=z; of a three-dimensional, continuously
Ltratified, hydrostatic, uniform flow over a heat source which is
iniformly distributed from z; to zo. The solution is given by Eq.
31) with M=0and v==0.2. The four cases of different (z1, z) shown
l,su‘e: (@) (2, 18), (&) (1, 9). (c) (0.5, 4.5). (d) (0.25, 2.25), and (e)
(0.125, 1.125). (From Lin, 1986a)

heating region, as pointed out by Raymond (1986).

In a study of three-dimensional inviscid airflow over
an isolated mountain, Smolarkiewicz and Rotunno (1989)
found that a pair of vortices form on the lee side of the
mountain in a low Froude number (Fr=U/Nh<(.5) flow.
The formation of these lee vortices is explained by the
tilting of horizontal vorticity produced baroclinically in an
inviscid continuously stratified fluid. Smith (1989) com-
mented that the lee vortices can be generated by either a
density surface interaction or by overturning and tur-
bulence in an inviscid fluid. It is suspected here that a
similar phenomenon may occur in an inviscid flow over a
heating source or sink. However, this hypothesis remains
to be tested. A mnonlinear model is needed to examine the
possibility of the formation of vortices on the lee of a
heat source or sink. With the Coriolis force included in a
study similar to that of Smolarkiewicz and Rotunno (1989),
Lin et al. (1992) demonstrated that a lee mesocyclone can
be generated in a three-dimensional, inviscid, low Froude
number flow past an isolated mountain. A similar analogy
may be drawn for a flow over a meso-f/c scale heat
source or sink. If amesocyclone forms, it may be related to
the formation of coastal cyclones. Again, this remains to be
investigated in further studies.

The theory developed above may be extended to in-
clude a multi-directional shear flow with acriticallevel. The
governing equation is a combination of Egs. (1) and (15):

TN Ay e
(Ué-;+V—a-;+V)Vw (Uax+vay+v)

d 9\ /. a2ty - 8 1
i ; Viw = v
(Uzzax‘”'{zay)w“'N Y 2,1 19 (32)

After making the double Fourier transform in x (—k) and y
(—1), the above equation becomes

— (kU +1V, 2
fv+{(‘=+ ) N

-1)K*
=V =iv " quav—ivy ol

_ gk’
¢, T, (kU +1V=iv)

S4(k,1,2). (33)

Again, the heating can be assumed to be a bell-shaped
function in x and y and to be uniformly distributed in the
vertical. The mathematical problem is complicated. Thus,
a simple numerical technique may be adopted to obtain the
solution which can provide a physical solution to the prob-
lem. Equation (33) in the Fourier space is a special case of
the general form of the Taylor-Goldstein equation

et P(2) §=1(2) (34)

-130- -



Airflow over Mesoscale Heat Sources, Part II i

with the boundary conditions

fzo)=& atz=z,
{zp={r atz=zp (35)
where the subscripts o and T represent the lower and upper

boundaries, respectively. Applying a center-difference nu-
merical scheme to the above equation yields

(25 + &) + Bp G = Pr = ¢,
(gtl_2élx
(gn-l _'_2';1}+h2 ngx=h2rn_ ;T& (36)

:+l)+h2 xg kz Ty ""“2 3

where A is the interval for numerical integration. In the
following examples, the # and horizontal grid interval are
chosen tobe 250 and 1500 m, respectively. The above linear
system can be solved by applying the Gaussian elimination
scheme to the banded matrix column vector £, ..., {,] as
long as the boundary conditions are known. The upper
radiation boundary condition is simulated by a sponge layer
(Klemp andLilly, 1978), in which the coefficient of Rayleigh
friction and Newtonian cooling is gradually increased by a
factor of 5 in the sponge layer according to a sine square
function. Once the numerical solution in the Fourier space
is obtained, atwo-dimensional FFT algorithm canbe adopted
to invert the solution back to the physical space.

Figure 13 shows the flow fields for a nonhydrostatic
shear flow over an elevated heat source. A linear shear,
U(z)=-Us+(Uy/z.)z and V(z)=0, is assumed in this case. The
critical level (z.) is located at 2 km. Other parameters chosen
are: N=0.01s", U;=10ms™, Q,=4Tkgs*, b=5km, z;=1.5km,
2=12km, and v=10"*s". A rather small heating rate is used
to avoid the violation of the small amplitude assu.aption.
The cloud base and top can be assumed tobe 1 km and 14km,
respectively. Even though these values are not involved in
the calculation, it should be noted that the cloud base and
top are not necessarily located exactly at the same height as
the heating base and top, respectively. The Richardson
number associated with the basic flow is 4. The grid
resolution is 64x64x101. The actual horizontal domain is
94.5 kmx94.5 km. Only the central portion, 46.5 kmx46.5
km, are shown in the figure. The horizontal domain is chosen
to be large enough so that the effect of periodic conditions
assumed by the FFT algorithm can be minimized. The
vertical extent of the physical layeris 15 km while the sponge
layer extends from 15 km to 25 km.

At the cloud base (z=1 km), the basic wind blows
from right to left. Upward motion is generated upstream
of the heating center with downward motion downstream
of the heating. The region of upward motion forms a V-
shaped pattern with the vertex pointing upstream. The V-

shaped pattern of upward velocity in the low levels has also
been found in numerical simulations (e.g., Klemp and
Wilhelmson, 1978; Schlesinger, 1980). The formation of
this V-shaped pattern is similar to that discussed in the last
section except with downward propagating gravmy waves.
Evidence of these downward propagating wavm is also
shown in the upstream shift of the maximum updraft from
Figs. 13a, b and f. At the heating base z; (Fig.|13b), the
heating region is dominated by upward motion. The
colocation of the upward motion and the heating at the
heating base is important in supporting the existing convec-
tion. Moving further aloft to the critical level, z,=2km, the
response of the airflow to the diabatic heating is an
axisymmetric region of upward motion (Fig. 13c). Similar
to the two-dimensional case (Eq. (14)), the vertical ve-
locity at the critical level is directly proportional to the
heating according to the thermodynamic equation since
the basic wind vanishes there. Thus, the region of upward
motion reproduces the bell-shaped pattern of the heat
source. Notice that the basic wind profile used in this case
agrees better with squall lines and multicell storms than with
right or left moving supercells, which would maintain a
constant storm-relative V-component V(z)=tV,, to the wind.
The gravity wave pattern produced by this type of supercell
has been better represented in Lin (1986a) and Raymond
(1986). The positive response of vertical motion at the cloud
base depends upon the heating-induced Froude number
[F=U/N(zy~z;)], which corresponds to the wave-CISK modes
(Raymond, 1986). At higher levels, such as 5 and 14 km
(Figs. 13dande), the V-shaped regions of upward motion are
pronounced. This result is consistent with the non-sheared
case studied by Lin (19862) and with numerical modeling
studied by Klemp and Wilhelmson (1978) and Schlesinger
(1988). The vertical motion is weaker at 14 m than at lower
levels because of the divergence above the heating region
and the viscosity. Due to the nonhydrostatic effect, repeated,
damped oscillations of the disturbance may be produced
(e.g., Fig. 2e of Lin and Li, 1988). The formation of V-
shaped patterns of vertical velocity was explained earlier by
Eq. (30).

