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ABSTRACT

The dynamics of mesoscale circulations of a stably stratified flow forced by both low-level and
elevated heat sources or sinks is reviewed. The mathematical problems of prescribed diabatic heating in
a continuously stratified flow have been solved by several authors and have been shown to be useful in
understanding the dynamics of various mesoscale phenomena which commonly occur in the terrestrial
atmosphere. In this paper, we review a relatively wider variety of problems and emphasize more the basic
dynamics. In part I, we discuss the responses of a stably stratified uniform flow to a prescribed thermal
forcing. The governing equations, energy equation, momentum transport, dispersion relation, and various
wave regimes and properties are discussed. Mathematical methods for solving both steady and transient
flows over a meso-y scale heat source are presented. The applications of the mathematical solutions to
problems of heat island, orographic rain, moist convection, and gravity waves traveling on inversions are

also discussed.
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l. Introduction

There are a number of problems in mesoscale dy-
namics which are related to the response of a stably
stratified flow to localized heat sources or sinks. A
phenomenon is defined as mesoscale if it has a hori-
zontal scale of 2 to 2000 km. The mesoscale is often
divided into three subscales: meso-y (2-20 km), meso-
B (20-200 km), and meso-o (200-2000 km) scales
(Orlanski, 1975). In some cases, the diabatic heating
or cooling reaches a quasi-steady state, which may be
represented by a prescribed function. In this way, the
mathematical problem reduces to a stably stratified flow
over a prescribed thermal forcing. Some examples will
be briefly reviewed below to demonstrate that this type
of study is useful in understanding the dynamics of
different types of mesoscale phenomena spanning the
various subscales.

One of the earliest theoretical studies of airflow
over a prescribed heat source was proposed by Malkus
and Stern (1953) in a study of the heat island problem.
They found that the air ascends over the heat island.
As pointed out by Olfe and Lee (1971) and Smith and
Lin (1982), this is not the case if a correct upper boundary
condition is imposed. Observations over heat islands

such as Anegada (Malkus, 1963) and Barbados i(Fig.
22, DeSouza, 1972; summarized in Garstang ef al.,{1975)
showed that there exists a region of descent over the
heat island, followed by an ascent over the ocein on
the downwind side during the daytime. By solving an
associated transient problem, Lin and Smith (1986) also
suggested that the rainfall enhancement occurri}dg on
the downwind side of an urban heat island, such‘; as in
St. Louis (Fig. 1; Braham and Dungey, 1978; Changnon,
1981), may be partly the result of the ascent produced
by stationary heating due to the urban heat island. | This
problem has also been studied by several authors (e.g.
Smith, 1955, 1957; Hsu, 1987a, b; Luthi ez al., 1989).
Circulations associated with sea/land breezes ar:;:f also
related to this process except that the thermal férrcing
is periodic in time. Since the sea breeze prob]e‘lm has
been studied extensively in the last four decades and is
reviewed in several textbooks and literature articles (e.g.,
Rotunno, 1983), we will not review this subject in this
paper.

In a study of the upslope orographic rain prob-
lem, Smith and Lin (1982) solved the mathematical
problem analytically using a prescribed function to
represent the latent heating associated withﬁ the
nonprecipitating or precipitating orographic cIou’c\ in a
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Maps of first echo densities in St. Louis, Mo.: (a) analysis
of 4553 first echoes, (b) set of 4175 first echoes having
bases = 3000 ft, (c) set of 1950 echoes from 44 days se-
lected to insure ground based convective clouds, (d) data for
days with light wind. Downtown St. Louis is denoted by X.
Notice that the first echo formation is on the downwind
region of the city. (From Braham and Dungey, 1978)

stably stratified flow. They found that the phase rela-
tionship between the heating and the induced vertical
displacement is negative in a moving airstream. That
is, descending motion is established just upstream of
the prescribed heated region so that negative displace-
ments dominate in the heating region. This phenom-
enon is consistent with other studies of the orographic
rain problem (e.g., Fraser ez al., 1973; Barcilon et al.,
1980),Ein which it was found that mountain waves are
weakehed by latent heating. Raymond (1972) also
showeo;:l that mountain waves are weakened by heating
and strengthened by cooling in a study of airflow over
a two-dimensional ridge with low-level sensible heat-
ing and cooling (Fig. 2). This phenomenon was then
explained by Lin and Smith (1986) by solving the tran-
sient problem and by Bretherton (1988) by proposing a
group velocity argument. The combined effect of ther-
mal and orographic forcing has also been studied by
Davies and Schar (1986). In their theory, they incor-
porated a CISK-like representation for a non-precipi-
tating |convective cloud in a linear, steady, continu-
ously Jtratified, hydrostatic flow over a mountain ridge.
They found that the effect of combined thermal and
orographic forcing can be significantly different from
that ofl orography acting alone. In particular, in certain
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Fig. 2. Airflow over a ridge: (a) adiabatic, (b) with boundary layer
heating, and (c) with boundary layer cooling; Notice that
the adiabatic mountain waves are suppressed by the heating
and enhanced by the cooling. (From Raymond, 1972)

situations an enhanced (resonant) responsel can occur
with strong winds on the lee slope and a concomitant
large surface pressure drag. Their result+ also sug-
gested that diabatic effects might on occasion play a
major role in inducing strong surface leeside winds.
The response of a continuously stratified atmo-
sphere to diabatic forcing is also relevant to the moist
convection associated with midlatitude squall lines. One
may regard the evaporative cooling in the subcloud
layer produced by the precipitation faIlinE from the
updraft aloft as a stationary heat sink in the reference
frame of the moving line. The steady state assumption
for the cooling in squall-line type thunderstorms is not
an unreasonable one (Lilly, 1979). The mathematical
problem has been investigated by several authors (Thorpe
et al., 1980; Lin and Smith, 1986; Raymond and Rotunno,
1989; Lin and Chun, 1991). The solutions provide a
way to help explain the maintenance of a long lasting
squall line. In solving a similar two-dimensional ini-
tial value problem with beth prescribed condensational
heating and evaporative cooling considered, Raymond
(1986) indicated that the strong speed sel;ectivity of
wave-CISK is due to the requirement that the actual
vertical velocity at the level of free convch[ion exceed
the diabatic mass flux there. In solving the three-di-
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mensional response to a prescribed elevated heating,
representing condensational heating, Lin (1986a) and
Lin and Li (1988) proposed that the V-shaped cloud
tops over severe storms (Fig. 3; also see Heymsfield
and Blackmer, 1988 for a brief review) are formed by
thermally forced gravity waves. By incorporating a
prescribed elevated cooling associated with melting snow,
it has been shown that new convection may be trig-
gered (Lin e al., 1988a, b).

Therefore, the mathematical problem of prescribed
diabatic heating in a continuously stratified flow has
been shown to be useful in understanding the dynamics
of various mesoscale phenomena which commonly occur
in the terrestrial atmosphere by the above authors and

by others. This subject has been reviewed rece ':tly by
Lin and Stewart (1991). However, we will review a
wider variety of problems and place more emphasis on
the basic dynamics. The governing equations |for a
mesoscale atmospheric system will be presented in
Section II. An energy equation will be used to identify
various instability mechanisms. A dispersion relation
will be derived and used to categorize different |wave
regimes. Finally, the wave reflection and effect of
critical level will be discussed. In Section IH, the
response of a uniform, steady, continuously stratified
flow over a meso-y scale heat source or sink will be
described. Both sinusoidal and isolated heat shurces
will be considered. Applications to the orographic rain

Fig. 3. IR GOES images. Stereo height contours are shown when available; an X indicates approximate cloud top position as obtaincd_ from
the visible image. Note that the V-shaped cloud tops formed over severe storms for different cases (From Heymsfield and Blackmer,

1988).




proble

m will be discussed. In Section IV, the transient

flow response to a meso-7 scale heat source will be
reviewed. Both pulse heating and steady heating will
be included. Applications to mesoscale circulations
induced by orographic rain, heat islands, moist con
vection and gravity waves on inversions will be re-
viewed.

Il. Governing Equations of Mesoscale

Sy

stems

Consider an inviscid, incompressible atmosphere

on a planetary f-plane. The momentum equations, the
incompressible continuity equation, and the thermody-

namic|energy equation can be expressed in the form
(e.g., Smith, 1979; Emanuel and Raymond, 1984)
d
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esent the surface heating and/or the elevated latent
The symbols 6, and T, denote constant refer-

The d{abatic heating rate per unit mass, g, may be taken

ence potential temperature and temperature, respectively.

Other
Rayle

symbols are defined as usual. Notice that the
gh friction and Newtonian cooling may be in-

cluded to generalize the above system. Since we have
assumed an incompressible atmosphere, the physical
mechanism responsible for generation and subsequent
propagation of sound (acoustic) waves has been elimi-

nated

from the system.

We may linearize the above system by defining

;;(r, x, ¥y, 7)= U + ult, x, ¥, 2)

¥, X, y, 2) = V(2) + vt X, ¥, 2)

W, %, 3, 2) =
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Lx,y,z)=06(xy z)+ 61 x, 5, 2)

i, x, y, 2) = g1t x, v, 2) (6)
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In the above expressions, the Boussinesq

IFlpproxirna-

tion (Spiegel and Veronis, 1960) has been addpted, which

assumes the density to be constant except

in the buoy-

ancy term. The basic wind is constramet;‘to be uni-

formly horizontal.

The basic state momq:ntum rela-

tions are assumed to satisfy the hydrostatic and geo-

strophic wind balance

0P _
P 0, (72)
-1 9P 1 oP
U==-9%, v=or_%. 7
fPs 9y fPsdx (7h)
The above equations imply the existence| of thermal
wind balance for the basic state
00_19 00 _ f6,
ox & Ve dy & G- : (8)
|
Substituting Eq. (6) into Egs. (1)—(5) and neglecting
the nonlinear terms, the perturbation equations can be
written as
ou’ Uai+va U ~fV 45 197 9)
91 ox Po 9 x :
v ydv, v L 197
a:*Ua Va +Vw+fu 2 ay_O (10)
ow 9w . ow 9 1 9p
sl O 2 g
T e g, L
ou 8 Bw _
dx oy az =l (12)
LT LI T S
8:+Uax+vay+ z (Vu—-Uv ) T "
6, . |
T4 | (13)
The Brunt-Vaisala frequency is defined as
2_890
N =9, iz (14)

and may be characterized as the natural oscillation fre-

quency of an air parcel displaced from its

equilibrium

positions in a continuously stratified atmosphere.

Equations (9)—(13) can be combined to
equation for the vertical velocity:

give a single
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The above mesoscale system includes the following
mechanisms: (a) inertia-gravity wave generation, (b)
convective instability, (c) shear instability, (d) sym-
metric instability, and (e) baroclinic instability (Emanuel
and Raymond, 1984).

