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1. Introduction

There are a number of problems in mesoscale
dynamics which are related to the response of a
stably stratified flow to localized heat sources or
sinks. A phenomenon is defined as mesoscale if it
has a horizontal scale of 2 to 2000 km. The
mesoscale is often divided into three subscales:
meso-Y (2-20 km), meso-f (20-200 km), and meso-
o (200-2000 km) scales (Orlanski, 1975). In some
cases, the diabatic heating or cooling reaches a quasi-
steady state, which may be represented by a
prescribed function. In this way, the mathematical
problem reduces to a stably stratified flow over a
prescribed thermal forcing. Some examples will be
briefly reviewed below to demonstrate that this type
of study is useful in understanding the dynamics of
different types of mesoscale phenomena spanning the
various subscales.

One of the earliest theoretical studies of airflow
over a prescribed heat source was proposed by
Malkus and Stern (1953) in a study of the heat island
problem. They found that the air ascends over the
heat island. As pointed out by Olfe and Lee (1971)
and Smith and Lin (1982), this is not the case if a
correct upper boundary condition is imposed.
Observations over heat islands such as Anegada
(Malkus, 1963) and Barbados (Fig. 25; DeSouza,
1972; summarized in Garstzag et al., 1975) showed
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that there exists a region of descent over the heat
island followed by an ascent over the ocean on the

"downwind side during the daytime. By solving an

associated transient problem, Lin and Smith (1986)
also suggested that the rainfall enhancement occuring
on the downwind side of an urban heat island, such
as St. Louis (Fig. 1; Braham and Dungey, 1978;
Changnon, 1981), may be partly the result of the
ascent produced by the stationary heating due to the
urban heat island. This problem has also been
studied by several authors (e.g. Smith, 1955, 1957,
Hsu, 1987a,b; Luthi et al,, 1989). Circulations
associated with sea/land breezes are also related to
this process except that the thermal forcing is
periodic in time. Since the sea breeze problem has
been studied extensively in the last four decades and
is reviewed in several textbooks and literature articles
(e.g., Rotunno, 1983), we will not review this
subject in this paper.

In a study of the upslope orographic rain
problem, Smith and Lin (1982) solved the
mathematical problem analytically using a prescribed
function to represent the latent heating associated
with the nonprecipitating or precipitating orographic
cloud in a stably stratified flow. They found that the
phase relationship between the heating and the
induced vertical displacement is negative in a moving
airstream. That is, descending motion is established
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Fig. 1: Maps of first echo densities in St. Louis,
Mo.: (a) analysis of 4553 first echoes, (b) set of
4175 first echoes having bases = 3000 ft, () set
of 1950 echoes from 44 days selected to insure
ground based convective clouds, (d) data for
days with light wind. Downtown St. Louis is
denoted by X. Notice that the first echo
formation is on the downwind region of the city.
(From Braham and Dungey, 1978)

just upstream of the prescribed heated region so that
negative displacements dominate in the heating
region. This phenomenon is consistent with other
studies of the orographic rain problem (e.g., Fraser
et al., 1973; Barcilon et al., 1980) in which it was
found that the mountain waves are weakened by the
latent heating. Raymond (1972) also showed that
mountain waves are weakened by heating and
strengthened by cooling in a study of airflow over a
two-dimensional ridge with low-level sensible
heating and cooling (see Fig. 2). This phenomenon
was then explained by Lin and Smith (1986) by

°

Fig. 2: Airflow over a ridge: (a) adiabatic, (b) with
boundary layer heating, and (c) with boundary
layer cooling. Notice that the adiabatic mountain
waves are suppressed by the heating and
enhanced by the cooling (From Raymond, 1972)

solving the transient problem and by Bretherton
(1988) by proposing a group velocity argument. The
combined effect of thermal and orographic forcing
has also been studied by Davies and Schar (1986).
In their theory, they incorporated a CISK-like
representation for a non-precipitating convective
cloud in a linear, steady, continuously stratified,
hydrostatic flow over a mountain ridge. They found
that the effect of combined thermal and orographic
forcing can be significantly different from that of
orography acting alone. In particular, in certain
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situations an enhanced (resonant) response can occur
with strong winds on the lee slope and a concomitant
large surface pressure drag. Their results also
suggested that diabatic effects might on occasion play
a major role in inducing strong surface leeside
winds.

The response of a continuously stratified
atmosphere to diabatic forcing is also relevant to the
moist convection associated with midlatitude squall
lines. One may regard the evaporative cooling in the
subcloud layer produced by the precipitation falling
from the updraft aloft as a stationary heat sink in the
reference frame of the moving line. The steady state
assumption for the cooling in squall-line type
thunderstorms is not an unreasonable one (Lilly,
1979). The mathemarical problem has been

investigated by several authors (Thorpe et al., 1980;

Lin and Smith, 1986; Raymond and Rotunno, 1989;
Lin and Chun, 1991). The solutions provide a way
to help explain the maintenance of a long lasting
squall line. In solving a similar two-dimensional
initial value problem with® both prescribed
condensational heating and evaporative cooling
considered, Raymond (1986) indicated that the
strong speed selectivity of wave-CISK is due to a
requirement that the actual vertical velocity at the
level of free convection must exceed the diabatic
mass flux there. In solving the three-dimensional
response to a prescribed elevated heating,
representing condensational heating, Lin (1986a) and
Lin and Li (1988) proposed that the V-shaped cloud
tops over severe storms (Fig. 3; also see Heymsfield
and Blackmer, 1988 for a brief review) are formed
by thermally forced gravity waves. By incorporating
a prescribed elevated cooling associated with melting
snow, it has been shown that new convection may be
triggered (Lin, C.A. et al., 1988a,b).

Occasionally, there exists a critical level in a flow

over a heat source or sink. One example is the moist
convection associated with midlatitude squall lines
(e.g., Thorpe et al., 1982; Seitter and Kuo, 1983;
Raymond, 1984). For the squall line analyzed by
Ogura and Liou (1980), the rightward mode exhibits
a critical level near 6 km (Fig. 4). That is, the
propagation speed of the disturbance coincides with
the environmental wind speed at that level. Similar
phenomena have also been found in climatological
studies by Bluestein and Jain (1985; see Fig. 5) and

Wyss and Emanuel (1988). Thus, there exists.
thermal forcing below and above the critical level as

the condensational heating may extend to a height of

10 km. Notice that the critical level coincides with

the level of wind reversal in a steady state flow.

Similar processes can also be found for moist-
southwesterly monsoon currents over the Western

Ghats of India during the summer (Fig. 16 and 17;

Ramage, 1971; Smith and Lin, 1983). Perpendicular

to the coast line, the basic flow reverses in the middle

troposphere.

In some cases, the thermal forcing exists solely
below the critical level. For example, this problem is
relevant to the formation of a squall line in the
vicinity of a dry line over the southern Great Plains
(Rhea, 1966). The mesoscale circulation across the
dry line favorable for the formation and maintenance
of a squall line analyzed by Ogura and Chen (1977)
and simulated by Sun and Ogura (1979) appears to
have a wind reversal near a low-level inversion (e.g.,
see Figs. 6c and 10b in Sun and Ogura). Sun and
Ogura also found that upward motion is generated
with sufficient intensity to release the potential
instability if the synoptic-scale low-level wind is
incident from the proper direction. Numerical
studies of the sea breeze circulation (e.g., Estoque,
1962) also indicate that the location and shape as
well as the intensity of the sea breeze circulation are
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strongly affected by the direction of the prevailing
synoptic wind. Therefore, it is important to
investigate the response of a continuously stratified
shear flow with a critical level to prescribed heating
or cooling.