The vertical cross section of vertical velocity along y=0
isshown in Fig. 13f. In the concentrated heating region, the
vertical velocity is positive in the heating layer, with a
maximum located at about 5.5 km. The vertical orientation
of the updraft core depends on the vertical shear of the
environmental wind. The slight downshear tilt is due to the
strong advection of the basic wind. For a relatively weak
shear case, the updraft is almost vertical. The upstream tilt
of the vertical velocity above the heating top (12 km) is offset
by the advection effect (Fig. 13f). The downward motion on
the downshear side (right side in Fig. 13f) of the updraft is
evidence for the existence of the thermally forced gravity
wave. Below the cloud base (1 km), the updraft is shifted
upstream, followed by a downdraft region. This|sloping
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Fig. 13. Vertical velocity fields for 2 nonhydrostatic continuously stratified shear flow over an elevated heat source. The critical level (z.) is located at 2

vertical velocity are in ms”. (From Lin and Li, 1988)

updraft near the cloud base may enhance the formation of
vective cells. These new convective cells may

ived convective system (Rotunno et al., 1988).
e propagation of wave energy induced by a station-

upward and upstream relative to the air (c,,) butis advected

km. The solution is given by Eq. (23) and solved by the numerical scheme Eq. (36) and an FFT algorithm. Other parameters chosen are: N=0.01
sT, U=10ms™, Q=4 Tkgs™, b=5km, z;=1.5 km, z;=12 km, and v=10*s". The Richardson number associated with the basic flow is 4. Five levels
are shown for: (a) 1 km, (b) 1.5 kum (z;), (¢) 2 km (z.), (d) 5 km, and () 14 km. The vertical cross section along y=0is shown in (f).| Units for the

downstream by the basic wind. Thus, the wave energy is
found to be along the direction of ¢, Or gy, relative to the
heat source. The formation of the repeated, damped oscilla-
tions of the disturbance (Fig. 13f) is mainly due to the
nonhydrostatic effect. Similar to mountain wave theory
(Smith, 1979), this nonhydrostatic wave only occurs when
the dominant squared wave number (K?) is less than the
Scorer parameter (N*/U?(z)) for a Boussinesq, constant

} «J32
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Fig. 14. A sketch for the propagation of wave energy associated with steady
waves forced by a prescribed heating in an unbounded,
nonhydrostatic continuously stratified shear flow. Symbols ¢,,,
Cgar Cghs» and Cgy. Tepresent the phase velocity with respect to
(w.r.t.) the air, group velocity w.r.t. the air, upward group velocity
w.r.t the heat source, and downward group velocity w.r.t. the heat
source, (From Lin and Li, 1988)

shear flow. This result also can be explained by the group
velocity argument. For simplicity, let us consider a corre-
sponding two-dimensional flow for which Eq. (282) reduces
to

_ (N (=R TN
- Y,

wie

@37

The wave energy propagates along the straight line given
by the above equation, emanating from the origin where
the heat source is located. Now it becomes clear that, in
order to have the wave energy propagate downstream (x>0)
and upward (z>0), it is required that K*<N*/U%(z). To
determine the control parameter of the downstream wave-
length of the heating-induced gravity wave, we assume that
the wavelength at a certain height, z*, above the critical level
(denoted by C.L. in Fig. 14) is L. Thus, x*, k*, and U(z) are
equal to L, 27/L and Uz, respectively. Substituting z*

and k* into Eq. (37) and solving for L, we obtain

L=fﬁf[1i«!(1+Rii?r2) P2
P

Thus, the downstream wavelength is approximately propor-
tional to Ri"* for a stable flow with arelatively strong shear
(Ri<<7?). Arough estimate from Fig. 13f gives L=34 km for

Ri=4. This result is consistent with the above coﬁclusion.

Figure 15 shows a case with a multi-directiofial shear.
The hodograph is depicted in Fig. 15¢. At the cloud base, 1
km, the basic wind blows from the southeast (Fig. 15a) The
regions of upward and downward motion are ancated on
the upwind and downwind sides, respectively. The extrema
of the vertical velocity are lined up along the direction of
the basic environmental wind. The vertical velocity field
shows an asymmetric pattern, which is caused|by weak
advection of gravity waves by the north-south component
of the basic wind. This asymmetry is also shown in the
field of vertical displacement (Fig. 15b). In the vicinity of
the heating region, the flow is dominated by an upward
displacement. The downward displacements on the up-
stream (southeast) and downstream (northwest) sides are
relatively small compared with the upward displacement.
Even though the north-south wind is relatively weak at
the cloud top level (14 km), asymmetric patterng are still
pronounced in the fields of vertical velocity and displace-
ment (Figs. 15¢ and d). Thus, the thermally forced gravity
wavesinamulti-directional shear help to explain (Heymsfield
etal., 1983a; Lin and Li, 1988) the asymmetric pattern of
V-shaped cloud tops, such as those observed by Anderson
(1982).

lli. Three-Dimensional Flow over a
Meso-o/ Heat Source

For a stably stratified flow over a diabatic heat source
or sink with a horizontal scale on the order of one hundred
kilometers, the rotational effect plays an important role in
generating inertia-gravity waves. Those waves behave dif-
ferently from pure gravity waves which are generated by a
heat source or sink with a horizontal scale on the order of
ten kilometers or smaller. They are also different from
quasi- geostrophic planetary waves which are generated
by a heat source or sink with a horizontal scale on the
order of one thousand kilometers. In this type of flow, the -
effect may be neglected, but the inertial effects should be
included.

By prescribing an isolated diabatic heat sourcefsmk
Rotunno (1983) has investigated the rotational gffects on
the land and sea breeze circulation in an uniform flow
theoretically. Using a similar approach, Hsu (1987a) has
studied the two-dimensional nonrotating uniform flow re-
sponse to a prescribed, finite surface heating with Fickian
thermal diffusion included. The horizontal scale of the
heating varies from 1 to 1000 km. This work was extended
numerically to include three-dimensionality and applied
to the snowstorm problem of Lake Michigan (Hsu, 1987b).
Some interesting results have been found by Hsu by varying
the shape of the diabatic heating and the basic wind direc-
tions. However, the energy propagation of the heating-
induced inertia-gravity waves has not been emphasized
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and needs to be investigated for a better understanding of
the dynamics. Using a linear theoretical model, Luthi ef al.
(1989) studied the nature and the flow response to prescribed
low-level, mesoscale steady state diabatic heating with Rossby
numbers greater and smaller than 1. They found that the
response is strongly sensitive to: the horizontal scale of the
diabatic region, the three-dimensional effects, basic rotation
of the flow system and the strength of the momentum and
thermal damping. Theinertial effects of athree-dimensional
uniform flow over a mesoscale heat source have been inves-
tigated by Lin (1989a) by comparing the response with that

of a quasi-geostrophic flow. This work will be reviewed in
this section.