The energy transfer equation for the system of
Egs. (9)-(13) with no north-south (meridional) basic
state wind component (V=0) but including the
meridionally sheared zonal flow (U,#0) can be derived
as

(i+U§a-}E+Paqu+p,,uvU
_Posf iy P, & .
U+Ve(pV)=(—2L )64,
901’ +Ve(p'V)=( TN29) q
16
where (16)
£(u 249 24w )4 (< N )’ 62] 17)

is the total perturbation energy, which consists of the
perturbation kinetic energy (first term) and the pertur-
bation potential energy (second term). Taking the
horizontal integration of Eq. (17) over a single wave-
length for a periodic disturbance or from -eo to +eo for
a localized disturbance in both x and y directions gives

Y e

Now we may take the vertical integration of the above
equation from z=0 to the top of the physical domain
z=zr in which we are interested, to yield

JE i
—é'II__poJ- uwl.dz- Pof wvU,dz+(

pogf
9

[ed

-LZTFMdz—p—wumww)

w8 __ )J:T?}}dz, | (19)
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where Ey is the domain-integrated E.
The term on the left side of the above equation
represents the time rate of change in the total perturba-
tion energy in the system. The first term on the right
side represents the vertical momentum flux transfer
between the kinetic energy of the basic current and the
wave energy. When shear instability occurs, tlhe en-
ergy is transferred from the basic state shear flow to
the disturbance, resulting in a net loss of kinetic en-
ergy of the basic state. The second term on thé right
side represents the horizontal momentum flux tiansfer
between the kinetic energy of the basic current and the
wave energy. When inertial instability occurs, the
perturbation grows by extracting the kinetic energy| from
the horizontal basic shear. The third term on the right
side represents the north-south heat flux transfer be-
tween the basic state and the perturbations. [When
baroclinic instability occurs, the perturbation cﬂracts
energy from the vertical shear, which is suppor#ed by
the northward heat flux. The fourth term repriqsents
the forcing exerted by the top boundary. It is JL ro if
the top boundary is a flat rigid surface becausilé that
physical condition constrains w'=0 there. Thi 'term
becomes negative if a radiation upper boundary ondi-
tion is applied, which requires the energy g
below to propagate upward from the domain 1ntc+ sted
The fifth term represents the forcing exerted b
lower boundary. It is zero if the lower boundary is a
flat rigid boundary and positive if there exists ir | gular
topography (e.g., a mountain). The last term op the
right side of the above equation represents the energy
transfer due to thermal forcing. In order for the d stur-
bance to grow, the diabatic heating has to be qdded
where the potential temperature anomaly i8 poﬂuwe
That is, the heat should be added in the warm rdglon
When static or buoyant instability occurs, the 1\)" T term
of the total perturbation engrgy becomes negative. | Thus
the energy is transferred from the potential energ;y (N?
term) to the kinetic energy. |
In this paper, we will focus on the physu:al char-
acteristics of wave generation in a stably straitified fluid
applicable to thermally forced mesoscale cxrculatlons
in planetary atmospheres. Therefore, we will I’GVICW
the basic properties of inertia-gravity wave generation
in the following. Those readers interested in; other
generation mechanisms should consult the varijUS re-
view papers which exist in the literature or standard
texts on the subject. ’ ‘
l




1 Y.L.Lin

For simplicity, we consider an adiabatic linear
system with constant U, N, and f. Under this situation,
Eq. (15) reduces to

d EICY a0 82w Fw 2 W
($+U ¢ %z ay? * 072 o az%
2 8
+N (— 3y }=0. (20)
Assume a wave-like solution for w’
u’:ﬁ(z)exp[i(kx+ly—wr)]. (21)
Substituting (21) into (20) gives
Qa—vjhlz =0
0¥, 2 =0, (22)
dz
where
2 Z_Q‘i
p B i (23)

x is tHe horizontal wave number, (K+%)'%, and R is
defined to be the Doppler-shifted or intrinsic frequency,
@-kU. | The solution of Eq. (22) can be written as
W~etits, (24)
Therefore, the wave property depends on the values of
A. Three different wave regimes can be identified and
defined from the signs of the numerator and denomina-
tor of Eq. (23).

(1) 2 > N> f In this wave regime, A is imagi-
nary. |Disturbances decay exponentially with height
away from the source. Thus, the wave falls into the
evanes}:enr wave regime. When Q >> N > f, Eq. (23)
reduces to

A%E— K2,
|

In this __Extrcme case, the buoyancy and rotational forces
play insignificant roles in the wave generation. The
fluid behaves like a homogeneous fluid, and the flow
field may be adquately characterized as one on poten-
tial flow. An extensive mathematical theory exists to
describe flows of this type (e.g., Lamb, 1932).

(2) N > Q> f In this wave regime, A is real, and
the wa{ve is able to propagate freely in the vertical.

Thus, the wave falls into the vertically propagating
wave regime. One of the two possible mathematical
solutions of Eq. (24) represents a wave propagating
upward, while the other represents a wave ]}ropagatin g
downward. For a wave generated by a low-lievel source
such as a mountain, the Sommerfeld radiation condi-
tion requires the wave to propagate away fron‘r the energy
source (i.e., upward from the mountain tex’Fain). The
other solution has no physical basis and is not retained.
This also applies to the boundary condition .'frll z=+oo for
an elevated thermal forcing. However, both solutions
of Eq. (24) must be retained in the heating layer (forc-
ing region) and the layer between the heating base and
the lower boundary (planetary surface). Since N/f typi-
cally is large in the atmosphere and the pcean, this
wave regime is applicable to a wide range of intrinsic
frequencies. When N > 2 >> fand O(N) = 0(£2), Eq.
(23) reduces to

2
ZZEKZ(%—I).

In this limit, the rotational effect may be ignored and
the flow approaches the nonhydrostatic wave regime.
When N >> Q2 >> f, Eq. (23) reduces to

For this case, the wave generation can be adquately
determined by neglecting both the vertical acceleration
and the rotational effects. Thus, the wave falls into the
nonrotating hydrostatic wave regime. When N >> Q >
fand O(£) = O(f), Eq. (23) reduces to

K2 N?
_Q'z_fz Z

In this limit, the vertical acceleration may be neglected
in comparison with the buoyancy acceleration. There-
fore, the flow approaches a hydrostatic balance, and
the wave falls into the rotating hydrostatic regime. For
the case with N >  >> f, the rotational effect can be
neglected. Therefore, the wave falls into the pure gravity
wave regime.

(3) N> f> Q: In this wave regime, ﬂ. is imagi-
nary. Similar to the first case, disturbances decay
exponentially with height away from the source. Thus,
the wave falls into the evanescent wave regime. How-
ever, the wave frequency is low. When N >|f >>(Q, the
inertial terms, i.e. acceleration terms, play minor roles

-6-
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in the wave generation. The flow is characterized as
being quasi-geostrophic. In this wave regime, the fluid
motion is nearly horizontal.

From the incompressible continuity equation, it
can be shown that inertia-gravity waves are transverse
to the flow. That is, the fluid particle motion is per-
pendicular to the wave vector. In addition, the veloc-
ity vector associated with a plane inertia-gravity wave
rotates anticyclonically with time. The projection of
the motion on the horizontal plane is an ellipse with
@/f as the ratio of major and minor axes.

Since the wave energy propagates with the group
velocity, it is important to discuss the group velocity
of inertia-gravity waves. Assuming the vertical
eigenfunctions to be of the form (z)~exp(imz) and
substituting into Eq. (22) yields the dispersion relation
for inertia-gravity waves in a quiescent (motionless basic
state), continuously stratified fluid:

2 2+K2N2
wz=£;n—,-——. (25)
4"+ m?

The group velocity for inertia-gravity waves can be
found by taking the derivatives of the frequency with
respect to wavenumber, i.e.

Cez=0@/dk, ¢,,=0@/3dl, c,,=d@/Im.  (26)

Applying the above definitions to the dispersion rela-
tion for inertia-gravity waves, Eq. (25), gives

km2(N* - f%)
= ; 27
Cgx (B P2y 2 (fomi+ k2N 2 (27a)
Im*(N*- f%)
Coy= (Bt Pem? Y2 (ol s kENE)Z (27b)
-mK2 (N2 - f2)
Cg*=(k2+g2+m2)3f3(f2m2+r2N2)1f2' (27¢)
It can be shown that
¢, k=0, (28)

where k=(k, I, m) is the wave vector. Thus, the group
velocity vector for inertia-gravity waves is perpendicu-
lar to the wave vector.

One of the more important phenomena associated
with gravity waves is wave reflection. If the basic
atmospheric structures, such as the Brunt-Vaisala fre-
quency and the basic wind speed, are allowed to vary
with height, then the gravity wave may be reflected

from the interface at which a rapid change of thé basic
atmospheric structure occurs. Consider small-iimpli—
tude perturbations in a two-dimensional nonrotating
system governed by the set of Egs. (22) and (23) but
whose basic state is generalized to allow the basid wind
and Brunt-Vaisala frequency to vary with hcigﬂ.,. The

governing equation for # may be written as |

2 .-
Q—wa,,lz(z)‘a:o,

c=Udz (c—Uy

372 @)
where '*
|
2 2 |

o 1 d°U N |(30)

The above equation is a simplified version of the_y! Tay-
lor-Goldstein equation, which was first derived linde-
pendently by Taylor (1931) and Goldstein (1931). As
discussed above, the solution of Eq. (29) is of the|form
exp(tilz). If A changes sign from positive to negative
at a certain level, then A will change from beingi? real
to an imaginary number. This indicates a transition
from the vertically propagating wave regime 'LR the
evanescent wave regime. Therefore, if a wave-like
disturbance exists below that particular level, i{d will
decay exponentially above that level. Under this| situ-
ation, the wave energy is not able to propagate Verti-
cally above that particular level freely and is forJ;ed to
reflect back from there. Therefore, this level is ¢alled
the wave reflection level. If there exists such a|level
above the rigid (lower) surface, this atmospheric|layer
then acts as a waveguide trapping the wave eBergy
between the reflection level and the surface and aJilows
for effective far downstream propagation of the wave
energy. One well-known example of gravity wave
reflection are the lee waves generated by stratified|flow
over a mountain range.

Another important phenomenon associated| with
gravity waves is the change of wave property in pass-
ing through a critical level. A critical level (z.) 1is
defined as the level at which the vertically sheared basic
flow U(z) is equal to the horizontal phase speed (c),
ie. U(z.)=c. Using the WKB method, Bretherton (|1§966)
showed that an upward propagating internal wave packet
would approach the critical layer for the dominant fre-
quency and wavenumber of the packet. However, it
would not reach the critical layer in any finite |time
since along a ray path, dz/dre=(z-z.)" as z — z., Which
gives 1—t,<1/(z—z.) as z — z,.. This means that it would
take an infinite amount of time for the wave packet to
reach the critical level. Thus, Bretherton inferrecg that
the internal wave would be physically absorbed at the
critical level, instead of being transmitted or refletted.

T
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Mathematically, the governing equation (29) becomes
singu!ar at z=z.. To discuss the wave properties near
the critical level, we follow the study of Booker and
Bretherton (1967) and the review of LeBlond and Mysak
(1978). These authors used the method of Frobenius
(e.g.,|see Hildebrand, 1976) in order to extract infor-
mation about the wave behavior near the critical level.
Notice that the WKB method is not valid near the criti-
cal level since it requires a large Richardson number
(N*IUP).

At z=z., U and N may be expanded in a power
seriest

U=c+ U (z—z.)+ .