The above mentioned problem may be further
applied to the mesoscale flow in the vicinity of the
coastal region of the Carolinas during the winter
when a cold synoptic-scale anticyclone exists to the

north of this region. The horizontal basic wind
normal to the coastline reverses at about 2 km as the
inland low-tropospheric flow underlies the westerlies
in the middle and upper troposphere (Fig. 6). The
low-level sensible and latent heating associated with
the strong temperature contrast provides an important
energy source for the mesoscale circulation, which
can produce a subsynoptic scale cyclone near the
surface (Lin, 1989b, 1990a). Since the Rossby
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Fig. 4: Streamlines for a midlatitude squll line on 22
May 1976. Three important features are shown:
(a) upshear tilt of the updraft, (b) downdraft fed
by the front-to-rear flow, and (c) flow
overturning in the middle layer (From Ogura and
Liou, 1980)
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Fig. 5: Composite hodographs in a frame of
reference moving along with squall lines
averaged over an 11 year period in Oklahoma.
(From Bluestein and Jain, 1985)

number associated with the flow is less than one, the
response is quite different from that of a stratified
flow over a small-scale heat source with rotational
effects ignored. Therefore, in order to understand
the dynamics of a flow over a meso-o/f scale heat
source, the effects of planetary rotation as well as the
baroclinicity must be included.

Prescribed diabatic heating in a large-scale
atmospheric flow has also been found to be useful in
understanding and interpreting the large scale
dynamics. For example, Smagorinsky (1953) has
investigated the large-scale steady flow over
prescribed sinusoidal heat sources and sinks on a -
plane. The linear response of a large scale flow over
steady tropical thermal forcing has also been studied
extensively by several authors (e.g., Webster, 1972;
Gill, 1980; Geisler, 1981; Geisler and Stevens, -
1982: DeMaria, 1985). The Walker circulation
results from the dominance of the convective heating
of the Indonesian maritime continent. The
midlatitude response to steady tropical thermal
forcing has been studied by Hoskins and Karoly
(1981), Simmons (1982), Lim and Chang |(1983)
among others. These studies showed that the
uniform zonal flow, as well as the shear zonal flow
(Lau and Lim, 1984), has a large effect on the
midlatitude response to the imposed thermal forcing.
However, we will concentrate on the application to
mesoscale circulations in this review.

Therefore, the mathematical problem of
prescribed diabatic heating in a continuously
stratified flow has been shown to be useful in
understanding the dynamics of various mesoscale
phenomena which commonly occur in the terrestrial
atmosphere by the above authors and by others.
This subject has been reviewed recently by C. A. Lin
and Stewart (1991). However, we will review a
wider variety of problems and emphasize more on
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Fig.6: (a) Surface, (b) 850, (c) 500 and (d) 300 mb maps for 1200 GMT 18 February
Presidents' Day snowstorm. Wind in m 5! [pennant=25 m 51, full bar=5 m s°1],
temperature in °C. Heights, surface pressures and isotherms indicated by solid and
dashed lines, respectively. (From Bosart, 1981)

the basic dynamics. The governing equations for a
mesoscale atmospheric system will be presented in
Section 2. An energy equation will be used to
identify various instability mechanisms. A
dispersion relation will be derived and used to
categorize different wave regimes. Finally, the wave
reflection and effect of critical level will be
discussed. In Section 3, the response of a uniform,
steady, continuously stratified flow over a meso-Y
scale heat source or sink will be described. Both
sinusoidal and isolated heat sources will be
considered. Applications to the orographic rain

problem will be discussed. In Section 4, the
transient flow response to 2 meso-y scale heat source
will be reviewed. Both pulse heating and steady
heating will be included. Applications to the
mesoscale circulations induced by orographic rain,
heat islands, moist convection and gravity waves on
inversions will be reviewed. In Section 5, the
response of a continuously stratified shear flow with
a critical level to 2 meso-y scale heat source will be
described. Responses to both heating and cooling
will be included. The response of a three-
dimensional flow to a prescribed local heating will be
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described and applied to the dynamics of V-shaped
cloud tops over severe storms. In Section 6, we will
review the response of a flow over a meso-o/p scale
heat source. The effects of planetary rotation will be
included in this section. Responses to both
barotropic and baroclinic flows will be discussed.
The theory will then be applied to the problem of
coastal cyclogenesis.

2. Governing Equations of Mesoscale
" Systems
Consider an inviscid, incompressible atmosphere
on a planetary f-plane. The momentum equations,
the incompressible continuity equation, and the
thermodynamic energy equation can be expressed in
the form

__-fv-g-lap_
pE (2.1)
Dv 19p
—+fu+—=-=0
Doy 2.2)
+ 19
W, =2 =i
1> 3l pE 23)
du_dv. dw_
x*oytaE =0 2.4)
D _ 9% a
Do el ° 2.5

The diabatic heating rate per unit mass, q, may be
taken to represent the surface heating and/or the
elevated latent heating. The symbols 8, and T,
denote constant reference potential temperature and
temperature, respectively. Other symbols are defined
as usual. Notice that the Rayleigh friction and
Newtonian cooling may be included to generalize the
above system. Since we have assumed an
incompressible atmosphere, the physical mechanism
responsible for generation and subsequent

propagation of sound (acoustic) waves has been
eliminated from the system.

We may linearize the above system by defining

u(t,x,y,z) = U(z) + u'(t,x,y,z)

v(t,x,y,z) = V(z) + v'(t,x,y,z)

w(t,x,y,z) = w'(t,x,y,z)

ptx.y.z) = pp +p'(Lxy,2)

p(tx.y,z) = P(x,y,2)+ p'(t.x.y.2)

0(tx.y,z) = ©(x,y,2) + 0'(t,x,y,2)

q(tx,y,z) = q'(tLx,y,z). (2.6)
In the above expressions, the Boussinesq
approximation (Spiegel and Veronis, 1960) has been
adopted, which assumes the density to be constant
except in the buoyancy term. The basic wind is
constrained to be uniform in horizontal. The basic
state momentum relations are assumed to satisfy the
hydrostatic and geostrophic wind balance

oP 8P,
Ty
] (2.7a)
U_i%’ v_-l_%g
fp, , - N
(2.7b)
The above equations imply the existence of thermal
wind balance for the basic state
08 10, e fo,
s 5 T_____U
' @.3)

Substituting Eq.(2.6) into Eqgs.(2.1)-(2.5) and
neglecting the nonlinear terms, the perturbation
equations can be written

9;-+U§%+Vau +U,w'- fv' +i%—0
(2.9)

9%+ U%X--i- V%-i— Vzw’+fu'+i%—
(2.10)
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N%8, 8
=0 w'=—2q'
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The Brunt-Vaisala frequency is defined as

08
N —eig
> (2.14)
and may be characterized as the natural oscillation
frequency of an air parcel displaced from its
equilibrium positions in a continuously stratified
atmosphere.

Egs. (2.9)-(2.13) can be combined to give a
single equation for the vertical velocity

(U,_% +£ Vi)W -

(Vo - £ U)Wy + N2Vaw's 26(U, W'y, -

% {-I[)%VZW' + W'y -

Vaw'ss) } + 26U V(W Wiyy) + 26(V2-U2)-

' ' 2,
W'ey - 262(U, W'z + VoW'yz =-&§an

(2.15)

The above mesoscale system includes the following
mechanisms: (a) inertia-gravity wave generation, (b)
convective instability, (c) shear instability, (d)
symmetric instability, and (e) baroclinic instability
(Emanuel and Raymond, 1984).