The above problemis related to the shear flow over the
East Coast of the United States. Cyclogenesis along the east
coast of the United States has received considerable attention
since the recent completion of the Genesis of Atlantic Lows
Experiment (GALE). These cyclones oftén form off the
Carolina coast, develop rapidly, and move northeastward,
which may bring heavy snowfall and damage over the mid-
Atlantic states. Different kinds of approaches, such as
observational data analysis (e.g., Bosart, 1981; Uccellini et

—134-



Airflow over Mesoscale Heat Sources, Part IT

al., 1984), numerical simulations (e.g., Anthes et al., 1983;
Orlanski and Katzfey, 1987) and theoretical studies (e.g.,
Smith, 1986; Lin, 1989b, 1990a), have been used to investi-
gate the problem of East Coast cyclogenesis. Observational
studies suggest that there are two major mechanisms

- responsible for the East Coast cyclogenesis. The firstmay be
called the boundary-layer control of cyclogenesis (e.g.,
Bosart, 1981, 1988). It is proposed that the cyclonically
curved coastline under a northeasterly flow is favorable
for the growth of cyclonic vorticity in response to di-
fferential heating and differential friction between a rela-
tively warm ocean and colder landmasses. The second
mechanism may be called the upper-level jet streak/trough
control of cyclogenesis (e.g., Uccellini etal., 1984; Uccellini
and Kocin, 1987). It is proposed that the circulation
patterns associated with jet streaks establish an en-
vironment within which low-level processes can further
contribute to cyclogenesis. The transverse ageostrophic
components associated with jet streaks aloft combine with
the longitudinal components associated with trough-ridge
systems and can provide for the upper-level divergence
conducive to surface cyclogenesis as envisioned by Bjerknes
(1951). It appears that the boundary-layer mechanism is
more responsible for the early formation of the coastal
cyclone while the upper-level forcing mechanism is more
responsible for the later development. One example is the
case of GALE IOP#2 (GALE, 1986), in which there are no
migratory shortwave trough/jet streaks aloft to account for
the cyclogenesis at the early stage. As a shortwave trough
aloft moves over the genesis region at a later time, the
cyclone begins to move northeastward and develops
further along the coastal front. In order to understand the
effect of differential heating on the development of a
coastal cyclone, it is important to study the response of a
baroclinic flow to alow-level heating. In this paper, we will
review the responses of a baroclinic flow over a prescribed
low-level heat source studied by Lin (1989b, 1990a) and
some recent results.

In order to help understand the basic dynamics of
the responses in a rotating shear (baroclinic) flow, we will
review the responses in a rotating uniform (barotropic) flow
first.

1. Steady Barotropic Flow
The small-amplitude equation of vertical velocity fora

steady, three-dimensional, stratified, hydrostatic Boussinesq
flow in a rotating system may be written as

Uy~ fv' =—(11p,) P, (38)
UV, +fu'==(1/p,)p, (39
P =(gPol 6,)6 (40)

’

Wy +w,=0 @1

U6+ (0,N1g)w'=(6,/¢,T;)q . 2)
The above equations may be nondimensionalized by

(x.9)=(x/b,y/b); z=z/H,;

(i@,7)=(u' /U NV IU);

W=w'b/(R,UH,); p=p'/(p, fUb);

6=(6'gH,)/ (f 6,Ub);

G=q gH,/ (¢, LU f), 43)
to yield (with tildes dropped)

R —v+p,=0 44)

Ry tu+p,=0 (45)

p,—0=0 (46)

Uy + Vy+ Row, =0 @7

6, +w=gq, (48)

where bis the horizontal scale of the heat source, and R ,=U/
Jb and H,=fb/N are the Rossby number and the déformation
depth (e.g. see Buzzi and Tibaldi, 1977; Pierrehumbert and
Wyman, 1985).

To investigate the inertial effects, we will consider the
flow response in a quasi-geostrophic system. | This will
provide a basis for comparison. Equations (44)-(48) can be
reduced to a single equation for the pressure perturbation by
making the quasi-geostrophic approximation, i.e., by retain-
ing the zeroth and first order terms in a Taylor series
expansion of the dynamical variables in powers of R, (for
details, see Pedlosky, 1982):

d -
g(&wgp)—qz- 49)

The lower boundary, with Ekman friction (Charney and
Eliassen, 1949) included, requires

’ U ’ 8 ’ 1 12y 47
=— = —E
W B = );‘_

atz=0, (50)
where E=V/(fH,") is the Ekman number, and {” is the vertical
component of the relative vorticity. The nondimensional
form of the above equation is
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Puz+ [(E2)IR,){=q atz=0. (51)
For a low-level thermal forcing, we may assume
g (x,y,2)=h (x,y)e ¥, (52)

where h'(x, y) is the horizontal distribution of the heating, and
H, is the e-folding depth of the heating. The above equation
can be expressed in nondimensional form:

g(x, y, 2) = h(x, y) €%, (53)
where y=H,/H,=NH,/fb is the aspect ratio of the heating
depth to the deformation depth.

To solve the problem, we make the double Fourier
transform in x and y of Egs. (49), (51), and (53):

A

4 A R
b,—K* z_(Tﬁ)eM’ (54)
with
. (UDEVEE L Rk DeHT
p.—A{ R,k ‘b= - at z=0.
(55)
The general solution of Eq. (54) can be written as
N o ﬁ}ae-zf?’
=Ae*ipple "I 56
¥ ik(1-7#K?*) (56)

The upper boundary condition requires p—0, which implies
B=0. Afterapplying the lower boundary condition (55), the
solution in the Fourier space can be obtained:

hy
ik(1-72K%)

+(E”2!2)(1—j/K)

K
{ R, ik+(EY?12)K

D=

ce Ko g2l7y (57)
Other variables are related to p by the following relation-
ships:

W=E=Pgtq, U==Dy V=D

{=Vip, 6=R,(pe-a,), (58)
where { and & are the vertical component of relative vor-
ticity and the horizontal divergence, respectively. The
vertical velocity in the Fourier space can then be obtained
by using Egs. (57) and (58).

Again, we assume a bell-shaped warm region associ-
ated with low-level sensible heating:

I

p T
T (x,y)=—2—-. 59
(r21p*+1)"? 6D

Toafirstapproximation, the diabatic heating rate associated
with the above specified warmregion in a basic flow (U) can
be specified as

i N260 ’

2 Jw . | (60)

As discussed in Malkus and Stern (1953), the diabatic
heating rate is mainly created and maintained by horizontal
temperature advection due to small-scale turbulence and is
not altered significantly by convective motions of the scale
of w’. Thus, the last term of the above equation may be
neglected. After carrying out the Fourier transform of Eq.
(59) and the approximated form of Eq. (60), we have

h(k,)=iTkeX/2m. (61)
Substituting Eq. (61) into Egs. (57) and|(58) in Fourier
space, the variables p, W, i, V, & and & can be solved
analytically in the Fourier space and then transformed
back to the physical space numerically using a Fast
Fourier transform (FFT) algorithm.