ENET ML Sk . (31)

where the subscript ¢ denotes the value at the critical
level.| We assume that z. 1s a regular singularity which
requires U..# 0. A series solution may be found near
z. (carets are dropped):

W(£)EA(Z—Z‘.)”2H'H+B(Z-Z<.)”2_f'u

=Aexp[(%+i,u)(ln[ z—z. |+iarg(z—z.)]

| +Bexpl(5-if)(In| 2=z [+iarg(z-2,)]

i
ZTEWA"'WB- (32)
Both iw, and wp have a branch point at z=z,. For the
sake of definiteness, we may choose that branch of the
1 n function for which arg(z—z.)=0 when z>z. and intro-
duce |the branch cut from z=z. along the negative x-
axis. | Therefore, we obtain

wi=A\|z—z |expli]In(z-z )]

| z—z |exp[—il1In(z—z )] forz>z
(33)

As z—z,. decreases continuously from positive to
negatjve values, arg(z—z,.) can change continuously from
0to mor0to—m To determine the argument, we may
add a small Rayleigh friction with a positive coeffi-
cient|v. The term U-c then becomes U — ¢ — ic;, where
¢;= Wk. This lifts the z. to be above the branch cut for
U.. > 0, which corresponds to the contour in the lower
half plane under the branch cut in an inviscid flow
(Fig.|4). That is, arg(z—z,) changes from 0 to —x for
U.. > 0. Thus, we must choose arg(z—z.) = -7 sgnU..
when z < z.. Substituting this into Eq. (32) yields

wa=A\|z—z |exp[itln(z-z )-(1/2)7i

4Im(2) | e
|
branch cut o
i L -
| +Re(z)
B o Zg A
y Im(z)
b
B o — A ‘
< » Re(z)
L
Zc |

|
Fig. 4. Location of branch point with Rayleigh friction included for

20> 0. (a) U, > 0: (b) U, < 01. (From LeBIo]"ld and Mysak,
1978)

|
|
ssgnl +p7sgnU, ] |

wz=B]z—z |expl—ilIn(z-z )—(1/2)7i

esgnlU. —H7sgnl..] forz<z.| (34)
Both solutions w, and wj satisfy the governing equa-

tion mathematically. From Egs. (33) and (34), we have

W
=exp(—#7sgnl..), |—
wg

"
Wa

Wa

—exp(1F sgall,).

(33)

For U.. > 0 and a low-level forcing, the Irrq:'litudf: of
the disturbance generated in the lower level should
decrease as it crosses the critical level to the upper
Jayer. Thus, we must choose w,. The proper solution
can be found for other situations as well. Notice that
the above equation also indicates that the wave energy
is attenuated exponentially through the critical level
as pointed out by Booker and Bretherton|(1967). In
addition, the vertical wavenumber becomes larger, and
the perturbation velocity becomes more and more hori-

— 8-



Airflow over Mesoscale Heat Sources, Part I

zontal as one approaches the critical level since

2

(c=UY’

2(z)= (36)

This implies that A — e as z — z.. Thus, the vertical

wavelength approaches zero (Fig. 5).

lll. Steady Flow over a Meso-y Scale
Heat Source

1. Sinusoidal Heat Source

For a uniform, steady, inviscid flow over a two-
dimensional meso-y scale heat source, the Rossby number
is high, and the effects due to planetary rotation can be
ignored. Notice that the meso-7 scale is defined to be
the horizontal scale from 2 to 20 km (Orlanski, 1975).
With these assumptions, Egs. (9)—(13) can be reduced
to

du  19p _
U8x+pa Br_o (37
yow _ £+L§_E:=o (38)
dx °8, P9z
z U(z)

critical layer

k

W

" wave crests

Fig. 5. The propagation of a wave packet upward toward a critical
layer at z=z,. The particle motions are parallel to the wave
crests. Notice that the vertical wavelength becomes shorter
as the wave packet approaches the critical level. (From LeBlond
and Mysak, 1978, after Bretherton, 1966)

ou aw'_ ‘

Frh T |39
|

96 N%6, . 6, .

U8x+ 8 W‘cngq' (40)

The above physical system is identical to that investi-
gated in Smith and Lin (1982) except that the;bertur—
bation potential temperature, instead of the perturba-
tion density, is used as a dependent variable. | These
equations can be combined to give a single equation
for the vertical velocity:

g
e, LUt

i (41)

’ ’ v ’
We, W, +I°(Z2)w =

where I’(z)=N*/U? is the Scorer parameter forla uni-
form basic flow, which has the form I*(z)=N*/{*-U._./
U in general (Scorer, 1954). Similar to mountain wave
theory (Smith, 1979), the above equation may bil' inter-
preted as a vorticity equation. Upon multiplying thou gh
by U, the U(w,,+w..) term is the rate of change of
perturbation vorticity following a fluid particle; N*w'/
U is the rate of perturbation vorticity generated|by the
buoyancy force; —~U,, w”is the rate of perturbation vor-
ticity generated by the vertical advection of thé basic
vorticity (U,).

For a quasi-steady thermal forcing, such |as the
surface sensible heating over a heat island, the conden-
sational heating associated with upslope orographic rain,
or the evaporative cooling under a thunderstorm, we
may prescribe the heating rate g’(x, z). One simple way
to obtain a mathematical solution is to assume 4 sepa-
rable heating function,

4 (x,2)=0,f (x)g(2), | @2

where g(z) i1s normalized according to

fg(z)dzﬂ, (43)
so that
POJ:Q((X.Z)dZ=PoQOf(X) (44)

represents the total energy in a unit time added to a
vertical column of the atmosphere. To avoid the net
heating problem (Smith and Lin, 1982), we impdse the
constraint

[:f(x)dx=0 (45)




at each level. To find the mathematical solution, we

apply a Green's function method by assuming that the
heating is concentrated at a height zp,

q(x,2)=0,f(x)0(z-24). (46)
At the|interface z=zy, we require that the vertical ve-
locity be continuous, i.e.

W (z)-w (z5)=0. (47)
Substituting (46) into (41) and integrating (41) from
just below to just above z=zy gives the second inter-
face condition:

5 3 g (x
Wyt 2), (@8)
L

Away
equati

’ ’ vl ’
W+ w, . +1°w =0.

from the interface, Eq. (41) reduces to Scorer's
DI

(49)

The miathematical problem associated with Eqgs. (47)—
(49) with appropriate upper and lower boundary condi-

tions i
tain w
(1960
T
the co
the ri
dal he

sphere:

We lo
|

Thus,
Wi, be

=

To sol
I’ and

=

5 very similar to problems encountered in moun-
ave theory, which was reviewed by Queney et al.
and Smith (1979).

o simplify the mathematical problem and to avoid
mplications induced by the wave reflection from
id, flat, lower boundary, we consider a sinusoi-
at source located at z5=0 in an unbounded atmo-

((x,2)=Q,coskx8(z). (50)
ok for solutions of the form
"(x,2)=w, (z)coskx+w, (z)sinkx. (51)

Scorer's equation, which governs solutions for
comes

et (P=KF)w=0, i=1,2. (52)

ve Eq. (52), we have to consider two cases: k>
k*< I’. For kK*> I%, the solutions may be written

(x,2)=A; (x)eVF-P 1B (x)eV¥-Pz,

forz>0

-10-
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|
Wi(I,z)=C;(x)e'”‘z'ﬂ:.;.g(x)ev}cz‘ﬂ:,

forz <0. (53)
The B; and C; terms represent disturbances which grow
in the vertical away from the heating level, and which
should be eliminated because the energy source is lo-
cated at z4z=0. This requires B=C;=0. Applying the
interface conditions (47) and (48) to (53), we obtain

w’(x,z)=—-—:i—Q"...—,.1_¢jcoskxe‘ K|z
2¢, LUK -1

for i* > I2. | (54)
Thus, the above solution represents evanescent waves
which satisfy boundedness conditions at z=*es. The
condition k* > I* corresponds to 27/L>N/U, which physi-
cally represents a relatively stronger wind with a weaker
stability passing over a narrower heat source. The L
denotes the horizontal wavelength of the heat source.
Under this situation, it takes a longer time for an air
parcel to undergo vertical oscillations with|the Brunt-
Vaisala frequency than to pass (be advected) over the
heat source. In other words, the intrinsic| frequency
(UK) is larger than the Brunt-Vaisala frequency. Thus,
the wave energy cannot propagate away from the heat
source in the vertical. Instead, it is trapped near the
heating level and advected downstream. Therefore, there
is no internal gravity wave generated. In the limit of
k’>>[?, the buoyancy force becomes extremely weak
and can be ignored. In this limiting case, the distur-
bance will approach a potential flow.

For the case with k’<I%, the solution oLf (52) may
be written as

w;(z)=A;sinmz+B;cosmz, i=1,2, (55)

where m*=I’~k*. Combining with Eq. (51). the above
solution can be rewritten as

w (x,z)=C cos(kx+mz)+Dcos(kx—mz)
+Esin(kx+mz)+F sin(kx—mz)

forz> 0. (56a)
w (x,2)=C cos(ke+mz)+D cos(kx—mz)
+E sin(kx+mz)+F sin(kx—mz)

forz <0. (56b)

Terms with argument kx+mz have an upstrieam phase
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tilt while terms with argument kx-mz have a down-
stream phase tilt. Mathematically, both of them satisfy
the governing equation. However, they have different
physical implications. To determine the proper solu-
tion, we must calculate the vertical energy flux. Let us
consider the first term:

w'(x,2)=Ccos(kx+mz).

Using the continuity equation and the momentum equa-
tion, the vertical energy flux can be found to be

& 2 2
L W de=p, C2Uml 2. (57)

This represents an upward propagation of wave energy.
Similarly, terms with argument kx-mz represent a down-
ward propagation of wave energy. Since the energy
source is located at z=0, the upper and lower radiation
conditions require D=F=C"=E’=0. Applying the inter-
face conditions (47) and (48) to (56), we obtain

, g0, ; 573
w(x,z)=—"——sin(kx+VI°=k*| z|)
) 2¢, LU=

for > <I*. (58)

The above solution represents vertically propagating
waves which satisfy radiation conditions at z=+ee. The
condition k” < I* corresponds physically to a relatively
weaker wind with a stronger stability over a broader
heat source. Under this situation, it takes a shorter
time for an air parcel to experience vertical oscillation
with the Brunt-Vaisala frequency than to pass (be ad-
vected) over the heat source. In other words, the in-
trinsic frequency (Uk) is smaller than the Brunt-Vaisala
frequency. Thus, gravity waves can be generated, and
the wave energy is able to propagate to positive or
negative infinity (in an unbounded fluid) from the heat
source. The flow response predicted by Eq. (58) be-
comes hydrostatic for k* << I>. In this limit, the above
equation reduces to

’

W=

Q"-—Sin(kx+l|z[). (59)

g
2¢,,U*!

Notice that the above solution repeats itself at a verti-
cal wavelength of 27U/N. With a typical atmospheric
situation of U=10 ms™' and N=0.01 s, the vertical
wavelength of the forced wave is about 6.28 km.