The energy transfer equation for the system of
Egs. (2.9)-(2.13) with no north-south (meridional)
basic state wind component (V=0), but one whose
east-west (zonal) component is meridionally sheared
(Uy#0) can be derived

_a_ i - et pogf %
(3I+Uax}E + pou'w'Uz + pou'v'Uy - zeovBU;

I . Y
cpToNZOD

(2.16)
where

_Por. 2. 2,02 4+ (—B ) g?
E=5 [(@?vi+w )+(N9°) 6”]

2.17)
is the total perturbation energy which consists of the
perturbation kinetic energy (first term) and the
perturbation potential energy (second term).. Taking
the horizontal integration of Eq. (2.17) over a single
wavelength for a periodic disturbance or from -e= to
4oo for a localized disturbance in both x and y
directions gives

oE pgf _—
3r = PouWUz - PoliV UY*‘( - )"BUZ e
Pog
Fif— )Bq
cpTaN?8o

(2.18)
Now we may take the vertical integration of the
above equation from z=0 to the top of the physical
domain z=zy in which we are interested, to yield

-y Zr
d o
_EE%=-P°]' mzdz'i)oj ydz“'(pzif}
- B [} [} : i
J VOU Az W +Pw(0)+—2E—) I 6qdz
[] CPT0N29 o Jo
(2.19)

The term on the left side of the above equation
represents the time rate of change in the total
perturbation energy in the system. The first term on
the right side represents the vertical momentum flux
transfer between the kinetic energy of the basic
current and the wave encrgy. When shear instability
occurs, the energy is transfered from the basic state
shear flow to the disturbance, resulting a net loss of
kinetic energy of the basic state. The second term on
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the right side represents the horizontal momentum
flux transfer between the kinetic energy of the basic
current and the wave energy. When inertal
instability occurs, the perturbation grows by
extracting the kinetic energy from the horizontal basic
shear. The third term on the right side represents the
north-south heat flux transfer between the basic state
and the perturbations. When baroclinic instability
occurs, the perturbation extracts energy from the
vertical shear which is supported by the northward
heat flux. The fourth term represents the forcing
exerted by the top boundary. It is zero if the top
boundary is a flat rigid surface because that physical
condition constraints w'=0 there. This term becomes
negative if a radiation upper boundary condition is
applied, which requires the energy generated below
to propagate upward from the domain interested.
The fifth term represents the forcing exerted by the
lower boundary. It is zero if the lower boundary is a
flat rigid boundary and positive if there exists
irregular topography (e.g., a mountain). The last
term on the right side of the above equation
represents the encrgy transfer due to thermal forcing.
In order for the disturbance to grow, the diabatic
heating has to be added where potential temperature
anomaly is positive. That is, the heat should be
added in the warm region.

In this paper, we will focus on the physical
characteristics of wave generation in a stably
straitified fluid applicable to thermally forced
mesoscale circulations in planetary atmospheres.
Therefore, we will review the basic properties of
inertia-gravity wave generation in the following.
Those readers interested in other generation
mechanisms should consult the various review
papers which exist in the literature, or standard texts
on the subject.

For simplicity, we consider an adiabatic linear

system with constant U, N, and f. Under this
situation, Eq. (2.15) reduces to

2 2.2 ?w' 9%w' 3w 5102w’
(§+U§;) (824- +—) + 222

ay?  9z% 072
Dt v
+ N2 (a_w P )=0
ox?  9y?
(2.20)
Assume a wave-like solution for w'
w' = w(z) explitkx + ly - 0)].
(2.21)
Substituting (2.21) into (2.20) gives
i 2
a—‘:~+ A w=0
az E
(2.22)
where
2
2 KINED)
2
Qf
(2.23)

7 1/2
where K is the horizontal wave number, (k +Iz) 4

and Q is defined to be the Doppler-shifted or intrinsic
frequency, w-kU. The solution of Eq. (2.22) can be
written

o

(2.24)
Therefore, the wave property depends on the values
of A. Three different wave regimes can be identified
and defined from the signs of the numerator and
denommnator of Eq. (2.23).

(1) @ >N > f: In this wave regime, A is
imaginary. Distarbances decay exponentially with
height away from the source. Thus, the wave falls
into the evanescent wave regime. When >>N>f,
Eq. (2.23) reduces to

A =K%

In this extreme case, the buoyancy and rotational
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forces play insignificant roles in the wave generation.
The fluid behaves like a homogeneous fluid and the
flow field may be adquately characterized as one on
potential flow. An extensive mathematical theory
exists to describe flows of this type (e.g., Lamb,
1932).

(2) N > Q> f: In this wave regime, A is real and
the wave is able to propagate freely in the vertical.
Thus, the wave falls into the vertically propagating
wave regime. One of the two possible mathematical
solutions of Eq. (2.24) represents a wave
propagating upward, while the other represents a
wave propagating downward. For a wave generated
by a low-level source such as a mountain, the
Sommerfeld radiation condition requires the wave to
propagate away from the energy source (i.e., upward
from the mountain terrain). The other solution has
no physical basis and is not retained. This also
applies to the boundary condition at z=+ee for an
elevated thermal forcing. However, both solutions
of Eq. (2.24) must be retained in the heating layer
(forcing region) and the layer between the heating
base and the lower boundary (planetary surface).
Since N/f typically is large in the atmosphere and
the ocean, this wave regime is applicable to a wide
range of intrinsic frequencies. When N > Q>>f
and O(N) =0(Q), Eg. (2.23) reduces to

A =K> (Ei -1)

2
Q
[n this limit, the rotational effect may be ignored and
the flow approaches the nonhydrostatic wave regime.
When N>> Q >>f, Eq. (2.23) reduces to

For this case, the wave generation can be adquately
determined by neglecting both the vertical
acceleration and the rotational effects. Thus, the

wave falls into the nonrotating hydrostatic wave
regime. When N>> Q > f and O(Q) = O(f), Eq.

(2.23) reduces to
2 2
ke K:N
Q-f

In this limit, the vertical acceleration may be
neglected in comparison with the buoyancy
acceleration. Therefore, the flow approaches a
hydrostatic balance and the wave falls into the
rotating hydrostatic regime. For the case with N > Q
>> f, the rotational effect can be neglected.
Therefore the wave falls into the pure gravity wave
regime.

(3) N> f > Q: In this wave regime, A is
imaginary. Similar to the first case, disturbances
decay exponentially with height away from the
source. Thus, the wave falls into the evanescent
wave regime. However, the wave frequency is low.
When N > f >> Q, the inertial terms, i.e. acceleration
terms, play minor roles in the wave generation. The
flow is characterized as being guasi-geostrophic. In
this wave regime, the fluid motion is nearly
horizontal.

From the incompressible continuity equation, it
can be shown that inertia-gravity waves are
transverse to the flow. That is, the fluid particle
motion is perpendicular to the wave vector. In
addition, the velocity vector associated with a plane
inertia-gravity wave rotates anticyclonically with
time. The projection of the motion on the horizontal
plane is an ellipse with w/f as the ratio of major and
minor axes.

Since the wave energy propagates with the group
velocity, it is important to discuss the group velocity
of inertia-gravity waves. Assuming the vertical
eigenfunctions to be of the form Q(z}»-exp(imz) and
substituting into Eq. (2.22) yields the dispersion
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relation for inertia-gravity waves in a quiescent
(motionless basic state), continuously stratified fluid.
2_ PN’
K +P+m®

(2.25)
The group velocity for inertia-gravity waves can be
found by taking the derivatives of the frequency with
respect 1o wavenumber, i.e.

Cegx = 0w/ok, Cgy =0w/dl, cgz =dw/om

(2.26)
Applying the above definitions to the the dispersion
relation for inerda-gravity waves, Eq. (2.25), gives

. i (N *£)
. 22 A% 2 Mz
&*1%m)  Em*KN) |
(2.272)
- im (N
a2 2325, o
&%m)  (FmKNY
(2.27b)
_ -mK AN
Cey= e g 172
k™ +m2) (fzm +K2N2) :
(2.27¢)
It can be shown that
cs-k=0,
(2.28)

where k=(k, 1, m) is the wave vector. Thus, the
group velocity vector for inertia-gravity waves is
perpendicular to the wave vector.