Figure 16 shows a case of quasi-geostrophic inviscid
flow over an isolated warm region which has a maximum
temperature and a half-width of 7.5 and| 1, respectively.
The basic flow blows from left to right. According to Eq.
(60), there exists heating (cooling) upstream (downstream)
of the center of the warm region. Both R, and y have a
value of 0.2. The dimensional parameters may be con-
sidered as U=10 m s, b=500 km, =107 s, N=0.01 s7,
H,=1 km, H,=5 km, and T,=20 K. The|response of the
atmosphere to the heating and cooling associated with the
warm region at z=0.05 (250 m) is an upward (downward)
motion upstream (downstream) of the center of the warm
region (Fig. 16a). Upstream (downstream) of the region
of upward (downward) motion, there exists a region of
weak compensating downward (upward) motion. In fact,
the vertical velocity field is in phase with the diabatic
heating. The thermal forcing produces a region of high
buoyancy (less dense) air in the vicinity of the warm
region (Fig. 16b). The buoyancy is defined as g6'/6,, which
then produces the low pressure region near the surface
(Fig. 16c) as required by the hydrostatic balance. On both
the upstream and downstream sides of the region of high
buoyancy and low pressure, there exist regions of weak low
buoyancy and high pressure, respectively. At this level
(z=0.05), the air parcel experiences a cydlonic circulation
near the center of the low pressure region, where there
exists a cell of positive relative vorticity (Figs. 16d and €).
Two regions of weak negative vorticity appear to be on both
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Fig. 16. Inviscid quasi-geostrophic barotropic flow over a bell-shaped warm region with a maximum perturbation potential temperature (T,) and the half-
width (b) of 7.5 and 1, respectively. The parameters associated with the basic flow are: R,=02, 1=0.2, E=0. Six horizontal fields at z=0.05 are
shown: (a) vertical velocity, (b) buoyancy, (¢) perturbation pressure, (d) relative vorticity, (e) horizontal vector wind, and (f) divcrgénc’e. Two cross
sections along y=0 are shown: (g) vertical velocity and (h) perturbation pressure. The thick dashed lines in (2) and (¢) indicate the contour of T=4.
Notice that all variables are nondimensionalized. (From Lin, 1989a)
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the upstream and downstream sides of the positive
vorticity. Notice that the relative vorticity reaches a maxi-
mum of about 0.6f, which is relatively high for the quasi-
geostrophic approximation to be valid. Figure 16f shows
the divergence field at z=0.05, which has a convergence
(divergence) upstream (downstream) of the center of the
warm region. The divergence field is related to the vertical
motion by the relationship &=-w,.

Figures 16g and h display the vertical cross sections
of the vertical velocity and perturbation pressure along
y=0. The vertical velocity field (Fig. 16g) near the warm
region center is mainly dominated by an upward motion
upstream followed by a downward motion. The absolute
value of the vertical velocity increases with height until
z=0.2 and then decreases. Weak compensative downward
and upward motions are found far upstream and down-
stream, respectively. The air parcel is lifted near the center
of the warm region and displaced slightly downward far
upstream and downstream. There exists a strong vortex
stretching near the center of the warm region and two
regions of weak vortex compression far upstream and
downstream. The pressure perturbation (Fig. 16h) is almost
confined below the e-folding depth of the heating, i.e.,
z=0.2. Near the warm region center, the perturbation
pressure decreases exponentially with height and reverses
its phase at a level of about z=0.35. The resulting high
pressure is associated with the compensative divergence
at this level, instead of convergence at the lower level. The
amplitude of the perturbation pressure decays ex-
ponentially with height as also can be detected from the
solution, Eq. (57).

To investigate the inertial effects, we may combine
Egs. (43)-(47) into a single equation for w:

R§WM+WR+V§W=V§Q. (62)

Making Fouﬁer transforms of the above equation and Eq.
(53) gives

(63)

|
The geneﬂal solution of the above equation can be written as

#=fexp(iKe/\ (RRE—1))
+Bexp(—iKz/ (Rsz—l))

ﬁzjﬂKze’”?’

t P (RE-1) ©4)

The lower boundary condition requires w=0 at z=0. The

solution is composed of two parts: (a) R24*>1 and (b)
RyK*<1. For R2F>1, the upper boundary|condition
requires B=0 to allow the energy to radiate upward to
infinity. Thus, the solution in this upward propagating
wave regime can be obtained:

-__hPE [eKe/R-1)"2_ ez
VK + (R -1)

==

for RZk*>1. (65)

The solution in the other regime (R*k*<1) can be ob-
tained in a similar way except it requires the splution to
vanish at infinity. As discussed in Part I (Lin, 1994), this
regime is called the evanescent wave regime. The solution
reads

—hyK?
PK*~(1-R2K2)

112

[e—Kzf(l-ngz) 7]

A
w=

for R2K*>1. (66)
The other variables can be obtained:
beggl], wee-[heiraz), 67
ik"J; z
o REEl
u=—2 ; 68
-re? !
1A;_Rfszﬂ;cﬂ )
e’
b=L(g-w) (70)
ik
b=—K2p-iR2kW,, (71)
S=—R .. (72)

Figure 17 shows an example of an inviscid flow with
R,=1 past an isolated warm region. The parameters associ-
ated with the flow and the diabatic source/sink are¢ 9=1 and
T,=1.5. The dimensional parameters may be considered
as U=10 ms™, b=100 km, /=10 s, N=0.01 s, H;=1 km,
H,=1 km, and 7, =4 K. The response of the fluid to the
diabatic heating at z=0.25, corresponding to a dimensional
height of 250 m, is an upward motion upstream and near the
center of the warm region followed by a downward motion
downstream (Fig. 172). Compared with the quasi-geo-
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Fig. 17. Same as Fig. 16 except with inertial effects included. The parameters used are: T,=1.5, b=1, R,=1, and j=1. Solutions can be foundin Egs. (65)-
(72). (From Lin, 1989a)
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strophic case (Fig. 16), the major regions of upward and
downward motion are shifted downstream. This can be
explained by the advection effect because the inertial
terms, i.e., the R, terms, play a significant role in the
present case. Even though not shown in Fig. 17a, there still
exists a weak compensative downward motion associated
with the major region of upward motion (Fig. 17g). The
horizontal pattern of the vertical velocity is more asy-
mmetric in the basic wind direction than that in the quasi-
geostrophic case. The buoyancy field (Fig. 17b) is similar
to that of the quasi-geostrophic case, except there exists
a region of high buoyancy (less dense) air far down-
stream. The major region of high buoyancy near the
center of the warm region is mainly produced by the
diabatic heatingand cooling. The indirect effect on the
buoyancy due to vertical motion (Eq. (48)) is not pro-
nounced at such a low level because the vertical velocity
is weak near the surface.