We may define the vertical displacements as

an
dx’ f
The vertical displacement for the hydrostatic case is
shown in Fig. 6. Vertically propagating waves are e;vxdent
above and below the heating level (z=0) with [phase
tilting upstream. Notice that the vertical displacement
at the heating level is exactly out of phase with the
heating rate. That is, the air parcel is displaced (ﬁown-
ward in the heating region, while it is dlsplaced up-
ward in the cooling region. Smith and Lin (1982)
proposed a parcel argument to explain this phepom-
enon. This curious negative phase relationship between
vertical displacement and heating will be explained later
by considering the solution to the transient problem
(Lin and Smith, 1986) and by using a group velbcny
argument (Bretherton, 1988). Proper upper and lower
boundary conditions are necessary to obtain the chrect
solution. By using an incorrect radiation condxtibn at
infinity in a half-plane (semi-infinite fluid) in the heat
island problem, Malkus and Stern (1953) obtalﬁed a
positive relationship between the heating and the. ver-
tical displacement. |

Similar to applications in mountain wave thecpry
(Eliassen and Palm, 1960), the vertical transpart of
horizontal momentum can be calculated by 5

w2l (60)

L
MF=poJ; u'w dx, (61)

where L is the horizontal wavelength. From Eqgs, 5(59)
and (61), we obtain

—

/

L= B N I ]
i/
\

z{km)
|

N

—160 —120 —80 —40 0 40 80 120 || 160

40 .80 . 120 160
x(km)

The vertical displacement of an unbounded, hydro! jatic,
stratified airflow to periodic heating and cooling ccri;ccn-
trated at the z=0 level, as given by Egs. (54) and (52)| |with
U=10ms™”, N=0.01 s, k=40 km', 0,=1200 W m kg, 7,,=287
K. The heating rate function is shown at the bottom bf the
figure. Vertically propagating waves are evident from the
upstream phase tilting above and below the heating ‘,Ipvei
(From Smith and Lin, 1982) 'I
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FH et
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TL "2kl (62)

(

The transport of mechanical energy away from the layer
of forcing is accompanied by a flux of horizontal
momentum towards the layer.

o examine the effect of vertical momentum flux,
we may consider the time-dependent nonlinear hori-
zontal momentum equation

(63)

Taking the horizontal integration over one wavelength
yields

(64)

(65)

Ther¢fore, convergence of the vertical momentum flux,
such [as that in Eq. (62), tends to accelerate the flow.
Notide that this acceleration is not explicitly accounted
for in linear theory due to the neglecting of nonlinear
terms. This acceleration may have relevance to the
problems of wave-CISK (Raymond, 1986), heat islands,
atmospheric tides, and orographic rain (Smith and Lin,

1982).

2. Isolated Heat Source and Topography

The above mathematical problem is illuminative
in providing physical insight into the flow response.
However, in applying the theory to atmospheric phe-
noména, such as the orographic rain problem (Smith
and Lin, 1982), we need to consider a rigid irregular
lower boundary and localized heat source.

A useful localized heating function may be cho-
sen as

-20,bx

S(z—zy).
(¥*+57) ke

g (x,2)= (66)

|
The above heating function is shown in Fig. 7 as curve
1. This heating function can be used to simulate the
condensational heating and evaporative cooling associ-
ated |with a nonprecipitating orographic cloud. Again,
we may apply the Green's function method to obtain
the solution. The heating is concentrated at a certain

Y.L Lin

e 2
x 0
= i
! |
=1 Fk L i “ | i
—160 —80 0 80 160
x(km)
Fig. 7. The horizontal heating functions of Eq. (66) with 5=20 km

(curve 1) and Eq. (86) with b;=20 km and b,=100 km (curve
2). The balanced heating and cooling function (curve 1) is
used to simulate the condensational heating and evapora-
tive cooling associated with a nonprecipitating orographic
cloud. Curve 2 is used to simulate the con.L‘lensational heat-
ing associated with orographic rain, withiisolated heating
and widespread cooling. (From Smith and Lin, 1982)

level. Substituting the above equation into Eq. (41), we
" have

-2g0,b°x
< T U2{12+b2 )2

Wext W+ W' (67)

5(25—33)-

Let w (k,z) be the one-sided Fourier transform of w'(x,
z) in x, ie., '

fa:r{k,z)='2-1-;-,-r ‘_“ w (x,z)e"**dx | (68a)
w (x,z)=2Re Lw{{e(k,z)e"“dk. (68b)

Now taking the Fourier transform of Eq,% (67), we ob-
tain

. 2
{4}::+(12—k2)ﬁ=-‘-£29b—:ce"”’5(2— #)-

Cpdp

(69)
For z # zz, (69) becomes Scorer's equation (Scorer,
1954): ‘

(70)

W, +(P=K)w=0.

For a hydrostatic wave (k’<<[?), the solution may be
written as

w(k,z)=Ae'*+Be "7 for0<z<zy (71a)

w(k,z)=Ce'*+De "= forz,; < z. (71b)

At the ground, the flow is assumed to follow the
terrain, thus

-12-
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w  dh(x)

U+u dx '

=2

atz=h(x) (72)

where h(x) represents the terrain height. For small
amplitude topography and induced disturbance, the above
lower boundary condition may be written as

w’:UE%, Ay (73)

For mathematical simplicity, we consider a bell-shaped
function to represent the topography which is often used
in mountain wave theory (e.g., Smith, 1979):

2
h,a

k{x)=m‘

(74)

Substituting (74) into (73) and taking the Fourier trans-
form, we obtain
w(k,0)=ikUh,ae*a, (75)

Applying the lower boundary condition (75) to (71a)
gives

A+B=ikUh,ae %2, (76)

The upper radiation boundary condition should
allow the wave energy to propagate upward (Eliassen
and Palm, 1960; Bretherton, 1969). This can be deter-
mined by computing the vertical energy flux similar to
Eq. (57), which requires D=0. With (76) and this upper
boundary condition, (71) becomes

w(k,z)=2iAsinlz+ikUh,ae *2e iz,

for 0 < z<zy (77a)

w(k,z)=Ce''z, forz2zy. (77b)
In the above solution, we allow the thermally forced
wave to propagate downward toward the surface below
the heating level z;. Coefficients A and C in (77) can
be determined by the two interface conditions (47) and
(48). In the Fourier space, they have the following

forms:

w(z)-w(zz)=0, (78a)

; Bk etk
7, ()5, ()= 8 LT R

78b
2 e LU (78b)

Applying the above equation to (77) and taking the
inverse Fourier transform leads to

w’(x,z)=2Re{f[whoake-“e“z

_igQ, b ke kbeilznsin],
LU

]e”‘"dk

-

for0 <z <z

w'(x,z)=2Re{Lm[fUhaake”k“e”z

igQ,bPke*beilzginl 7,
&L

]eikxdk}

forz 2 z.

(79)

Using the relationship (60), the vertical displadement
can be obtained:

g0, b*sinlz(bcoslzy~Asinlz,)

N(x,2)=Nm(x,2)-
¢, LU 1(x%+b°

for0<z<zy

(80a)

g0, b*sinlz, (bcoslz—xsinlz)
¢, LU I(x2+b%)

n(xsz)=nm(xvz)_

forzz < z, (80b)

where

nm(x,z)=hoa(acoslz—xsinlz).

x2+a? |39

Notice that the above solution is a superposition of the
hydrostatic mountain wave (7,,) and the thermally forced
gravity wave.

The pressure perturbation at the surface gan be
computed from (80) using either Bernoulli's eqhation
(substituting Egs. (39) and (60) into Eq. (37)),

p'(x,0)=-PaUu'(x,0)=PoU2%g- i | (81)
z= l

or the hydrostatic equation (with Eq. (40)),

pr(x;0)=g;o‘f”9’dz |
o JO :
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1oz [ sice. _§.PoQoJx
=—p, N J; N(x,z)dz & T,U _”f(x)dx. (82)
Either approach gives

2

1?'(1,0)=—,00NU}£0 fx,,—poggof

x“+a° CPI;U'

bcoslzy—xsinlz

. (bcoslzy—xsin 1,3)}. 83)

(x2+5%)

The first terms (7,,) of Egs. (80) and (83) repre-
sent the vertical displacement and surface pressure
perturbation produced by the mountain wave, which
have been found by Queney (1947) and studied exten-
sively|in the literature (e.g., see Smith, 1979 for a re-
view)| The second terms of Egs. (80) and (83) repre-
sent the vertical displacement and surface pressure
disturbance produced by the thermally induced gravity
wave,|which satisfy the rigid lower boundary condition
w'=0 at z=0; thus, the downgoing wave produced by
the elevated heating is totally reflected. The vertical
momentum flux is zero between the heating level and
the surface, due to the flux cancellation of the up and
downgoing waves. This gives no vertical phase tilt of
the disturbance. The flow response is sensitive to the
heating level since the upgoing and downgoing waves
may dancel each other. If the heating is added very
near the surface, lzy << I, the disturbance is extremely
small and may be neglected. From Eq. (80), cancella-
tion of the direct upgoing wave and the reflected upgoing
wave pbove zy can also occur at

ZZHZO L2, AT,

This effect is less evident if the heating is spread over
a layer of finite depth.

For a heat source distributed uniformly in a layer
of z =|zy— d to zy + d, the solution can be obtained by
superposition of heating terms of (80a and b) (the last
terms). In order to keep the same heating rate, the
amplitude of this vertically distributed heating should
be reduced to Q,/2d. If we write (80a) and (80b) as
n=nL+ Mg and 1= 0, + Mk, respectively, then the
superposition of heating terms leads to

"IE+

g+d . .
M(x,z)="n(x,2)+ ’ j My(x,z,z)dz
Jzp=

for0 <z <zy—d, (84a)

Z

n(x,z)=n,,.(x,z)+f M (x,2.7)d7
ZH—-G'

|
!
{
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2y+d p .
+.[ My(x.z,z)dz

for zy—d Sz < zy+d, (84hb)
g+d .
M) =Tn(x, 20+ [ (2,2, diz
ZH-d
for zy+d < z, (84c)

where z’ represents zy in (80) and acts as an integral
variable in the above equation. The final splution can
be obtained: i
, |
g0, b sinlz
32, .2 2
¢, LU (x2+b7)

N(x,z2)=Mn(x,2)—

'[b{sin!(zy+a')—sin£(zﬁ—d%)}
+x{cosl(zH+d)—cosl(zH—d1) 13

for0<z<zy—d i (85a)
b :
N(x,2)=Mn(x,2)+ 'g;Q;’ ————{(bcoslz
¢, LU (2 +57) |
—xsinlz){coslz—cosl(zy—d)}
|
—sinlz[b {sinl(zy+d)—sinlz|}
+x{cosl(zy+d)—coslz}]}
forzy—d <z < zy+d (85h)
N(x,z)="Tn(x,2)+ g:onb; 5 (beoslz
¢, LU I (x*+b7) |
|

—xsinlz){cosl(zy+d)—cosl(z;—d)}

for zy+d < z. | (85¢)
Another useful heating function is ‘
. b12 b] bz |
gizml=0, v ~)0(z—zy) 86
x2+£:',2 X2+ 3 H (36)

where by and b, are the half-width of the isglated heat-
ing and the widespread compensated cooling, respec-
tively. The widespread cooling is used to avoid the net
heating problem (Smith and Lin, 1982). This problem
will be discussed in Section IV. The above function
may be used to simulate the condensational heating
associated with a precipitating orographic cloud. Ap-
plying the method used above, the following solutions
may be derived: '

—14=
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gQ,b;sinlz
¢, TU%I

P Ta

??(X,Z)=??m(xaz) {( SIZH)(tan_lgl

2
~tar ! X s (sm:zﬁ,)m_—‘i,)}
x+by

for02z<zy4 (87a)

8Q,bysinlzy
¢, TU?l

pto

n(xsz)=nm(xaz)“ b}

2+b3

+bl}}

—tan™! x )+ (sinlz)In(

for z; < z. (87b)

The perturbation surface pressure associated with (87)
is

r _ ax pogQabI
P(x:o)—_’PoNUhaxg_wE_W
< —1 -1 X
{(coslzy)(tan bl —tan b~,
'+b¢
+5 (coslzg)ln( 2)} (88)

If this isolated heat source is distributed uniformly in
a layer from z = ziz— d to zy + d, the method of super-
position discussed above may be used to obtain the
result:

in/
ngbISl_‘n;_z_{(tan—l_{_
WL P h

N(x,z)=Mu(x,2)—

_tan—l5{)[sinf(zH-{-d)—sinl(zH—d)]
2

x2+ b2
—%ln( vz—-};%)[cosl(zg+d)
1
—cosl(zy—d)]} forO0<z<zy (89a)
N(x,z2)=Mn(x,2)+———— 820 {{coslz)(tan‘bi
Cp oU 1
2 2.
el X §
g0, bysinlz 1x
—cosl(zz—d)] }-=2—— {(tan "=
G e g

{(coslz)(tan™' &

—tan" !X )[sml{wﬂ+d)—sml 1 .