One of the more important phenomena associated
with gravity waves is wave reflection. If the basic
atmospheric structure, such as the Brunt-Vaisala
frequency and the basic wind speed, are allowed to
vary with height, then the gravity wave may be
reflected from the interface at which a rapid change
of the basic atmospheric structure occurs. Consider
small-amplitude perturbations in a two-dimensional
nonrotating system governed by the set of Egs.

(2.22) and (2.23) but whose basic state is
generalized to allow the basic wind and Brunt-
Vaisala frequency to vary with height.| The
gaoverning equation for w may be written as

2~

2 -~
3__\:;2__'_ A@w=0
oz
(2.29;
where
2 2
A @) =%$+-§—5- §?
dz”  (c-U)
(2.30)

The above equation is a simplified version of the
Taylor-Goldstein equation which was first derived
independently by Taylor (1931) and Goldstein
(1931).  As discussed above, the solution of Eq.
(2.29) is of the form exp(iAz). If A2 changes sign
from positive to negative at a certain level, then A
will change from being a real to an imaginary
number. This indicates a transition from the
vertically propagating wave regime to the evanescent
wave regime. Therefore, if a wave-like disturbance
exists below that particular level, it will decay
exponentially above that level. Under this situation,
the wave energy is not able to propagate vertically
above that particular level freely and is forced to
reflect back from there. Therefore, this level is called
the wave reflection level. If there exists such a level
above the rigid (lower) surface, this atmospheric
layer then acts as a waveguide trapping the| wave
energy between the reflection level and the surface
and which allows for effective far downstream
propagation of the wave energy. One well-known
example of gravity wave reflection are the lee waves
generated by stratified flow over a mountain range.
Another important phenomenon associated with
gravity waves is the change of wave property in
passing through a critical level. A critical level (z) is
defined as the level at which the vertically sheared
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basic flow U(z) is equal to the horizontal phase speed
(c), i.e. U(z¢)=c. Using the WKB method,
Bretherton (1966) showed that an upward
propagating internal wave packet would approach the
critical layer for the dominant frequency and
wavenumber of the packet. However, it would not
reach the critical layer in any finite time since along a
ray path, dz/dte<(z-z)? as z-->z¢, which gives t-
tye<1/(z-2¢) as z-->z;. This means that it will take an
infinite amount of time for the wave packet to reach
the critical level. Thus, Bretherton inferred that the
internal wave is physically absorbed at the critical
level, instead of being transmitted or reflected.
Mathematically, the governing equation (2.29)
becomes singular at z=zc. To discuss the wave
properties near the critical level, we follow the study
of Booker and Bretherton (1967) and the review of
LeBlond and Mysak (1978). These authors used the
method of Frobenius (¢.g., see Hildebrand, 1976) in
order to extract information about the wave
behaviour near the critical level. Notice that the
WKB method is not valid near the critical level since
it requires a large Richardson number IN2/U,2).

At z=z;, U and N may be expanded in power
series

U=c + Ug (z-Z¢) + .-

N = Ng + Ny (z-%c) + .-

(2.31)

where the subscript ¢ denotes the value at the critical
level. We assume that zc is a regular singularity
which requires Uzc #0. A series solution may be
found near z (carets are dropped)

w(z) = A(z-z0) ¥ + B(z-zo)' 2 ¥
=A cxp[(é— + ip)(nlz-zd +1i arg(z-zo) |
B exp [(%- if1) (niz-zd +i arg(z-20) ]

=wa + WB
A (2.32)

Both wa and wg have a branch point at z=Z¢. For

the sake of definiteness we may choose that branch
of the In function for which arg(z-zc)=0 when z>z¢
and introduce the branch cut from z=z¢ along the
negative x-axis. Therefore, we obtain

wj = A Vlzzd explipt In(z-2.)]
wh =B Vzzd expl-ip In@zz)]  forz>z
(2.33)

As z-z. decreases continuously from positive to
negative values, arg(z-zc) can change continuously
from O to 7t or 0 to -x. To determine the argument,
we may add a small Rayleigh friction with/a positive
coefficient v. The term U-c then becomes U-c-icj
where cj=v/k. This lifts the z; to be above the
branch cut for U,c>0, which corresponds to the
contour in the lower half plane under the branch cut
in an inviscid flow (Fig. 7). That is, arg(z-zc)
changes from 0 to -m for Uzc>0. Thus, we must
choose arg(z-zc)=-% sgn Usc when z<z..

Substituting this into Eq. (2.32) yields

w = A Yz explip In(z-z)-(1/2)ri sgn Uze

+ e sgn Uzl
wi = B Vzz] expl-ipt In(z-ze)-(1/2)mi sgn Usze
- e sgn Uzl '
forz<z (2.34)

Both solutions wa and wg satisfy the governing
equation mathematically. From Egs. (2.33) and
(2.34), we have

Eﬂ = exp(-unt sgn Uze), L%E—‘ = exp(ux/sgn Ux)

| (2.35)
For U,c>0 and a low-level forcing, the amplitude of
the disturbance generated in the lower level should
decrease as it crosses the critical level to the upper
layer. Thus, we must choose WA. The proper
solution can be found for other situations as well.
Notice that the above equation also indicates that the
wave energy is attenuated exponentially through the
critical level as pointed out by Booker and Bretherton



Dynamics of thermally forced mesoscale circulations

85

el 2}

Fig. 7: Location of branch point with Rayleigh
friction included for z:>0, (2) Uzc>0; (b) Uye<0.
(From LeBlond and Mysak, 1978)

(1967). In addition, the vertical wavenumber

becomes larger and the perturbation velocity becomes

more and more horizontal as one approaches the
critical level since
2 2
A(@=

-0’
(2.36)
This implies that A --> e as z --> z;. Thus, the

vertical wavelength approaches zero (Fig. 8).

3. Steady Flow over a Meso-y Scale Heat
Source
3.1 Sinusoidal heat soource
For a uniform, steady, inviscid flow over a two-
dimensional meso-y scale heat source, the Rossby

* iz

| !
SO RO Fssit hisgnp g AT B8

:w—//éfi \

WS TrEwts

Fig. 8: The propagation of a wave packet upward
toward a critical layer at z=z;. The particle
motions are parallel to the wave crests. Notice
that the vertical wavelength becomes shorter as
the wave packet approaches the critical level.
(From LeBlond and Mysak, 1978, after
Bretherton, 1966)

number is high and the effects due to planetary
rotation can be ignored. Notice that the meso-y scale
is defined to be the horizontal scale from 2 to 20 km
(Orlanksi, 1975). With these assumptions, Egs.
(2.9)-(2.13) can be reduced to

du' 1 dp'

Yo w0
(3.1)
] el 1 1
v 'ge—jjapfo
' (3.2)
au,.ﬁ.g_.\?_:.—(}
9x | 9z
(3.3)
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2
29 Ne, 8,
'3'x_ g w-cpToq

(3.4)
The above physical system is identical to that
investigated in Smith and Lin (1982) except that the
perturbation potential temperature, instead of the
perturbation density, is used as a dependent variable.
These equations can be combined to give a single
equation for the vertical velocity

g - q'
cploU

W' W gt lz(z) w'=
, (3.5)

where 12(z)=N2/U2 is the Scorer parameter for a
uniform basic flow, which has a form of
12(z)=N2/U2-Uz/U, in general (Scorer, 1954).
Similar to mountain wave theory (Smith, 1979), the
above equation may be interpreted as a vorticity
equation. Upon multiplying through by U, the
U(w'gx+W'zz) term is the rate of change of
perturbation vorticity following a fluid particle;
N2w'/U is the rate of perturbation vorticity
generation by the buoyancy force; and -Uzw' is the
rate of perturbation vorticity generation by the
vertical advection of the basic vorticity (Uz).