The perturbation pressure pattern (Fig. 17c¢) is no
longer as similar to the perturbation buoyancy pattern as
that of the quasi-geostrophic case. This is mainly caused by
the vertical propagation of the thermally induced inertia-
gravity waves. In fact, the pressure field is almost out of
phase with the buoyancy field. The V-shaped (or U-shaped
as used by Smith, 1980) pattern of the perturbation
pressure, also pronounced in other fields, is an indication
of the up'pvard propagation of energy as shown in a non-
rotating mountain wave problem (Smith, 1980) and in a
nonrotating diabatic heating problem (Lin, 19862; Lin
and Li, 1988). The group velocity calculation of Smith
can be extended to include the Coriolis force, which gives
the concentrated region of the wave energy:

y2=["‘(R212—1)(k"-+12)”2”’f°fRok2>z (73)

With no rotation, the above equation reduces to the formula
derived by Smith. With the rotational effect included,
the wave| energy is still concentrated near the parabola
des-cribed by the above equation. However, the latus rectum
becomes larger compared to the nonrotating case. In addi-
tion, the above equation indicates that only the wave part
of the disturbance contributes to the upward propagation
of the energy. Therefore, the V-shape is less pronounced
for a flowjwith a smaller Rossby number. Further evidence
for upward propagation of the wave energy is the up-
stream tilt of the disturbance as shown in the cross sections
at y=0 (Figs. 17g and h). The region of maximum and
minimum/perturbations are shifted farther downstream with
height, which indicates that the wave energy is both
propagated upward and advected downstream. The vor-
ticity field indicates that there exists a negative vorticity
center just upstream of the warm region center, followed

by a strong positive vorticity center and a negative vor-
ticity center far downstream (Fig. 17d). The significant
difference from the quasi-geostrophic case is that the posi-
tive (negative) vorticity is associated with the high (low)
pressure and not the low (high) pressure. The positive
vorticity is no longer in phase with the low because the
vertical velocity term is as important as the pressure term
in Eq. (71) for a flow with a larger Rossby number. This
distinction has also been made in a study of a low-Froude
number flow over mesoscale mountains, such as the
Central Mountain Range of Taiwan, by Lin ef al. (1992). In
their case, the Taiwan mesolow does not coincide with
the mesovortex. The mesolow is located on the southeast
slope of the mountain, while the mesovortices are drifting
downstream with the basic wind.

Due to the weaker rotational effect, the vector wind
does not deflect as strongly as for the quasi-geostrophic
case. However, the cyclonic flow around the region of
positive vorticity, not the low pressure, is still evident in
this case (Fig. 17¢). The divergence field is related to the
vertical velocity field by Eq. (72) (Fig. 17f). A region of
convergence near the center of the warm region is accompa-
nied by two regions of divergence upstream and down-
stream. Figures 17g and h show the cross sections of the
vertical velocity and perturbation pressure along y=0. The
major difference from the quasi-geostrophic case is that
the phase tilts upstream with height. The perturbation
pressure field is in phase with the vertical velocity overall,
which indicates that the wave energy is propagatgd upward

because the vertical energy flux, J-p' w'dx, is positive

(Eliassen and Palm, 1960; Jones, 1967).

With the Ekman friction included in the quasi-geo-
strophic flow, there are three significant features of the
resulting disturbance: (1) an upstream-downstream asym-
metry, (2) an upstream phase tilt in the lower layer, and (3)
weakening of the positive vorticity and the low (Lin, 1989a).
The upstream-downstream asymmetry is similar|to that of
Buzzi and Tibaldi (1977) for a quasi-geostrophic flow over
a mountain. The low-level upstream phase tilt is con-
sistent with that of Smagorinsky (1953), who investigated
the response of a quasi-geostrophic flow over a diabatic
source with 3 effects and baroclinicity included. These
two phenomena are explained by the following drgument.
At z=0, the maximum positive vorticity is located at the
warm region center as shown in Fig. 16. According to the
lower boundary condition, Eq. (50), associated with the
Ekman friction, the maximum upward motion will be
shifted from the upstream in the interior fluid to the warm
region center at the top of the Ekman layer (z=0). Thus,
there exists an upstream phase tilt with height in the
lower layer. The disturbance associated with the upward
motion is then advected by the basic wind, which gives
the asymmetric pattern of the vertical velocity.
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2. Baroclinic Flow

The development of this theory of coastal cyclogenesis
is analogous to the development of the theory of lee cyclo-
genesis proposed by Smith (1984, 1986). Both quasi-
geostrophic and semigeostrophic flow over a low-level
diabatic heat source have been investigated by Lin (1989b,
1990a) and will be reviewed below.

For an inviscid Boussinesq fluid on an f-plane with
constant basic state stratification, the linearized quasi-geo-
strophic potential vorticity equation and the thermodynamic
equation applied at the surface can be written as (e.g., see
Smith, 1984; Bannon, 1986)

FENUE R i
(ar+U8x+V8yJ(Vﬁp+N2p”)

2
iRl s (74)

cPI;N2

d d N 4 4
{8_;+U§;+V'EE)6 +u, O +v,6,+w 6,

(75)

where subscripts denote partial differentiation. With the
hydrostatic, geostrophic wind and thermal wind equations,

6'=(8,/gp,)p", (76)
Wo=(=11FP)pys Vy=(11£ PP, amn
U=(-g/f6,)6,; V,=(g/f6,)6,, (78)
Eq. (75) becomes
(éa?"Uga;*V%)Pl-(Di-p'xﬂép'y)wmzw’
=(gp°)q' atz=0. (79)

e L

The baroclinic waves associated with the system of
Egs. (74) and (79) are dispersive waves with real fre-
quencies (Smith, 1984), which can propagate along the
surface of the earth in the presence of a horizontal tempera-
ture gradient.

The deformation depth or Rossby depth of the flow,
H,=fLIN, has a value of about 10 km for a flow with =10
s, L (horizontal scale) = 1000 km, and N=10?s. Compared
with the deformation depth, the thickness of the diabatic

heating (~1km) is very small. In this way, we mdy assume
that there exists no interior thermal forcing as a first approxi-
mation. Using the shallow heating assumptioni Eq. (74)
reduces to the homogeneous form:

V2, iz o
up +(5§) P=0. (80)

In deriving the above equation, we have a.ssumed%that there
exists no initial potential vorticity anomaly. prldng the
Fourier transform of the above equation and applying the
upper boundary condition, which requires the solution to be
bounded at infinity, and the lower boundary ¢ondition,
which requires w=0 at z=0 for a flow over a flat surface, we
obtain

A . fI]z . fvz' A
P,+[1k(%+—“N|K|)Hf(";*'m)]P

o =8P, a

_(C__pT;N|K|)q’ | (81)

where U, and V, are the surface wind speeds in the x and y
directions, respectively. The vertical shears, U, and V,, are
assumed to be constant.

The above equation is similar to Eq. (4.1) of Smith
(1984) except for the forcing term. Similar to the uniform
flow case, the heating rate may be approximated by

q’(x,y)=cp(Uoim%)r'cx,y). 82)

dx

Making the Fourier transform of the above equation and by
straightforward manipulation of Eq. (4.1) of Smith (1984)
and Eq. (81), we obtain a relationship between the oro-
graphic forcing and the thermal forcing, namely, |

_g »
h ,¥)= )T N
n(5)= (DT (x,9)

(2]

(83)

where h,,(x, y) is the shape of the mountain. The above
equationmeans thattheresponse ofa quasi-geostroi':hic flow
over a stationary cold (warm) region is equivalent to that
overamountain (valley)if the forcings are of the same shape.
According to the above equation, a cold region with a
potential temperature anomaly of 5.3 K corresponds to a
mountain with a height of 2 km if 7,=260 K and N=0.01 s™.
This analogy has also been illustrated by Smith (1979),
where an anticyclonic circulation can be produced by a
quasi-geostrophic flow over either a mountain dr a cold
dome. .