2 b”
~L1n(Z2%2 ) (cosl (z,+d)—cosl

272 +b1 L
for zy—d <z < z4+d (89Db)
b,
N(x,z2)=MN,(x,2)+ £9,5 ~ {(coslz)(tan™" I~
CP & l i|bl
[l
2402 |
—tan‘l X )+ (sinlz)ln( +b;)} ;
+b; .
*[cosl(zy+d)—cosl(zy—d)] |
for zg+d S 2. i(89c)

The hydrostatic response of a balanced h&atmg

and cooling (Eq. (66)) added at zy= w2l E 1. 57|km is

given in Fig. 8. The solution is given by the second
terms of (80) with Q,=1107 Wmkg", =20 km, § = 10
s, and N = 0.01 s. The upstream phase tilt of the

thermally forced gravity waves is evident above the
heating level. Notice that a downward displacenient is
produced near the heating region and upward displace-
ment near the cooling region. The result of Malkus
and Stern (1953) would be similar to the present one if
they used the correct upper radiation condition.| This
relationship will be explained in the next section, The
vertical displacement at the heating level is repeated
every 6.28 km (27/1). The surface perturbation|pres-
sure is shown in the lower panel of Fig. 8. The hydro-
static equation indicates that the surface pressurd is an
integral measure of the temperature or density a,anaIy
aloft. Equation (82) or the thermodynamic eqqatlon
implies that the temperature anomaly may be caused
directly by the heating and indirectly by the therf}ually-
induced vertical motion. According to Bernoulli's|equa-
tion, the wind speed is increased when the streamlines
are closer together. One example of the responsg of a
hydrostatic airflow over this isolated heating and l:Om—
pensated cooling (Eq. (86)) is shown in Fig. 9| The
heating is added at z; = m/2]. The solution is givien by
Eq. (87) with 1, ignored and 0,=900 Wm kg 5 b,—ZO
km, b,=100 km, U=10 ms”, and N=0.01 s™. THe re-
sponse is similar to the previous case. The rel.‘iuon-
ship between the thermal response in a system with
and without a basic flow was discussed by Thorpe et
al. (1980). The large Froude number results in that
paper are in qualitative agreement with the present réfsults.
Hsu (1987a, b) found a similar result for a meSth'r.;caIe

flow over a finite surface heating. The heating in that
{
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Fig. 8.| The vertical displacement of a hydrostatic airflow to bal-
anced heating and cooling (Eq. (66)) concentrated at zz=1.57
km in an half plane. Regions with large heating and cooling
are marked +++ and — — —, respectively. This flow is given
by the second terms of Eq. (80) with Q,=1107 W m kg,
b=20 km, U=10 ms™', and N=0.01 s"'. Vertically propagat-
ing waves are present above the heating level. The surface
pressure disturbance (in Pa) is shown in the lower panel.
(From Smith and Lin, 1982)
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Fig. 9. | Same as Fig. 8 except for the isolated heating-widespread
cooling function (86). The solution is given by the second
terms of Eq. (87) with 2,=900 W m kg, ,=20 km, b,=100
km, U=10 ms™, and N=0.01 s. The perturbation surface
pressure is shown in the lower panel, which is negative
directly below the region of heating. (From Smith and Lin,

1982)

paper iis added into the system through conduction by
prescribing the perturbation surface potential tempera-
ture.

Y.L Lin

3. Applications

The theory developed in Section II[.2 has been
applied to the problem of orographic rain l£y Smith and
Lin (1982, 1983). Based on the formation mechanisms,
the orographic rain may be classified as follows:

(1) Upslope orographic rain in a stable atmosphere
(Sarker, 1967).

(2) Orographic rain in a conditionally unstable atmo-
sphere (Davies and Schar, 1986).

(a) upslope rain, instability released by forced oro-
graphic ascent.
(i) shallow convection embedded within fron-
tal clouds in midlatitude (Browning er al.,
1974; Browning, 1980; Hobbsler al., 1975;
Marwitz, 1980). |
(i1) closely packed deep convection in tropics
(Smith and Lin, 1983).
(b) lee convective rain, instability triggered by slope
heating (Henz, 1972). '

(3) Orographic rain over small hills by seeder cloud-
feeder cloud mechanism (Bergeron, 1968; Brown-
ing, 1980).

(4) Existing baroclinicity which, through the action of
orographic blocking and differential advection, can
lead to an unstable air column (Smith, 1982).

For a quasi-steady nonprecipitating orographic
cloud, the condensational heating and evaporative cooling
may be represented by the balanced heating and cool-
ing (Eq. (66)). An example of a hydros!iatic airflow
over a bell-shaped mountain with and without diabatic
heating is given in Fig. 10. The disturbe{nce induced
by combined mechanical and thermal forcing is weaker
than the adiabatic flow (Fig. 10a). The kertical dis-
placement near the heating region is consistent with
previous results. That is, heating (cooling) produces
downward (upward) displacement. The relative mag-
nitude of the response can be found from| the ratio of
the two coefficients in Eq. (80),

80,b
¢, LU*Nh,

where O, and b are roughly related to the intensity and
the horizontal scale of the observed rainfall at the sur-
face. Figure 11 shows two examples of hydrostatic
responses in a stratified airflow to isolated thermal and
orographic forcing. The solution is given by Eq. (87)
with x in the second terms replaced by x+c¢, where ¢ is
the upstream distance between the heating center and
the mountain top. Notice the significant difference in
the flow patterns due to the different upstream dis-
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Fig. 10. (a) The vertical displacement of a hydrostatic adiabatic
flow over a bell-shaped mountain. The solution was first
derived by Queney (1947) and is given by Eq. (80c) with
h,=500 m, a=20 km, U=10 ms™, and N=0.01 s™'. (b) Hydro-
static flow over a combined thermal and orographic fore-
ing. The prescribed diabatic heating represents a
nonprecipitating orographic cloud. The solution is given
by Eq. (80a and b) with Q,=1107 W m kg, =20 km,
U=10 ms"', and N=0.01 s'. The induced disturbance is
weaker than the adiabatic mountain wave (a). (From Smith
and Lin, 1982)

placements of the thermal forcing.

The significance of the combined thermal and
orographic forcing can be seen from the vertical trans-
port of horizontal momentum. The momentum flux
corresponding to Eq. (87) with x replaced by x+c is

}ragpoho Qabl

LU )

MF:—fIrpf,thU—(

(a+b )coslzy—csinlzy

(a+b Y +c?

_(a+by)coslzy—csinlzy

] for0 <z <zy

(a+by)+c2 (90a)
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Fig. 11. The vertical displacement of a hydrostatic flow ov ir com-
bined thermal and orographic forcing. The dlabatﬂc heat-
ing represents an upslope precipitating orographic rain. The
solution is given by Eq. (87) with x replaced by t+c and
0,~900 W m kg', ;=20 km, b,=100 km, U=10 ms™, and
N=0.01s"". The upstream displacement of heating of ¢=20
km is shown in (a) and ¢=40 km in (b). (From Sm th and
Lin, 1982)

.[ 2C _ 26 ]
(a+b Y +c2 (a+b,) +c?

forzy £ z
(90b)

The first terms in the above equation result from the
vertically propagating mountain waves, which are/nega-
tively proportional to the vertical energy flux, whpch is
constant with height for an adiabatic flow with no Grmcal
level and diabatic heating (Eliassen and Palm, 1’960]

Note that besides the pure h* and Q? terms therc are
cross terms proportional to #,0,. The existence @lf this
important contribution to the momentum flux below
the heating level (Eq. (90a)) can be explained as aris-
ing physically from the thermally generated pressure
disturbance at the surface, acting on the topograpl:iy. It
could, therefore, be computed directly from the ;{Ertur-
bation surface pressure (Eq. (88)) together with (74).
If a large amount of heating occurs over the windward
slope of a mountain, the pressure at the surface |could
be lowered sufficiently to cause a reversal of the ex-
pected downstream drag. The vertical profii@as of
momentum flux corresponding to the adiabatic ﬁiloun-
tain wave (Fig. 10a) and the thermally and orog;‘aphl-
cally forced wave (Fig. 11a) are shown in Fig. 12. In
Eq. (90), the cross terms of the momentum flux dﬁpend

-
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The vertical profile of momentum flux for the cases shown
in Figs. 10a and 1la as given by Eq. (90). In an adiabatic
flow, the flux is constant with height. In the presence of
thermal forcing, the mountain drag is reversed. and the
momentum flux is strongly convergent at the heating level.
(From Smith and Lin, 1982)

Fig. 12

on the relative horizontal position of the heating and
the mpuntain, i.e., c. As mentioned earlier, the pure
thermally induced flux (Q‘f ) term must vanish below
the heating level because of wave reflection from the
surface.

A good example of the local enhancement of pre-
cipitation by orography is the large annual rainfall re-
corded along the Malabar Coast and on the windward
slopes of the Western Ghats in India (Fig. 13). This
rainfall occurs almost entirely during the 3-4 month
summer period when the coast lies in the path of the
west-southwest monsoon current crossing the Arabian
Sea (Hig. 14). The low-level wind has a speed of about
15 ms™’ (at 850 mb), and a direction more or less per-
pendigular to the coast. In the upper troposphere, the
wind is reversed, blowing from the east as part of the
subtropical easterly. Figure 15 shows a hydrostatic
flow with combined thermal and orographic forcing
(Smith and Lin, 1983). The heating is producing a
disturbance which is at least as large as that of the
mountain. As mentioned earlier (Eq. (80)), the ther-
mallyqinduced disturbance is moderately sensitive to
the choice of lzy. For the present choice of zy=3 km,
there is a region of strong low-level convergence and
ascentl which may be able to trigger cumulus growth.
This choice is reasonable as waves generated in the
upper |troposphere would be absorbed by the critical
level in midtroposphere (Fig. 14). Figure 15 also in-
dicates that there is a wide pressure trough produced
by the heating, which is absent in the adiabatic case.
The pressure trough may be related to the offshore trough
often pbserved during the rainy spell of the monsoon

Y.L .Lin

Fig. 13. The areal distribution of rainfall over India during the
summer monsoon months of June to September (from Smith
and Lin, 1983, after Ramakrishan and Rao| 1958). The
rainfall is concentrated just upstream of the Western Ghats.