For a quasi-steady thermal forcing, such as the
surface sensible heating over a heat island, the
condensational heating associated with upslope
orographic rain, or the evaporative cooling under a
thunderstorm, we may prescribe the heating rate
q'(x,z). One simple way to obtain a mathematical
solution is by assuming a separable heating function,

q'(x,2) = Qo f(x) &(2)

(3.6)
where g(z) is normalized according to

fo-g(z) dz=1
’ G.7)
so that

Po [ q'(x,z) dz = poQof(x)

(3.8)
represents the total energy in a unit time added to a
vertical column of the atmosphere. To avoid the net
heating problem (Smith and Lin, 1982), we impose
the constraint

[t ax=0
(3.9)
at each level. To find the mathematical solution, we
apply a Green's function method by assuming the
heating is concentrated at a height zg,
q'(x,2) = Qo f(x) 8(z-z11)-
(3.10)
At the interface z=zy, we require that the vertical
velocity should be continuous, i.e.

w'(zp) - W'z =0
(3.11)
Substituting (3.10) into (3.5) and integrating (3.5)
from just below to just above z=zy gives the second
interface condition,
g Q, f(x)

cpT°U2

w;(z;}) - w;(zh) =

(3.12)
Away from the interface, Eq. (3.5) reduces to
Scorer’s equation
w;x+ w;z+lzw‘=0
(3.13)
The mathematical problem associated with Egs.
(3.11)-(3.13) with appropriate upper and lower
boundary conditions is very similar to problems
encountered in mountain wave theory, which is
reviewed by Queney et al. (1960) and Smith (1979).
To simplify the mathematical problem and to
avoid the complications induced by the wave
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reflection from the rigid, flat, lower boundary, we
consider a sinusoidal heat source located at zg=0, in
an unbounded atmosphere.

q(x,z) = Qo cos kx &(z)
(3.19)

We look for solutions of the form
w'(x,z) = wi(z) cos kx + wa(z) sin kx
(3.15)
Thus, Scorer’s equation which governs solutions for
wj becomes
Wizz + (12 - k2) wi = 0, i=12
(3.16)
To solve Eg. (3.16), we have to consider two cases:
k2>12 and k2<I2. For k2>12, the solutions may be
written as

13 a3
Ar-lz k-lz‘fm_po

+Bix)e

A VT

+D{x)e

wix,z)=A{x) e

, forz<0
317

The B; and C; terms represent  disturbances which
grow in the vertical away from the heating level, and
which should be eliminated because the energy
source is located at zg=0. This requires B;=C;=0.
Applying the interface conditions (3.11) and (3.12)
to (3.17), we obtain

wix,z)=C{x) e

-£Qo T

w'(x,z) = ———2—— coskx e 14
2c,ToU? {212

for k2>12. (3.18)

Thus, the above solution represents evanescent
waves which satisfy boundedness conditions at
z=tes. The condition k2>12 corresponds to
21/L>N/U which physically represents a relatively
stronger wind with a weaker stability past over a
narrower heat source. The L denotes the horizontal
wavelength of the heat source. Under this situation,
it takes a longer time for an air parcel to undergo
vertical oscillations with the Brunt-Vaisala frequency

than to pass (be advected) over the heat source. In
other words, the intrinsic frequency (Uk) is|larger
than the Brunt-Vaisala frequency. Thus, the wave
energy cannot propagate away from the heat source
in the vertical. Instead, it is trapped near the heating
level and advected downsiream. Therefore, there is
no internal gravity wave generated. In the limit of
k2>>12, the buoyancy force becomes extremely weak
and can be ignored. In this limiting case, the
disturbance will approach a potential flow.

For the case with k2<12, the solution of (3.16)
may be written

wi(z) = Ajsinmz + Bjcosmz, i=12

(3.19)

where m2=]2-k2. Combining with Eq. (3.15), the
above solution can be rewritien as

w'(x,z) = C cos (kx+mz) + D cos(kx-mz) + E

sin (kx+mz) + F sin (kx-mz)
forz>0 (3.202)

w'(x,z) = C cos (kx+mz) + D’ cos(kx-mz) + E
sin (kx+mz) + F sin (kx-mz)
forz<0 (3.20a)

Terms with argument kx+mz have an upstream phase
tilt, while terms with argument kx-mz have a
downstream phase tilt. Mathematically, both of them
satisfy the governing equation. However, they have
different physical implications. To determine the
proper solution, we must calculate the vertical energy
flux. Let us consider the first term
w'(x,z) = C cos (kx+mz).

Using the continuity equation and the momentum
equation, the vertical energy flux can be found

f:p‘w' dx= ;'.)‘E,CzUl:l:lulfk2
' 3.21)
This represents an upward propagation of wave
energy. Similarly, terms with argument kx-mz
represent a downward propagation of wave encrgy.
Since the energy source is located at z=0, the upper
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and lower radiation conditions require
D=F=C'=E'=0. Applying the interface conditions
(3.11) and (3.12) to (3.20), we obtain

it gQ : 22
wi(x,z) = ——2=0_ sin (kx+{12-k?
20, ToU2 12K ( )
for k2<12. (3.22)

The above solution represents vertically propagating
waves which satisfy radiation conditions at z=te.
The condition k2<12 corresponds physically to a
relatively weaker wind with a stronger stability over
a broader heat source. Under this situation, it takes a
shorter time for an air parcel to experience vertical
oscillation with the Brunt-Vaisala frequency than to
pass (be advected) over the heat source. In other
words, the intrinsic frequency (Uk) is smaller than
the Brunt-Vaisala frequency. Thus, gravity waves
can be generated and the wave encrgy is able to
propagate to positive or negative infinity (in an
unbounded fluid) from the heat source. The flow
response predicted by Eg. (3.22) becomes
hydrostatic for k2<<12. In this limit, the above
equation reduces to
w = —22 g (Gx +1H)

) 20, T4
(3.23)

Notice that the above solution repeats itself at a
vertical wavelength of 2xU/N. With a typical
atmospheric situation of U=10 ms™! and N=0.01 s,
the vertical wavelength of the forced wave is about
6.28 km.

We may define the vertical displacements as

_yon
w=Us

(3.24)
The vertical displacement for the hydrostatic case is
shown in Fig. 9. Vertically propagating waves are
evident above and below the heating level (z=0) with
phase tilting upstream. Notice that the vertical
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Fig. 9: The vertical displacement of an unbounded,
hydrostatic, stratified airflow to perodic heating
and cooling concentrated at the z={0 level, as
givea by Eq.(3.18) and (3.16), with U=10 ms°1,
N=0.01 s°!, k=40 km-1, Qu=1200 W m kg1,
To=287 K. The heating rate function is shown at
the bottom of the figure. Vertically propagating
waves are cvident from the upstream phase tilting
above and below the heating level. (From Smith
and Lin, 1982)

displacement at the heating level is exactly out of
phase with the heating rate. That s, the air parcel is
displaced downward in the heating region, while is
displaced upward in the cooling region. Smith and
Lin (1982) propose a parcel argument to explain this
phenomenon. This curious negative phase
relationship between vertical displacement and
heating will be explained later by considering the
solution to the transient problem (Lin and Smith,
1986) and by using a group velocity argument
(Bretherton, 1988). Proper upper and lower
boundary conditions are necessary to obtain the
comect solution. By using an incorrect radiation
condition at infinity in an half-plane (semi-infinite
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fluid) in the heat island problem, Malkus and Stern
(1953) obtained a positive relationship between the
heating and the vertical displacement.