The solution of Eq. (81) can be found by assur*ning that
there exists no pressure perturbation initially: |
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7 _gpaf
I S -
p(k,l,z,t) (CPT;NIK])
Gg(k,1)(1—¢Bt)e NIKl/f
' B ., (84)
where
B_Ik(DL-FNIKI)HE“,‘,’JrN[KP‘ 85)

The perturbation pressure in the physical domain is then
recovered by the inverse Fourier transform. Equation (84)
describes the formation of a baroclinic cyclone if there
exists a level at which the basic wind reverses direction,
as will be discussed later. This is similar to the lee
cyclogenesis problem as studied in Smith (1984, 1986).
We thus propose this mechanism as a possible prototype
of East Coast cyclogenesis. The problem is also similar
to the Eady model (Eady, 1949) except that the rigid
lid assumption is removed. In this way, the baroclinic
instability of the Eady type is avoided (e.g., Pedlosky,
1982).

A. Quasi-Geostrophic Baroclinic Wave Generation by Two-
Dimensional Diabatic Heating

For a two-dimensional quasi-geostrophic flow with

diabatic heating, Eq. (84) reduces to

, -gp, = oA EY(1—e Bty Nlklz/f
P("’”):(cg;;{)J G(k)(1-e1)
po

= |k|B
~ékxdk, (86)
where
B=ik(U,+H,U,); H=f/N|k|. (87)

As discussed by Smith (1984), the integral in Eq. (86) will
go to zero (p—0) as |x| —eo due to the rapid oscillation
of the exp(ikx) term if the integrand is well behaved
according to the Riemann-Lebesque lemma (Lighthill,
1970). This implies that the disturbance will remain
locally in the vicinity of the diabatic heat source/sink. The
baroclinic waves can only be generated if the denominator
of the integrand vanishes for some value of k. This is
possible if U, and U, have opposite signs, i.e., if there
exists a back-sheared basic flow and a wind reversal level
( Ik*l =fINH* = - fUJ/NU,). An asymptotic solution for
large x and ¢, similar to that of Smith (1986), can be ob-
tained, which describes a train of baroclinic waves ex-
tending from the center of the diabatic heating to the moving

point x=U,t. A bell-shaped heat source/sink in the x di-
rection with a horizontal scale of b, such as that of Eq. (93)
of Lin (1994), can be used. A Fast Fourier Transform
(FFT) algorithm is then employed to obtain the solution
in physical space.

Figure 18 shows an example of a baroclinic quasi-
geostrophic flow over a diabatic cooling with a cooling
rate of -0.24 J(kg-s)" and a half-width of 75 km. .The
basic wind is assumed to be.of the form U(z)=(-10+0.0057)
ms™. This gives a wind reversal level of 2 km. The grid
interval and the number of grid points in the x direction
used in the calculation are 30 km and 128, respectively.
After 6 hr (Fig. 18a), there exists a region of perturbation
high pressure near the center of diabatic cooling (x=0). The
high is associated hydrostatically with cold air near the
cooling center. On the downstream side (x<0), there exists
a wider region of weak low-pressure perturbation. The
disturbance decays exponentially with height as indicated by
Eq. (86). After 12 hr (Fig. 18b), the perturbation high
pressure strengthens to a value of about 3.4 mb, while the
perturbation low pressure deepens gently|to a value of
about -1.5 mb. After 18 hr (Fig. 18c), the high pressure
deepens to about 3.6 mb, while the low pressure increases
to about -3.8 mb. After 24 hr (Fig. 18d), the high
pressure weakens to about 3.2 mb, while the low pressure
keeps strengthening to a value of -5.6 mb] The upshear
vertical tilt of the trough is evidence of the baroclinic wave
generated by the diabatic heating. This allows the heat
flux to be transported northward meridionally (in the posi-
tive y direction) (e.g., see Gill, 1982). The phase line of
the trough becomes more vertical at the later stage (not
shown). Once the available potential energy (APE) stored
in the basic baroclinic current has been transferred to the
forced baroclinic waves, the phase line will become ver-
tical. For the present case with H=2 km (wind reversal
level), the theory predicts a reasonable wavelength of
1250 km (A=27/k*=27NH/f) of the baroclinic wave with a
dipolar structure.

Figure 19 shows the time evolution of the absolute
minimum and maximum surface perturbation pressures for
the case of Fig. 18. The perturbation high pressure grows
rather rapidly in the early stage, reaches its maximum of
3.65 mb at 17 hr, and then decays gradually afterwards.
The perturbation low pressure develops rather slowly in
the first 12 hr, and then deepens much more rapidly at the
later stage. The rapid development of the perturbation
low pressure after 12 hr can be explained by a group velocity
argument. The group velocity of the baroclinic wave
(Smith, 1984, 1986) is

f
N|kf

c,=U(H)- (k-U)k, (88)

where H=f/N|k| and U(z)=U,+U,z.| The above
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Fig. 18. Two-dimensional baroclinic waves forced by diabatic cooling with a cooling rate of -0.24 J (kg-s)” and half-width of 75 km. The solution is given
by Eq. (81) with U(z)=(-10+0.005z) ms™. Other parameters are: /=105, N=10? s, 7,=260 K, and Po=1kgm?* Six levels and four time steps
of perturbation pressures are shown: (a) 6h, (b) 12h, (c) 18 h, and (d) 24 h. The wind reversal level is located at 2 km (labeled by z=H). The location
of an air parcel, originating at x=0 and moving with the group velocity (c;=U,=-10 ms™), is indicated by a dot at each time step. The arrows in (a)
illustrate the direction of the basic wind. The dashed line in (d) is a constant phase line. (From Lin, 1989b)
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Fig. 19. Time evolution of absolute minimum (a) and maximum (b) surface
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equation reduces to ¢,,=U, for a two-dimensional wave
(Smith, 1984). Asindicated in Eq. (82), amoving airstream
over the diabatic cooling, ¢’ (x)=0,/[1+(x/b)*], cor-
responds to that over a cold region extending from x=0
to - , T'(x)=(Q,blc,U,) tan’(x/b). This is analogous to
an airflow over a flat plain from a plateau, according to
Eq. (83). Therefore, the fluid is trying to form a high in
the vicinity of the cooling center (x=0) and a first trough
downstream (x<0). For example, consider an air parcel
originating at x=0 near the surface (denoted by a dot in
Fig. 18). It will take 12 hr to advect to 432 km (j.e., x=-432
km in the figure) downstream at the group velocity c,=U,
=-10 ms”, which is approximately the region of the de-
veloping low (Fig. 18b). During the 12 to 24 hr period,
the air parcel reaches the region of the developing low. Thus,
the low deepens much more rapidly at this stage (Figs. 18c
and 19). Like the perturbation high pressure near the
cooling center, the perturbation low pressure will reach a
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minimum and increase its amplitude afterwards since the
air parcel originating at x=0 near the surface will pass
through the region of the well-developed low. Thus we
may conclude that the diabatic heating plays an im-
portant role in converting the available potential energy
stored in the baroclinic current to the thermally forced
baroclinic wave.