1July 1979, 0000 GMT
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- ‘
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88 5)

50° 60° 70° 80° 90" 100°E

Fig. 14. A typical surface chart for the Indian Ocean during the
summer monsoon. This particular chart is for 1 July 1979
at 0000 GMT. The horizontal wind perpendicular to the
coast is shown at the upper right corner. (From Smith and

Lin, 1983) |

period. I

Using the data from WMO/ICSU Summer Mon-
soon Experiment and a two-dimensional nonlinear model,
Grossman and Durran (1984) have show;n that the
Western Ghats produce a deceleration and convergence
of the southwest monsoon winds, triggering deep con-
vection over the Arabian Sea. The results seem con-
sistent with results of Smith and Lin (1983).| However,
as commented on by Smith (1985), the effect of latent
heating has been omitted in that study. Using a two-
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(PRECIPITATION CASE)
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Fig. 15. The vertical displacement of a hydrostatic flow with ther-
mal and orographic forcing. Region of the isolated heating
is denoted by “+++”. The solution is given by Eg. (89)
with @,=1200 kag'l, b1=40 km, 5,=200 km, =40 km,
h,=800 m, zz=3 km, d=1.5 km, U=10 ms™, and N=0.01

s, The heating center is displaced upstream by 100 km

(c). The surface perturbation pressure is drawn at the bottom.
Note that there is a wide pressure trough produced by the
heating. (From Smith and Lin, 1983)

dimensional compressible moist cloud model to simu-
late flow over the Western Ghats, Ogura and Yoshizaki
(1988) find that in order to account for the observed
features of rainfall over the Arabian Sea and the Ghat
Mountains during the summer monsoon season, the
strongly sheared environment and fluxes of latent and
sensible heat from the ocean are essential. It appears
that a theory which includes these factors can be con-
structed, similar to that of Lin (1987), and compared
with the numerical results of Ogura and Yoshizaki. The
combined effect of thermal and orographic forcing has
also been studied by Davies and Schar (1986). In their
theory, they incorporated a CISK-like representation
for non-precipitating convective cloud in a linear, steady,
hydrostatic flow over a mountain ridge. They found
that the combined effect of the two forcing processes
can be significantly different from that of orography
acting alone. In particular, in certain situations an
enhanced (resonant) response can occur with strong winds
on the lee slope and a concomitant large surface pres-

sure drag. Their results help to clarify the fd%sparate
results obtained in earlier studies, and, unlike those
studies, suggest that diabatic effects might i}h occa-
sions have a major role in inducing strong surface lee-
side winds.

Similar theories have also been develaped and
applied to the mesoscale lake-effects on the ge!,r;ieration
of snowstorms in the vicinity of Michigan Lake (Hsu,
1987a, b) and the steady state response of é atmo-
sphere to prescribed temperature perturbatior;é corre-
sponding to melting snow (Lin, C.A. et al., 1988a, b;
Robichaud and Lin, C.A., 1989). i

IV. Transient Flow over a Meso-y |
Scale Heat Source il

Mesoscale problems of thermal or mechanical
forcing cannot be fully understood using a ste{é y state
model. The importance of solving a time-dependent
problem has been demonstrated in the studies ¢f moun-
tain waves (e.g., Hoiland, 1951; Palm, 1953; Queney,
1954), which provided insight into how a fo iad per-
turbation is established when the wind becomes prac-
tically steady over mountainous terrain. The transient
heat island problem has been treated by Smitﬂl 1957),
but without a full discussion of the energetics and the
problematic approach to steady state. The internal|gravity
waves generated by local prescribed heating have been
investigated by Blumen and Hendl (1969) with appli-
cation to Joule heating in the ionsphere. The math-

' ematical problem of wave generation by local thermal

sources also arises in the study of large explosioﬂ;s (e.g.,
Pekeris, 1948; Scorer, 1950; Hunt ef al., 1960; \ﬁi\t’eston,
1962). These studies, however, are primarily col}cerned
with the far field radiation of acoustic-gravity Iwaves.
In this section, we will review the transient response of
a flow to a meso- scale heat source investigated by

Lin and Smith (1986). |

1. Flow Response to a Pulse Heating

Consider a two-dimensional, inviscid, nonrotating,
hydrostatic, Boussinesq flow. The governing equation
can be reduced from Eq. (15) or extended from Eq.
(41) to be

9 +U-§-)2w;z+N2w;x= &

m ax Cp?; Grx- (91)

(

To solve the above equation, we again apply the Green's
function method in the vertical direction. Taking the
Fourier transform in x (x — k) and Laplace tf;ansfonn
in ¢ (t > s) of the above equation, we have | ‘

in
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wzz+‘12w=c 4 (92)
p*to
where
ﬂssifék, and Re(s) > 0.

Asgume the heating is released in a very short
time permiod as a pulse at a single level, z=0, in an
unbounded fluid:

; b2
q (£,x,2)=0,(——=)8(z)8(2).

93
2+ b? 93)
Taking the Fourier and Laplace transforms of the above
equation and substituting into Eq. (92) gives

A2 o-bk
ﬁzz+tlzh'}=ngb "32 8
QLN

(z) (94)
Similar to the steady state problem, the interface con-
dition cdn be obtained by assuming the continuity of
the verti¢al velocity at the interface (z=0) and integrat-
ing the above equation across it. That is,

B0 )15 (07)=0, (95)
b A2 e-ok
ﬁz(O*)—vT;z(O'ng;’Tih:- (96)

P ‘o

An appropriate set of upper and lower boundary con-
ditions for an unbounded fluid are the Sommerfeld
radiatior] conditions, i.e.

WweeiHal as|z] = oo, 97)
Thus, the solution of Eq. (94) can be obtained:
—i b ;
ﬁ:(:,k,z,):LQ"2 Ae=bkgiAlzl, (98)

ZCP i

The above solution decays at infinity because
Re(s5)>0.| The vertical displacement, 7, defined by

(D1 _d

e,
=
(=]
=3

+U (99)
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may be Wwritten as

bkeb*
- 5 exp(
2¢,T,N (s+iUk)
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(100)
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The inverse Laplace transform of the above equa-
tion can be carried out to obtain

g0, bke bk

U2 —iUkt
g
2¢,T,

Tt
Nkl

S (2VNk|z|t),

q(t,k,z)=

(101)

where 1 denotes the Fourier transform of 7 and J; the

Bessel function of order 1. The inverse Fourier trans-
form can also be carried out to yield the solution in
physical space

800,1
2¢, TN (X*+b*)

_Nbi|z|

X2+b2)

n(t.x,z)= xp(

NtX|z|

o[ (2=X?)cos
[ ) (X2+b2

)

NtX|z|
X2+ 0

+2b X sin( s (102)

where X = x — Ut is the horizontal coordinate in the
reference frame moving with the basic wind. In the
moving frame, the above equation is just the response
of the fluid to a pulse heating in a quiescient stratified
fluid.

The solution for a more realistic heating function
in the vertical can be obtained by use of the Green's
function method. The rigid lower boundary can also
be incorporated by applying the method of images. The
vertical displacement for a pulse heating distributed
uniformly in a layer from z,— d to z,+ d in a half plane
can be written as

N(t,x,2)=—A— (2b[S(z,~d)~5 (g, +d)]
(X°+b°) |

+sgn (z—z,~d) e ?Bli=5=d]
*[Xsin(BX|z—z,—d|)
+bcos(BX|z—z,—d|)]-sgn(z-z,+d)
ce~bBl=2*d|[ X sin(BX|z—3,+d])
+bcos(BX|z—2z,+d|)]+e bfl+30rd)
“«(Xsin[BX (z+7,+d)]

+bcos[BX (z+2z,+d)])—e bBrz,-d)
*(Xsin[BX(z+z7,—d)]

+bcos[BX (z+z,—d)])}, (103)
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where

Nt
X2+

Ao 809
A TN

The symbol S and sgn denote the step function and the
sign function, respectively. The above equation is an
extension of the result of Raymond (1983) as it allows
a heating distribution of finite width and height and
includes the advection effect of a constant basic wind.
The last two terms, which include z+z,+d and z+z,~d,
are the effects of wave reflection from the lower bound-
ary. If these two terms are excluded, the response of
the unbounded fluid to a heat source distributed in a
layer of finite depth has the form of a region of mostly
upward displacements drifting with the basic wind.
The vertical displacement at the center of the heating
layer, z=0, in the unbounded fluid can be written as

2 1 -i o i iz
= Je
A (f3+l){ exp(f2+1)[x51n(f2+l)
+cos(£E-)13, (104)
x+1

where the nondimensional variables are defined as

CPTC',N

g9,

2
s = n(x,0,1). (105)

We are interested in two regions: (a) the region of the
drifting heated air and (b) the region of the initial heating.
Figure 16a shows the vertical displacement around the
center of drifting disturbance at different times in a
reference frame moving with the basic wind. The early
response of the fluid to the heating is an upward dis-
placement at the drifting center and downward displace-
ments to the upstream and downstream sides of the
growing disturbance. The weak downward displace-
ments are necessary to compensate for the upward motion
at the center as required by the mass continuity even
though that air was also heated by the wings of the
pulse. Once the updraft at the drifting center weakens,
the fluid in the adjacent regions can rise. By letting
¥=01in (104), the equation reduces to the growth func-
tion

fip=1-e7i. (106)
As i—eo, Eq. (104) becomes
fip(o,x,2)=—1— forz,—d <z<z,+d, (107)
x+1

which is everywhere proportional to the total amount
of heat received by that air parcel. Figure 16b|shows
the nondimensional vertical velocity which corresponds

to Fig. 16a. This is obtained by taking the time deriva-
tive of Eq. (104):
2 1 —f soinr EX
Wp = —exp( Y[ 2 xsin(
P @1y P g )
—(#2-1)cos(LE-)]. (108)
2+1

The updraft at the drifting center is accompanied by
downdrafts on both sides in the early stages. At later
times, two updrafts develop and propagate outward.
This is analogous to the left and right moving whves in
a two-dimensional shallow water system. These up-
drafts will overcome the downward displacement pro-
duced earlier and generate upward displacement @t later
times, as can be seen from Fig. 16a. At this time, the

original disturbance has split in two.