Similar to applications in mountain wave theory
(Eliassen and Palm, 1960), the vertical transport of
horizontal momentum can be calculated by

MF=p, [ w'w dx

(3.25)
where L is the horizontal wavelength. From Egs.
(3.23) and (3.25), we obtain

'po
L (ZcpT Uz)
(3:26)

The transport of mechanical energy away from the
layer of forcing is accompanied by a flux of
horizontal momentum towards the layer.

To examine the effect of vertical momentum flux,
we may consider the time-dependent nonlinear
horizontal momentum equation

Ju' 1 9p' du’ _ du'

x 1&"—7;"“3'; “a?

(.27
Taking the horizontal integration over one

wavelength yields

’ (329)
where
=[x
) (3.29)

Therefore, convergence of the vertical momentum
flux, such as that in Eq. (3.26), tends to accclerate
the flow. Notice that this acceleration is pot
explicitly accounted for in linear theory due to the
neglect of nonlinear terms. This acceleration may
have relevance to the problems of wave-CISK
(Raymond, 1986), heat islands, atmospheric tides,

and orographic rain (Smith and Lin, 1982).

3.2 Isolated heat source and topography

The above mathematical problem is illuminative
in providing physical insight of the flow response.
However, in applying the theory to atmospheric
phenomena, such as the orographic rain problem
(Smith and Lin, 1982), we need to consider a rigid
irregular lower boundary and localized heat source.

A useful localized heating function may be
chosen

-2Q.b’x
(x +b2)

q'(x,z) = ——— &(z-zn)

(3.30)
The above heating function is shown in Fig. 10 as
curve 1. This heating function can be used to
simulate the condensational heating and evaporative
cooling associated with a nonprecipitating orographic
cloud. Again, we may apply a Green's function
method to obtain the solution. The heating is

qlu}
e

u{bom}

Fig. 10: The horizontal heating functions of Eq.
(330) with b=20 km (curve 1) and Eq. (3.50)
with b;=20 and bp=100 km (curve 2). The
balanced heating and cooling function (curve 1)
is used to simulate the condensational heating and
evaporative cooling associated with a
nonprecipitating orographic cloud. Curve 2 is
used to simulate the condensational heating
associated with orographic rain, with isolated
heating and widespread cooling. (From Smith
and Lin, 1982)
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concentrated at a certain level. Substituting the above
equation into Eq. (3.13), we have

3
[ [ -2
W twW, + Pw'= —ggﬁf—S(z-zH)
2 2 .22
¢, TU2(x +b)) _
(3.31)
Let w(k,z) be the one-sided Fourier transform of

w'(x,z) in x, i.e.,

wkz) = -iJ;E- [ w'(x,z) eikx dx

(3.32a)
wxz) =2 Re[ wi(k,z) elkx dk

(3.32b)
Now taking the Fourier transform of Eq. (3.31), we
obtain

- ~ igQpbk
W+ (lz-kz) W= jiz%—-c'mli(z-z“)
2
cplU
(3.33)
For z#zg, (3.33) becomes Scorer's equation

(Scorer, 1954)

Wat (kYW =0
- (3.34)
For a hydrostatic wave (k2<<l2), the solution may be
written as

wk2)=Ae"+Be™ forogz<zy
(3.352)

wk2)=Ce+De™ forme<z
(3.35b)

At the gound, the flow is assumed to follow the
terrain, thus ‘

w' = dh(x)
U+u' dx at z=h(x),

=%

(3.36)
where h(x) represents the terrrain height. For small
amplitude topography and induced disturbance, the

above lower boundary condition may be written as

dh(x)
dx 5 at z=0.

w'=U
3.37)

For mathematical simplicity, we consider a bell-

shaped function to represent the topography which is

often used in mountain wave theory (e.g., Smith,

1979)
hc,a2

(x2+a7) ]
(3.38)

Substituting (3.38) into (3.37) and taking the Fourier
transform, we obtain

h(x) =

W(k,0) = ikUh e ™
(3.39)
Applying the lower boundary condition (3.39) to
(3.35a) gives

A+B=ikUha™
' (3.40)

The upper radiation boundary condition should
allow the wave energy to propagate upward (Eliassen
and Palm, 1960; Bretherton, 1969). This can be
determined by computing the vertical energy flux
similar to Eq. (3.21), which requires D=0. With
(3.40) and this upper boundary condition, (3.35)
becomes

W(k;2) = %A sin Iz + ik Uhgae ™"
for0<z<zyg (3.41a)
wikz)=Ce",
forz> ziy (3.41b)

In the above solution, we allow the thermally forced
wave to propagate downward toward the surface
below the heating level zy. Coefficients Aland Cin
(3.41) can be determinted by the two interface
conditions (3.11) and (3.12). In the Fourier space,
they have the following forms
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w(zy) - w(zg) = 0’
(3.42a)
ig Q, bke ™

wAZp) - Wz = -
cpToU

(3.42b)

Applying the above equation to (3.41) and taking the

inverse Fourer transform lead to

w'(x,z) = 2Rc[
igQ,bke-kbeilzusin 1z

[iUhoake-keeiz -
cPT.,Uzl

Jea)

forO0<z<zy

wi(x,2) = 2Re

[iUhoake-kseilz
cpToU

forz>zy (3.43)
Using the relationship (3.24), the vertical
displacement be obtained

)- gQ,b?sin 1z (b cos lzy - x sin lzy)

N(x,2)=Nm(x,z cpToU3l (x24b2)

forO<z<zy (3.44a)

gQ,bsin lzy (b cos Iz - x sin 1z)

N(x,2)=Nm(x,2) -

cpT°U3l (x2+b?)
forz2>zy, (3.44b)
where
h a(acos Iz - x sin 1z
N(x,2) = ot - )
x+a

(3.44c)
Notice that the above solution is a superposition of
the hydrostatic mountain wave (Tm;m) and the
thermally forced gravity wave.

_ igQob’kekbeilzsin Izy Jeiwdk }

The pressure perturbation at the surface can be
computed from (3.44) using either Bernoulli's
equation (substituting Egs. (3.3) and (3.24) into Eq.

(3.1))
Px0) = pUux0)=p US|

(3.45)
or the hydrostatic equation (with Eq.(3.4))

p'(x,0) = gep°f o' dz

o

=-p N L n(x.2) dz - %"—}} f(x) dx
(3.46)
Either approach gives
; _ PogQob?
p'(x,0) =- poNUhox—zafa'z- # W
{ (b cos lzy-x sin lzy) }
(x2+b?)

(3.47)

The first terms (1) of Egs. (3.44) and (3.47)
represent the vertical displacement and surface
pressure perturbation produced by the mountain
wave, which have been found by Queney (1947) and
studied extensively in the literature (e.g., see Smith,
1979 for a review). The second terms of Egs. (3.44)
and (3.47) represent the vertical displacement and
surface pressure disturbance produced by the
thermally induced gravity wave, which satisfy the
rigid lower boundary condition w'=0 at z=0, and
thus the downgoing wave produced by the elevated
heating is totally reflected. The vertical momentum
flux is zero between the heating level and the surface,
due to the flux cancellation of the up and downgoing
waves. This gives no vertical phase tilt of the
disturbance. The flow response is sensitive to the
heating level since the upgoing and downgoing wave
may cancel each other. If the heating is added very
near the surface, lzyg<<l, the disturbance is
extremely small and may be neglected. From Eq.
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(3.44), cancellation of the direct upgoing wave and
the reflected upgoing wave above zg, can also occur
at

lzg =0, «, 2w, ..., nR.

This effect is less evident if the heating is spread over
a layer of finite depth.