To show the importance of the baroclinicity and
the existence of the wind-reversal level in the above cyclo-
genesis mechanism, we perform four cases similar to the
one outlined above, except that now the baroclinicity and
wind-reversal level do not exist (Fig. 20). For quasi-geo-
strophic, baroclinic flow over the diabatic heat source
with forward shear (i.e., no wind reversal, Figs. 20a and b),
the disturbance is much weaker compared with the corre-
sponding cases with wind reversal (Fig. 18). This indicates
that forward vertical wind shear tends to suppress the
development of the low or high pressure. For quasi-geo-
strophic, barotropic flow over the diabatic heating
(cooling) region, a perturbation low (high) of -5 mb (+5 mb)
is produced after 24 hr (Figs. 20c and d). The surface low
(high) produced by the diabatic heating (cooling) is

(a) Heating [

Smb
1 &

(¢) Heating (no shear)
wrH——- - ———— %t

T =
g S
.v’—_‘.

=1000 0 1000
X (KM)

ZTRNY
e

located about 400 km downstream of the heating (cooling)
center. Notice that a moving airstream over the diabatic
heating corresponds to that over a warm region extending
from x=0 to -, but with the gradient concentrated in the
region of the diabatic heating, for Fig. 20c. | The low
pressure at the surface is produced by the less dense air
above the warm region in a barotropic flow as required by
the hydrostatic equation. Thus the low pressure forms on
the warm side or the downstream side of the diabatic
heating center (x=0). The results are consistent with the
quasi-geostrophic flow over a warm region as discussed
earlier in Section III.1. The response is quite different
from the low-high couplet produced by diabatic heating
in a backsheared baroclinic flow.

B. Three-Dimensional Response

Some interesting discussions (Bannon, 1990; Lin,
1990b) have been presented since the publication of the
above proposed cyclogenesis mechanism by Lin (1989b).
The major comments of Bannon on Lin’s work are: (a) the
forcing scale is too small to use the quasi-geostrophic ap-
proximation, and (b) the vertical distribution of the surface

(b) Cooling

1 (d) Cooling (no shear)

-1000 0 1000

Fig. 20. Six levels of perturbation pressures after 24 h are shown for four cases: () Q,=0.24 T (kg—s)", U(z)=(-10—0.0052) ms’’ (forward shear with heating),

(b) same as (a) except with 0,=-0.24 J (kg—s)" (forward shear with cooling), (¢) 0,=0.24 T (kg—s)"! (no shear with heating), and Cfd) same as (c)
except with @,=-024 1] (kg—s)" (no shear with cooling). The heating function is the same as that prescribed in Fig. 18.
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heating should be included. It was discussed in Lin’s reply
(1990b) that the heating scale should be considered to be

"larger than its half-width and that the cyclone scale is not
directly proportional to the forcing scale in a transient flow,
unlike the steady state flow over amountain. In addition, the

_ quasi-geostrophic approximation was improved in a subse-

" quent paper (Lin, 1990a) using the geostrophic momentum
approximation in a semigeostrophic model. In the second
comment (b),it was shown by Lin (1990b) that the contribu-
tion of the vertical distribution of the surface heating does not
alter the low to be a high as claimed by Bannon (1990). In
the following, we will show some recent results of a continu-
ously stratified baroclinic flow over a vertically distributed
heat source.

Using the geostrophic momentum approximation
(Eliassen, 1962; Hoskins, 1975), the nonlinear ageostrophic
advection of the geostrophic wind can be included in the
model. The governing equations in the geostrophic space
may be written as

9 -1 1
[BT+(U P ”ax p.f X)BY]Q3
gpafz r
E ) 89
(CPT;NZ Q’z ( )
H’ZT"'(%‘E}TH’Y)ITH+(K+$H’X)H’ZY
2 gpo ’

I = H g, Now = (258 :r

atZ=0,Z,  (90)

where
r f 17[
o VHH+N 72 (91a)
P gk (91b)
_x+f,
Yoy 8 (91c)
=pe—y C
=7

Z=1z, (91d)
T=1 (O1e)
H=p+—(ug+vg) (911)

The potential vorticity is then equal to O,/ p,f. Similar to that
in Lin (1990a), the pressure in the geostrophic space is
separated into a basic part and a disturbance part, i.e., JKT,
X, Y,2)=IIZ)+IT(T,X, Y, Z). The basic part is assumed to
satisfy the hydrostatic balance,

T 0
75z ©)

Thelowerboundary condition with the mountain and Ekman
friction included may be written as

‘ B FRPANT Y
WL XY )= (554 (Ut ) 5+ (V) 2%

JVTIT
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h, (T,X,Y)+ VZI?'(T X,Y)

atZ =0,
and the upper boundary condition at the imposed rigid lid is

w(T,X,Y)=0 atZ=2Zr. 93)
In the above equation, we have implemented a simple
Ekman layer boundary condition as described earlier in
Section IIL.1. The Ekman number corresponds to V/fH,?,
where H,is a height scale. We then substitute Eq. (93) into
Eq. (90) for the lower boundary condition. The system of
Eqgs. (89) and (90) can be solved numerically by the leap-
frog and the second-order center-difference schemes ap-
plied to the time and space derivatives, respectively. The
pressure perturbation in the geostrophic space I1” can be
solved from Eq.(91a) in the Fourier space and transformed
back to the geostrophic space numerically by an FFT algo-
rithm. The variables in the physical space are then re-
covered by applying the inverse geostrophic transfor-
mation based on Egs. (91b)-(91f). In the following, we
have used the following numerical parameters: fAmlO min,
Ax= Ay=60 km. The total grid numbers are 64 in both the
x and y directions. As mentioned earlier, |a bounded
upper boundary condition is applied at z=10 km. A
periodic lateral boundary condition is assumed implicitly
by the use of an FFT algorithm.