For the flow response at the origin of the] initial
heating, the solution can be obtained by setting{x=0 in
X in (104). The nondimensional form of the vertical
displacement can be written as

1 f r
- —F ..
=- W S apmd L s g
LT IRT F(i%+1) F(if+1)
1
a
gt
[ 15
ol 1 1015
AL X
2
2 b
] 10
£ 0
-10 -5 0 5 10

. E

Fig. 16. (a) The vertical displacement at the center of the pulse heat
source in a reference frame moving with the bagic flow.
The solution is given by Eq. (104). Notice that the strong
updraft at the drifting center is accompanied By weak
downdrafts on both sides. (b) The vertical chUcij( corre-
sponding to (2). The numbers indicate the nondimensional
times. (From Lin and Smith, 1986)
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+cos(——
F(i*+1)

where [F is the Froude number associated with the ther-
mal forcing, defined as U/Nd. A similar number has
been used by Thorpe er al. (1980). Notice that the
response of the flow at x=0 is strongly dependent on F
and changes sign at F=1/nz. With a shallow heating,
the Froude number is always greater than 1/z. Thus,
the vertical displacements near the origin of the heat-
ing have the same sign. Equation (109) indicates that
fi, decays as 1/f as {— oo (Fig. 17). The response of
the flow at the origin of pulse heating is an upward
displadement followed by a downward displacement,
as the heated air drifts away. The downward displace-
ment produced at later times is associated with the
compensating downdraft as the growing updraft drifts
downstream. Raymond (1986) has investigated the flow
respo:;fe to a prescribed steady heat source for a wide

variety of Froude numbers.

2. Flow Response to a Steady Heating

s mentioned earlier, studies of steady heating in

a moving atmosphere in connection to orographic rain
(Smithj and Lin, 1982), heat islands (Fig. 22; Garstang
et al.,|1975; Mahrer and Pielke, 1976) and thunder-
storm downdrafts (Thorpe et al., 1980) showed a curi-
ous negative relationship between heating and vertical
displagement. That is, a downward (upward) displace-
ment in the vicinity of the heat source (sink) is pro-
duced by the heating (cooling). This result is directly
related| to the steadiness of the heating (Lin and Smith,
1986; Bretherton, 1988) and will be explained below.
The vertical displacement of a moving stratified
fluid tt a pulse of point heat source may be obtained

by taking ¥ — 0 and keeping b6Q, constant in Eq. (102):
—g,t Nzt
n(t,x,z)= —s €Os . 110
2ANX* x) i
4
=
~40 5 10 15
TIME

Fig. 17.| The time evolution of nondimensional vertical displace-

ment at the origin of the pulse heating. The solution is
given by Eq. (109). The response is an upward displace-
ment followed by a downward displacement, as the heated
air drifts away. (From Lin and Smith, 1986)

Y.L.Lin

where g, = bQ,, and X = (x — Ut)/b. The above equa-
tion is identical to Eq. (3) of Bretherton (1988). Fig-
ure 18 shows the vertical displacement at time 7 after
a localized impulsive buoyancy source is ip'lposed at
=0 in a stratified fluid. Since we are interested in the
response near the origin of the heating (x=z=0), the
above equation reduces to

— 4,
n(r’O’O)_ZJtN T, (111)
The steady state heat source may be regarded as a
succession of very short heat pulses. Thus, the vertical
displacement at the origin of the heating ¢an be ob-
tained by the Green's function method, which amounts
to integrating Eq. (111) with respect to time:

n(r.0,0)=f0’n(r—f,o,O)dhﬁn(TW

! _ |
EJ- N(T)dT=—2% 12V,
AxlU 2N U* Ax
(112)

where Ax is a characteristic horizontal disiiance such
that Ax < Ur. The contribution to the displacement
from times less than Ax/U is assumed to be negligible
(Bretherton, 1988). Therefore, the vertical displace-
ment grows logarithmically and negatively at the ori-
gin of the heat source. The vertical displacement for
the steady heating, which is distributed horizontally and

Fig. 18. The vertical displacement at time r after a localized impul-
sive buoyancy source is imposed at t=0in a stratified fluid.
The dashed lines are the nodal lines z=(n+1/2)7TX/Nt on
which there is no vertical displacement. The solid lines are
dye lines that were initially horizontal and have been dis-
placed in response to the source. (From Bretherton, 1988).
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vertically, can also be obtained by integrating Eq. (103)
with respect to time.

An alternative way to explain this phenomenon is
by considering the energy budget. The linearized steady
state energy equation may be derived by introducing
the relation, §/6, ~—p’/p,, (which may be obtained by
linearization and combination of Poisson's equation and
the equation of state for an ideal gas) in Eq. (16) and
excluding the basic shear terms,

(p'w)=—

53;_-(J‘El’)’+p'u')+aZ
where E:O.S,O[u'2+(gp'fN,0,,)2] is the perturbation
wave energy in a hydrostatic atmosphere. According
to the above equation, in order to add the thermal en-
ergy to the system, the steady heating must be added
where the air density is low, i.e., at high temperature.
This implies that the perturbation flow field must ad-
Just itself so that the regions of negative density anomaly
(negative displacement) receive the heat.

Using a group velocity argument, Bretherton (1988)
showed that the ' dependence of 7 is a geometrical
effect, which relies only on the fact that there are
wavenumbers with zero group velocity around which
there is a finite rate of dispersion. The small, but nonzero,
group velocities of nearby wavenumbers spread their
energy into a region of space that expands linearly with
time in each direction, so that the energy density, a
quadratic function of 7, decreases as #~. The vertical
displacement of the fluid to a maintained heat source
grows logarithmically since the displacements produced
by individual heat pulses are all in phase at the origin
of the heating. Notice that the waves of zero group
velocity also have zero frequency.

Since the vertical displacement grows logarithmi-
cally near the origin of the steady heat source, the flow
must undergo a permanent change, instead of being a
localized steady state response. As discussed by Smith
and Lin (1982), this is due to the fact that a net amount
of heat has been received by the airstream. To avoid
this net heating problem, Smith and Lin have shown
that a steady state response will occur if the horizon-
tally integrated heating is zero. Bretherton (1988)
extended Smith and Lin's result to a more general cri-
terion. He proved that if a steady buoyancy source
q'(x, 7) is turned on at t=0, then a finite, steady dis-
placement field n(x, z) will set up only when

r ¢ (x,2) eV drdr=0. (114)

That is, when there is no projection of the heat source

a7

on the wavenumbers k,=(0, £N/U) corresponding to
the ®" and @ modes which have zero group velocity.
The ®* modes denote the internal gravity waves which
have frequencies of Uk+tNk/m and group veldaities of
¢ (k)=(UtN/m, —NkIm?).

The gravity waves produced by a pulse heating in
an unsheared flow are symmetric about its center and
impart no net momentum flux to the flow. Thus, no
vertically propagating gravity waves are produced.
However, vertically propagating gravity waves can be
generated by steady heating or cooling. Similar to Eq.
(112), the vertical displacement for the steady state
heating can be obtained by integrating Eq. (103) with
respect to time:

(115)

]
i
= |
Tl(r,x,z}=Jo n(t-7,x,z)dT. ‘l

i
Figure 19 shows an example in which a heat source
concentrated in the stippled region is given by a eaVISlde
function at =0 in an unbounded stratified ﬂuutti The
solution is given by Egs. (115) and (103) by ex}:ludmg
the lower boundary reflections (i.e., the last twb terms
in (103)). The integrand in Eq. (1 15) is cb#nputed
numerically using Simpson's rule. The response of the
fluid has two separate parts. First, there exists| : region
of upward displacement generated initially atﬂhe ori-
gin of the heat source and which is subsequéntly ad-
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Fig. 19. Vertical displacement of a hydrostatic atmos:l‘ilere o a
steady heating (stippled) imposed at t=0. The [solution is
given by Egs. (115) and (103), excluding the lower boundary
rcﬂcctions (the last two terms). with U=10 ms™, N=0.01

i T‘,_273 K, Q=11 kg s, b=20 km, d=1 kn: land z,=0

km (From Lin and Smith, 1986)



vected downstream by the basic wind. The amplitude
of the displacements keeps growing with time. Notice
that the|peak of the upward displacement appears to
propagate downstream with a slower speed (~0.7U) than
the basi¢ flow. The upward displacement is a superpo-
sition of an infinite number of individual elements
correspanding to individual pulse heating separated by
infinitesimal time intervals. In addition, there is a down-
ward displacement in the vicinity of the stationary source,
which develops at a much slower rate than that of the
drifting [disturbance. The corresponding vertical mo-
mentum| fluxes are shown in Fig. 20. There exists a
layer of megative (positive) momentum flux above (be-
low) the| heating layer. The magnitude of the momen-
tum flux increases as the gravity wave associated with
the steady heating becomes stronger and propagates to
higher (lower) layers. In the upper layer, the down-
ward trilsport of momentum is a consequence of the
upstream phase tilt of the vertical displacement, which
gives a greater horizontal perturbation velocity in the
downward motion. This is similar to the mountain
wave theory (Eliassen and Palm, 1960). The conver-
gence of momentum flux at the heating level must act
to accelerate the flow slowly (as a second-order quan-
tity) the;re while air above and below is decelerated.

3. Applications
A. Flow over a Heat Island

The above theory has been applied to the problem
of stratified flow over a heat island by Lin and Smith
(1986). [This helps to explain the downward displace-
ment observed over a heated island and upward dis-
placement on the downstream side (Fig. 22; Malkus,
1963; Garstang er al., 1975). Figure 21 shows the
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Fig. 20. The corresponding vertical momentum fluxes for the flow
fields of Fig. 19. The units of the momentum flux are 10°
Newton m™.
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Fig. 21. Vertical displacement for an airflow over a hicat island.
The stationary heat source is concentrated in tl_ie stippled
region. This flow is given by Eq. (115) with|U=5 ms™',
N=0.01 5!, T,=273 K, Q,=0.35 T kg"' 57", 2,=0.5 km, b=10
km, d=0.5 km and ¢=20 km. Two times are shown: (a)
5000 s and (b) 20000 s. (From Lin and Smith, 1986)

disturbance generated by a stationary heat source (stippled
region) introduced at an initial time, =0, in a hydro-
static atmosphere over a flat surface. The heating rep-
resents the low-level sensible heating caused by a heated
island in the daytime. For the heating rate, !we con-
sider a simple case of a heat island which warms 10 K
from 0600 to 1400 LST. For simplicity, wei assume
that the heating extends uniformly to the top of the
boundary layer, say 1 km. The heat flux thus calcu-
lated is approximately 348 J m* s”.. This gives a heat-
ing rate of 0.35 J kgl s”!. The response of the fluid to
the low-level heating is similar to the case i Fig. 19
in that heating correlates with negative displ&cement.
The dynamics are essentially the same as explained in
Section IV.2. Notice that the air parcel ascends on the
downwind side of the heat island. Figure 22 shows the
divergence and vertical velocity fields over Barbados
(DeSouza, 1972; summarized in Garstang et al., 1975),
which indicates that there exists a downward motion
over the island and an upward motion downwind dur-
ing the day. Rainfall enhancement is often observed
on the downwind side of metropolitan areas, such as
St. Louis (Fig. 1; Braham and Dungey, 1978; Changnon,
1981). This phenomenon is often explained by the
addition of condensation nuclei, which are swept down-
stream when air flows past an urban heat island. A
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+—Wind

1000

500

1000 ¢

500

Fig. 22. Divergence and vertical velocity fields over Barbados dur-

ing the summers of 1968 and 1969 during the day. The
horizontal and vertical distance units are in km and m,
respectively. (From Garstang er al., 1975, after DeSouza,
1972)

study of the combined effects of the addition of con-
densation nuclei in the region of ascending motion
downstream of an urban heat island may provide a better
explanation of the phenomenon. A similar phenom-
enon has also been obtained in linear studies by Hsu
(1987b) and Luthi et al. (1989) and in the nonlinear
numerical study by Hjelmfelt (1982).