For a heat source distributed uniformly in a layer
of z=zy-d to zy+d, the solution can be obtained by
superposition of heating terms of (3.44a and b) (last
terms). In order to keep the same heating rate, the
amplitude of this vertically distributed heating should
be reduced to Qof2d. If we write (3.44a) and

- +
(3.44b) as M ="M +Nyand M= NNy respectively,

then the superposition of heating terms leads to

ad
N(x,2) =N (x.2) + f Nyx,2,2) dz'
; i ,
for0 <z <zp-d (3.482)

: ]

n(xsz) = 'ﬂm(x,z} + I n;{(xsZ,Z‘) dz'+

=

r nx.zz) 4z

forzy-d<z <zt " (3.48b)

5d

N(x,2) =N (X2) + f ngx.z.2) dz’

zd ’
forzptd <z (3.48¢)

where z' represents zj in (3.44) and acts as an
integral variable in the above equation. The final
solution can be obtained

_ gQob?sin 1z .
1(x,2) = Nm(X,2) - -—-—-—-—-cp TOI;312 R [b{sin I(zy+d)
-sin 1(zy-d) }+x(cos I(zg+d)-cos I(zy-d)}]
for0<z<zp-d (3.49a)

gQob? .
(b cos lz-x sin 1z
cpToUA12(x2+b?) { )

{cos Iz-cos I(zy-d)} - sin Iz [b{sin I(zy+d)-sin 1z}
+x{cos l(zg+d)-cos 1z}] }

N(X,2)=Nm(x,2)+

for zg-d £ z <zy+d (3.49b)
gQob? ;
N(x,2)=Nm(*,2)+ = —~(bcos lz-x sin Iz
O ToUP(x2+b2) )
-{cos 1(zy+d)-cos 1(zu-d)} i
for zy+d < z. (3.49¢)

Another useful heating function is

2
q(x.2) = Qo (2 - 21%2) 8(z-2)

x2+4b%  x2+b}

7

(3.50)
where b and by are the half-width of the isolated
heating and the widespread compensated cooling,
respectively. The widespread cooling is used to
avoid the net heating problem (Smith and Lin, 1982).
This problem will be discussed in Section 4. The
above function may be used to simulate the
condensational heating associated with a precipitating
orographic cloud. Applying the method used above,
the following solutions may be derived

o gy EQabisiRIE [ ‘
10x2) =Mae) - 2] { cos tza) (tan

2
5 1K +L in lz) In X.2‘+b2
bz) 7 (Cin i) (x%b%)}
for0<z<zg (3.51a)

Nx2) = Tim(%,2) - Mﬁml‘z“ { (cos 1) (ran'E-
1

cpTU®
s T x2+ b,
b2)+2(smmm(x2+h21)} :
forzg<z (3.51b)

The perturbation surface pressure associated with
(3.51) is

1 o= £ b, e pOgQObl
Pp'(x,0) PoNUho 2al CpToU

{ (cos(lzn)



Dynamics of thermally forced mesoscale circulations

2
(um-lt:c_l - ta.n‘il_;(;) + -%-(cos(le)ln(:z:—E;) }
(3.52)
If this isolated heat source is distributed uniformly in
a layer from z=zy-d to zg+d, the method of
superposition discussed above may be used to obtain
the result

N(X,2) = Mm(x.2) - ng'bl:;;‘Iiz {( -1 _x; tm-l_:r._

[ iyt dy] - L G2
] 2 (x2+ bz)
[oos Hzzr+d)-cos I(zu-d)] }
for0<z<zy (3.53a)

- gQsb1 1xX

2
= tan‘lgx—‘) + % (sin 1z) In (&;)-[cos iz

—cos l(zH-d)]} gﬁg {(tan‘ﬁ

- tan” ‘—75—) [sin 1(zg+d)-sin lz] (x2+ bz)
X2+ l::t2
-[cos I(zy+d)-cos 1z] }
for zp-d € z < zg+d (3.53b)
Nx,z) = Nnx,2) + ———— gQ"bl {(cos lz)(tan‘1 X
cpT

o . & S x%+ b}
tan g‘z) +2-(sinlz) In (x2+ b%) }

[cos I(zg+d)-cos I(zu-d)]
forzy+d<z (3.53¢)

The hydrostatic response of a balanced heating
and cooling (Eq. (3.30)) added at zg=n/21=1.57 km
is given in Fig. 11. The solution is given by the
second terms of (3.44) with Qo=1107 Wmkgl,
b=20 km, U=10 ms-l, and N=0.01 s-l. The
upstream phase tilt of the thermally forced gravity
waves is evident above the heating level. Notice that
a downward displacement is produced near the
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Fig. 11: The vertical displacement of a hydrostatic
airflow to balanced heating and cooling
(Eq.(3.30)) concentrated at zg=1.57 km in an
half plane. Regions with large heating and
cooling are marked +++ and - - -, respectively.
This flow is given by the second terms of Eq.
(3.44) with Qu=1107 W m kg-l, b=20 km,
U=10 ms-l, and N=0.01 s-l. Vertically
propagating waves are present above the heating
level. The surface pressure disturbance (in Pa) is
shown in the lower panel. (From Smith and Lin,
1982)

heating region and upward displacement near the
cooling region. The result of Malkus and Stern
(1953) would be similar to the present one if they
used the correct upper radiation condition. This
relationship will be explained in the next section.
The vertical displacement at the heating level is
repeated every 6.28 km (2n/1). The surface
perturbation pressure is shown at the lower panel of
Fig. 11. The hydrostatic equation indicates that the
surface pressure is an integral measure |of the
temperature or density anomaly aloft. Eq. (3.46) or
the thermodynamic equation implies that the
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Fig. 12: Same as Fig. 11 except for the isolated
heating-widespread cooling function (3.50). The
solution is given by the second terms of
Eq.(3.51) with Qo=900 W m kg-1, b1=20 km,
bp=100 km, U=10 m s-1, N=0.01 s-1. The
perturbation surface pressure is shown in the
lower panel, which is negative directly below the
region of heating. (From Smith and Lin, 1982)

temperature anomaly may be caused directly by the
heating and indirectly from the thermally-induced
vertical motion. According to Bernoullis' equation,
the wind speed is increased when the streamlines are
closer together. One example of the response of a
hydrostatic airflow over this isolated heating and
compcn'sated cooling (Eq.(3.50) is shown in Fig.
12. The heating is added at zg=n/2L. The solution is
given by Eq.(3.51) with Ty, ignored and Qy=900 W
m kg1, b1=20 km, bp=100 km, U=10 ms"1, and
N=0.01 s-1. The response is similar to the previous
case. The relationship between the thermal response
in a system with and without a basic flow is
discussed by Thorpe et al. (1980). The large Froude
number results in that paper are in qualitative
agreement with the present results. Hsu (1987a,b)
found a similar result for a mesoscale flow over a

The theory developed in Section 3.2 has been
applied to the problem of orographic rain by Smith
and Lin (1982, 1983). Based on the formation
mechanisms, the orographic rain may be classified as
follows:

(1) Upslope orographic rain in a stable atmosphere

(Sarker, 1967)

(2) Orographic rain in a conditionally unstable
atmosphere (Davies and Schar, 1986)

(a) uplsope rain, instability released by forced

orographic ascent.

(i) shallow convection embedded within
frontal clouds in midlatitude
(Browning et al., 1974; 1980; Hobbs
et al., 1975; Marwitz, 1980)

(ii) closely packed deep convection in
tropics (Smith and Lin,1983).

(b) lee convective rain, instability triggered by

slope heating (Henz, 1972).

(3) Orographic rain over small hills by seeder cloud-
feeder cloud mechanism (Bergeron, 1968;
Browning, 1980).