To check the model, we perform a sirnulation of
baroclinic flow over a bell-shaped mountain. The mountain
shape is assumed to be

ko , 94)

by (x,y)=
" [xzfa§+y2;"a§+1]3"2

where a, and a, are the horizontal scales of the mountain
in the x and y directions, respectively. The mountain
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height (h,) and the horizontal scale (a,=a, in this case) of
the orography are assumed to be 1.5 km and 250 km,
respectively. The basic wind, whichis assumed to be U(z)=
(-15+0.004z) ms™ and V(z)=0 ms™, blows from east at the
surface and reverses its direction at z=3.75 km. The Coriolis
parameter is assumed to be 10 1. This case is identical
to that of Chen and Smith (1987) except that the basic wind
is incident from the east-west direction instead of the
north-south direction. Figure 21 shows the perturbation
pressure, perturbation potential temperature, geostrophic
vorticity, geostrophic vector wind fields at the surface and
cross sections of the perturbation pressure and perturbation
potential temperature along y=0 after 24 h. The basic
features of the semigeostrophic model results are similar to
the theoretical results of Smith (1984, 1986) and Chen and
Smith (1987) and the nonlinear primitive equation model
results of Lin and Perkey (1989). In the vicinity of the
mountain top, an anticyclonic flow (Fig. 21d) develops,
which is associated with the mountain-induced high
pressure (Fig. 21a). The maximum perfurbation

pressure is 2.2 mb. The mountain high is formed by the
subgeostrophic flow of fluid particles approaching the
mountain. Fluid particles are deflected slightly to the left
upstream of the mountain if one faces downstream. This
anticyclonic circulation is also shown in the geostrophic
perturbation vorticity field (Fig. 21c). |A pool of re-
latively cold air is associated with this mountain high (Fig.
21b). The perturbation temperature has a minimum of -4.0
K. The low, which has been advected by the mountain
high, is formed in the northwest corner to the lee of the
mountain (Fig. 21a). The minimum value of the pertur-
bation pressure is -3.6 K. A similar pattern of positive
perturbation temperature (warming) (Fig. 21b) is as-
sociated with the low. The perturbation temperature
reaches a maximum value of 3.5 K. Noti¢e that this pool
of warm air is a combined effect of warm advection and
downslope adiabatic warming. The cross sections of
perturbation presstre and. potential temperature (Figs. 21e
and f) indicate that the forced baroclinic djave is shallow.
Unlike the case of Lin and Perkey (1989), the blocking

Y (KM)
Y (KM)

¥ (KM)

Y (KM)

X (KM)

-10  -05 00| 03 1.0

X (KM)

Fig. 21. Inviscid semigeostrophic continuously stratified baroclinic flow over a bell-shaped mountain with ,=1.5 km and a,=a,=250 km. The basic wind
is U(z)=(-15+0.004z) ms™ and V(z)=0 ms"’, and blows from the east at the surface and reverses its direction at z=3.75 km. Other parameters are:
F=10*s1, N=0.015", T,=260 K, and p,=1kgm™. The dashed curve in (a) denotes the terrain contour of 360 m. Four horizontal fields at the surface
after 24 h areshown: (a) perturbation pressure, (b) perturbation potential temperature, (c) geostrophic relative vorticity, and (d) vector wind. Vertical
cross sections of perturbation pressure and potential temperature along y=0 are shown in (e) and (f), respectively.
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effect is not pronounced in this case. This is due to the
combined effect of the smaller mountain used and the
neglect of the nonlinear ageostrophic advection of the
ageostrophic wind.

Figure 22 shows the perturbation pressure, perturba-
_tion potential temperature, geostrophic vorticity, and geo-
" strophic vector wind fields at the surface and cross sec-
tions of the perturbation pressure and perturbation po-
tential temperature along y=0 after 24 h of a continuously
stratified baroclinic flow over a bell-shaped heat source with
circular contours. The diabatic heating function is pre-
scribed by

9

(22162 +y2 B2+ 1T

g (x,y)= (95)

where b, and b, are the horizontal scales of the heat source in
the x and y directions, respectively. The maximum heating
rate (Q,) and the horizontal scale ( b=b, in this case) of the
heat source are assumed to be 0.24 J/kg-s and 150 km,
respectively. The heating decreases with height exponen-
tially with an e-folding value of 1.5 km. The basic wind,

which is assumed to be U(z)=(-10+0.005z) ms and V(z)=0

- ms”, blows from the east at the surface and reverses its

direction atz=2km, The Rossby number associated with this
flowis about0.33, which is estimated by U,/2fb, with U,=10
ms, f=10*s", and b=b,=150 km. Notice that we have used
the whole width (2b,) for the horizontal scale of the bell-
shapedheatsource, instead of the halfwidth. Hoskins (1975)
places aloose upper limit on the Rossby number at R ,=0.5 for
use in semigeostrophic theory. Therefore, the geostrophic
momentum approximation may still be adquate for describ-
ing the flow in the present case. Inresponse to this isolated
diabatic heating, aregion of low pressure with a minimum of
about -3.19 mb forms in the vicinity of the heating region
after 24 hr (Fig. 22a). There exists a much smaller region
of relatively weak high pressure downstream of the concen-
trated heating region. Associated with the perturbation low
and high pressures are more compact regions of warm and
cold air, respectively (Fig. 22b). This is required by the
hydrostatic equation. The low-high couplet associated with
the forced baroclinic wave is lcated in the vi¢inity of the
forcing region. The disturbance remains loica]ly in the
vicinity of the thermal forcing because the the : ly forced
baroclinic wave has a zero phase speed (Smith, 1984). Atthe
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Fig. 22. Same as Fig. 21 except for flow over a bell-shaped heating region with 0,=0.24 J (kg—s)" and b,=b,=150 km. The heating rate of 0.04 J
(kg—s)™ is denoted by the dashed curve in (a). The basic wind is U(z)=(-10+0.005z) ms™ and V(z)=0 ms™, and blows from the east at the surface
and reverses its direction at z=2 km. The Rossby number associated with this flow is about 0.33.
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surface, the fluid parcel experiences a cyclonic circulation
near the center of the low pressure region, where there exists
a cell of positive relative vorticity (Fig. 22¢). A region of
very weak negative vorticity is generated upstream of the
heating, while a wider region of stronger negative vorticity
is generated downstream of the heating. An inverted trough
forms near the heating center (Fig. 22d), as is often observed
to form along the Carolina coast in many cyclogenesis
events. Both vertical cross sections of pressure and tempera-
ture fields (Figs. 22e and f) indicate that the disturbance is
confined in a shallow layer. The present results are consis-
tent with those with the assumption of shallow heating (Lin,
1989b, 1990a) except that the magnitude of the disturbance
is weaker.

IV. Concluding Remarks

In part II of this series of papers, we have reviewed
the responses of a stably stratified shear flow to a mesoscale
thermal forcing. Observations indicate that this type of
shear flow is closely related to a number of mesoscale
circulations. The mathematical method for solving a two-
dimensional shear flow with a critical level to a prescribed
thermal forcing was described. The mathematical pro-
blem was then extended to a three-dimensional flow and
applied to the dynamics of mesoscale circulation as-
sociated with a mesoscale convective system. Generation
and propagation of internal gravity waves by the heating
were discussed. The mathematical problem was then ex-
tended to solve a stably stratified flow over a meso-c/f3
scaleheat source. The vertical flux of horizontal momentum
and wave energy associated with the thermally forced iner-
t;a—gravxty waves have been described. Both quasi-geo-
strophic and semigeostrophic approaches to the problem
were also reviewed. The solution was then applied to
help undetstand the dynamics of coastal cyclogenesis.

In grder to wholly understand the critical level
effects infa nonrotating shear flow, the nonlinear effects
should be included in the system. However, the present
theory still provides significant physical insight into
the problem. A more realistic treatment of the boundary
layer processes should be used when one applies the
present ries to predict the flow circulation associated
with coastal cyclogenesis. In addition, the upper-level
forcing, such as the jet streak, and the latent heating should
also be considered.
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