B. Orographic Rain

Figure 23 shows an example in which the heating
is associated with a stationary precipitating upslope
orographic cloud in a hydrostatic atmosphere. The so-
lution is obtained by superimposing the mountain in-
duced wave (Eq. (80c)) and the heat induced wave (Eq.
(115)). The dry mountain wave solution is also plotted
for comparison. The heating rate corresponds to a rainfall
rate of about 2.5 mm h'. The heating is concentrated
in the stippled region and activated at =0 s. After
some time, the thermally generated disturbance has grown
and drifted downstream. This displacement keeps grow-
ing as the stationary heating continues and reaches
considerable magnitude by 13,000 s=3.6 hrs (Fig. 23b).
If the heating continues for some time, a negative dis
placement is produced in the vicinity of the upslope
orographic cloud. This phenomenon was found by Smith
and Lin (1982) and is explained more completely here.
In the real atmosphere, broad upslope rain may be lim-
ited by the heat induced descent either in duration or
intensity. This result has some similarities to a num-
ber of studies of mountain waves and orographic rain
(e.g., Raymond, 1972; Fraser et al., 1973; Barcilon et
al., 1980). The vertical transport of the horizontal
momentum is convergent at the heating layer, which is
similar to the case of an unbounded fluid (Fig. 20)

as
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Hydrostatic vertical displacement generated by a mountain
and an elevated heat source (stippled) imposed at §=0. The
solution is given by Egs. (80c), (103) and (115) with U=10
ms™, N=0.01 s, T,=273 K, Q=1 T kg 57", b=20| km, d=1
km and ¢=20 km, a=20 km, #,=400 m. The dashed lines
represent the vertical displacement of the adiabatic moun-
tain waves. Two times are shown: (a) 3000 § and (b)

13000 s. The heating corresponds to a precipitatipn of 2.5
mm h'. (From Lin and Smith, 1986)

Fig. 23.

with the modification of orographic effects.
tain realistic values of the parameters U, N, g
and z,, a positive momentum flux below the heating
layer is produced, implying a reverse of the mpuntain
drag as discussed in Smith and Lin (1982) and |Durran
and Klemp (1982). |

To avoid the addition of latent heat in a rejgion of
downward motion, Lin (1986b) adopted a simple rain
parameterization in a linear, finite-element nuinerical
model. The diabatic heating is parameterized by

o JETNE
g =( 3 YEw a(w, 1), (116)
where
N} 2
e=1-—2 N8 (r,-),N2=£(I,-I)]
N? T T,
a(w,mM)=1 ifw>0and >0,




o(w,n)=0 otherwise. ain
In the above formulation, the cloud forms immediately
in a relgion of upward velocity and displacement and
falls tg the surface immediately in a region of down-
ward velocity or displacement. This parameterization
of a precipitating cloud is similar to that used by Fraser
et al. (1973) and Barcilon et al. (1980). The parameter
€ can be as small as 0.2 in cold air (Barcilon et al.,
1980).| Equation (116) may be substituted into the
thermodynamic equation, Eq. (13), with the terms of V,
U, and| V, excluded to obtain

1 ; 26 .
%_9_+U%_i+%(l—sa)w=0. (118)

I

The parameter ¢ will be greater than or equal to zero
depending upon whether the point of interest is inside
or outside the cloud. The air parcel follows a moist
adiabat if it is inside the cloud and a dry adiabat if
outsideg the cloud.

Figure 24 shows the numerical results of orographic
rain in|a stable atmosphere with £=0.8. The stability
parameter (€) is approximately equal to an actual lapse
rate of|6.25 K km™ with a moist lapse rate of 7 K km"
!. The|incoming airstream is saturated, and the mois-
ture is|limited to the lower 6 km. The parameteriza-
tion is| turned on at 10,000 s. Four time steps are
shown [to indicate the time evolution of the flow. The
heating regions are outlined, which may represent the
cloud boundaries. At 30,000 s, two drifting clouds
appear to the downwind side of the mid- and low-level
stationary clouds. These drifting clouds originate and
subsequently separate from the stationary clouds. The
flow reaches a steady state locally in the vicinity of the
mountdin at later times as shown in Fig. 24d. The
local features of the low-level stationary cloud are similar
to those found by Barcilon et al. (1980). The two
stationary clouds at the lower and middle levels may
be interpreted as local quasi-stationary heat sources.
According to the finding of Smith and Lin (1982), the
phase telationship between the stationary heating and
the heat-induced vertical displacement in the flow pa-
rameters chosen here is negative. However, the oro-
graphiq lifting acts to support the existence of the sta-
tionary| clouds. In short, the two stationary clouds in
Fig. 24d are supported by the orographic forcing and
limited/by the long-term heating generated by the clouds
themselves. The corresponding dry mountain wave is
plotted|(dotted lines) against the moist flow (Fig. 24d).
In genéral, the streamlines are depressed upstream in
the lower layer (e.g., z=2 km) and lifted downstream in
the middle layer (e.g., z=4 km) by the presence of
moisture.
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Fig. 24. Streamlines and heating regions of precipitating orographic
clouds in a stable atmosphere with £=0.8 simulated by a
linear, finite element model. Other parameters of the flow
are U=10 ms™', N=0.01 s, T,=273 K, and g,=1 kg m™
The flow is directed from left to right. The mountain height
and half-width are 400 m and 20 km, respectively. The
dotted lines in (d) are the corresponding dry mountain waves.
Four time steps are shown: (a) 30000 s, (b) 40000 s, (c)
50000 s, and (d) 60000 s. (From Lin, 1986b) d
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Barcilon and Fitzjarrald (1985) investigated the
nonlinear effects on a precipitating orographic cloud
using a theoretical approach and a rain parameteriza-
tion similar to that of Eq. (116). They found that the
nonlinearity and lower boundary affects the dynamics
of mechanically and thermally induced waves and wave
drag. The wave drag depends upon: (1) the location
of the moist layer with respect to the ground, (2) the
amount of moisture, (3) the degree of nonlinearity and
(4) the asymmetry in the bottom topography. For sym-
metrical mountain profiles, substantial drag reductions
are obtained when the moisture is adjacent to the to-
pography. In addition, an increase in the nonlinearity
increases the drag.

C. Moist Convection

The maintenance of a quasi-steady squall line
remains an unsolved dynamical problem. One may
regard the evaporative cooling in the subcloud layer
produced by the precipitation falling from the updraft
aloft as a stationary heat sink in the reference frame of
the moving line. The steady state assumption for the
cooling in a squall-line type of thunderstorm is not an
unreasonable one (Lilly, 1979). Figure 25 shows an
example of an airflow over a stationary heat sink. In
a moving frame, the stationary heat sink may be re-
garded as a left-moving squall line. The propagation
speed of the heat sink is 15 ms™, and the Froude num-
ber (U/Nd) is 1.5. In the vicinity of the heat sink, the
air is displaced downward at first and then upward.
The approach to steady state is essentially the same as
in the flow over a heat source but in an opposite way.
The local features near the heat sink are similar to the
steady state solutions of Thorpe er al. (1980) and Lin
and Smith (1986). The phase relationship between the
evaporative cooling and the induced vertical displace-
ment in the region near the heat sink is negative, as
shown earlier. The upstream tilt of the vertical dis-
placement indicates the upward propagation of the
generated internal gravity waves. In addition, there is
a region of positive displacement propagating down-
stream kinematically, which is similar to the heating
case studied earlier.

The positive displacement in the vicinity of the
heat sink resembles the flow structure near the gust
front of a squall line and may provide a possible mecha-
nism for the maintenance of a squall line. Robustness
of this result can be demonstrated by solving the same
problem with a linear finite-element numerical model
(Lin, 1986b). This is also a convenient way to exhibit
other aspects of the flow field as all of the flow vari-
ables are computed by the model. Figure 26 shows the
vertical displacement, perturbation fields of the den-
sity, horizontal velocity and vertical velocity at 4000 s.
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Fig. 25. Vertical displacement near a stationary heat sink rlpresent—
ing evaporative cooling under a precipitating cloud. This
flow is given by Egs. (115) and (103) with U=15 ms",
N=0.015", Q=4 T kg™ s, z,=1 km, b=5 km, d=1}km and
¢=20 km. Two times are shown: (a) 1000 s and (b) 4000
s. (From Lin and Smith, 1986)

The field of vertical displacement produced by the nu-
merical model (Fig. 26a) is slightly smoother than that
of the analytical solution (Fig. 25b) because a nhmeri-
cal smoothing technique is applied in the model tg avoid
the spurious growth of high wave number modges. In
general, the agreement between the numerical jmodel
and analytical results is good. The density field (Fig.
26b) shows that there exists a pool of cold air near the
stationary heat sink. The sharp density difference in
front of the heat sink (x = —35 km) may be regarded as
an upstream gust front produced by the density current.
The high density region may correspond to the mesohigh
as often observed under the strong downdraft region.
On the downwind side, the cold air is advected more
dispersively, i.e., the density difference is not as sharp
as on the upstream side . From the velocity |fields
(Figs. 26¢, d), there exists upstream motion and a re-
gion of surface convergence in front of the stationary
heat sink. This is consistent with the finding of the
positive displacement near the heat sink (Fig. 25).] With
application to the low-level flow associated with a|squall
line, the upward motion and low-level convergende may
play an important role in generating a new convective
area on the upstream side of the moving squall line.
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V. Concluding Remarks

e dynamics of mesoscale circulations of a sta-
bly stratified flow forced by both low-level and el-
evated|heat sources or sinks have been reviewed. The
mathematical problems of prescribed diabatic heating
in a continuously stratified flow have been solved by
several authors and have been shown to be useful in
understanding the dynamics of various mesoscale phe-
nomena which commonly occur in the terrestrial atmo-
sphereL In this paper, we have reviewed a relatively
wider variety of problems and emphasized more the
basic dynamics. In part I, we discussed the responses
of a stAbly stratified uniform flow to a prescribed ther-
mal forcing. The governing equations, energy equa-
tion, mpmentum transport, dispersion relation, and various
wave regimes and properties were discussed. Math-
ematical methods for solving both steady and transient
flows over a meso-y scale heat source were presented.
The madthematical solutions have been found to be useful
in helping to understand problems of heat island, oro-
graphi¢ rain, moist convection, and gravity waves trav-
eling an inversions.

Tp wholly understand the problems of orographic
rain and moist convection, the present approach may
be extended to include a more realistic rain parameter-
ization| or an explicit moisture budget. A more realis-
tic boundary layer physics needs to be considered when
one applies the present theory to predict the flow cir-
culation associated with a heat island while a more
realistic flow structure needs to be incorporated in the
theory |[when one investigates the propagation mecha-
nisms of gravity waves generated in the atmosphere.
The responses in a shear flow will be reviewed in Part
II.
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