(4) Existing baroclinicity which, through the action
of orographic blocking and differential advection,
can lead to an unstable air column (Smith, 1982).

For a quasi-steady nonprecipitating orographic
cloud, the condensational heating and evaporative
cooling may be represented by the balanced heating
and cooling (Eq.(3.30)). An example of a
hydrostatic airflow over a bell-shaped mountain with
and without diabatic heating is given in Fig. 13. The
disturbance induced by combined mechanical and
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Fig. 13: (a) The vertcal displacement of 2 hydrostatic
adiabatic flow over a bell-shaped mountain. The
solution is first derived by Queney (1947) and
given by Eq.(3.44c) with ho=500 m, a=20 km,
U=10 m s-!, and N=0.01 s'1. (b) Hydrostatic
flow over a combined thermal and orographic
forcing. The prescribed diabatic heating
represents a nonprecipitating orographic cloud.
The solution is given by Eq.(3.44a and b) with
Qo=1107 W m kg'1, b=20 km, U=10 ms!, and
N=0.01 s-1. The induced disturbance is weaker
than the adiabaric mountain wave (a). (From
Smith and Lin, 1982)

thermal forcing is weaker than the adiabatic flow
(Fig. 13a). The vertical displacement near the
heating region is consistent with previous results.
That is, heating (cooling) produces downward

(upward) displacement. The relative magnitude of
the response can be found from the ratio of the two
coefficients in Eq.(3.44),
gQ0
cploU Nh e
where Q, and b are roughly related to the intensity
and the horizontal scale of the observed rainfall at the
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Fig. 14: The vertical displacement of a hydrostatic
flow over combined thermal and orographic
forcing. The diabatic heating represents an
upslope precipitating orographic rain. The
solution is given by Eq.(3.51) with x replaced by
x+c and Qu=900 W m kg1, b;=20 km, by=100
km, U=10 m 51, and N=0.01 s"1. The upstream
displacement of heating of c=20 km is shown in
(2) and ¢=40 km in (b). (From Smith and Lin,
1982)



9

Yuh-Lang Lin

surface. Fig. 14 shows two examples of hydrostatic
responses in a stratified airflow to isolated thermal
and orographic forcing. The solution is given by
Eq.(3.51) with x in the second terms of Eq.(3.51)
replaced by x+c, where ¢ is the upsmeam distance
tetween the heating center and the mountain top.
Notice the significant difference in the flow patterns
due to the different upstream displacements of the
thermal forcing.

The significance of the combined thermal and
orographic forcing can be seen from the vertical
transport of horizontal momentum. The momentum
flux corresponding to Eq.(3.51) with x replaced by
X+cis

s 2 ﬂ:agpothobl
DS I4Lp° ( cpToU )
[(a+b1)cos Izy-c sin lzy _(a+bp)cos lzy—c sin 1241]
(a+by)?+c? (a+by)?+c?
forQ0<z<zyg (3.54a)

= v TPorgQubysin lzygy 2
W—-E—poh%NU- 1 { cpl )

o r(bi+by)? nagPohoQobsin lzy
In [ 4b;by I+ ( o, TU )
: 2 . 2c ]
[(a+bg)2+c2 (a+by)?+c?
forzy<z (3.54b)

The first terms in the above equation result from the
vertically propagating mountain waves, which are
negatively proportional to the vertical energy flux
which is constant with height for an adiabatic flow
with no critical level and diabatic heating (Eliassen
and Palm, 1960}. Note that besides the pure h2 and
Q,? terms there are cross terms proportional to hoQo.
The existence of this important contribution to the
momentum flux below the heating level (Eq.(3.54a))
can be explained as arising physically from the
thermally generated pressure disturbance at the
surface, acting on the topography. It could therefore
be computed directly from the perturbation surface

pressure (Eq.(3.52)) together with (3.38). If a large
amount of heating occurs over the windward slope of
a mountain, the pressure at the surface could be
lowered sufficiently to cause a reversal of the
expected downstream drag. The vertical profiles of
momentum flux corresponding to the adiabatic
mountain wave (Fig. 13a) and the thermally and
orographically forced wave (Fig. 14a) are shown in
Fig. 15. In Eq.(3.54), the cross terms |of the
momentum flux depend on the relative horizontal
position of the heating and the mountain, i.c., c. As
mentioned earlier, the pure thermally induced flux
(Qo?) term must vanish below the heating level.
because of wave reflection from the surface.

A good example of the local enhancement of

precipitation by orography is the large annual rainfall

' O I | B |
- -4 -2 0 2

MOMENTUM FLUX
(Fx 10 ¢ NEWTONS /METER )

Fig. 15: The vertical profile of momentum flux for
the cases shown in Figs. 13a and 14a as given by
Eq.(3.54). In an adiabatic flow the flux is
constant with height. In the presence of thermal
forcing, the mountain drag is reversed and the
momentum flux is strongly convergent at the
heating level. (From Smith and Lin, 1982)
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recorded along the Malabar Coast and on the
windward slopes of the Western Ghats in India (Fig.
16). This rainfall occurs almost entirely during the
3-4 month summer period when the coast lies in the
path of the west-southwest monsoon current
crossing the Arabian Sea (Fig. 17). The low-level
wind has a speed of about 15 ms-! (at 850 mb), and
a direction more or less perpendicular to the coast.
In the upper troposphere, the wind is reversed,
blowing from the east as part of the subtropical
casterly. Fig. 18 shows a hydrostatic flow with
combined thermal and orographic forcing (Smith and
Lin, 1983). The heating is producing a disturbance
which is at least as large as that of the mountain. As

75

I JUNE to SEPT

Fig. 16: The areal distribution of rainfall over India
during the summer monsoon months of June to
September (from Smith and Lin, 1983, after
Ramakrishan and Rao, 1958). The rainfall is
concenmated just upstream of the Western Ghats.

1duly 1979, Q000 GMT
SURFACE CHART

40

30.h

20-

10k

oe

Fig. 17: A typical surface chart for the Indian Ocean
during the summer monsoon. This particular
chart is for 1 July 1979 at 0000 GMT. The
horizontal wind perpendicular to the coast is

shown at the upper right corner. (From Smith
and Lin, 1983)

mentioned earlier (Eg. (3.44)), the thermally-induced
disturbance is moderately sensitive to the choice of
lzg. For the present choice of zy=3km, there is a
region of strong low-level convergence and ascent
which may be able to rigger cumulus growth. This
choice is reasonable as waves generated in the upper
troposphere would be absorbed by the critical level in
midtroposphere (Fig. 17). Fig. 18 also indicates that
there is a wide pressure trough produced by the
heating, which is absent in the adiabatic case. The
pressure trough may be related to the offshore rough
often observed during the rainy spell of the monsoon
period.

Using the data from WMO/ICSU Summer
Monsoon Experiment and a two-dimensional
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VERTICAL DISPLACEMENT (1985), the effect of latent heating has been omitted

2 (o) (IR ITARIEN CASE) in that study. Using a two-dimensional compressible
e moist cloud model to simulate flow over the Western
_4_,__.\\/_/’ Ghats, Ogura and Yoshizaki (1988) find that in order

e ssuiililil to account for the observed features of rainfall over

T T~ the Arabian Sca and the Ghat Mountains during the

T summer monsoon season, the strongly sheared
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Fig. 18: The vertical displacement of a hydrostatic
flow with thermal and orographic forcing.
Region of the isolated heating is denoted by
";++". The solution is given by Eq. (3.53) with
Qo=1200 W m2, by=40 km, bp=200 km, a=40
km, hy=800 m, zg=3 km, d=1.5 km, U=10 ms
1 N=0.01 s-l. The heating center is displaced
upstream by 100 km (c). The surface
perturbation pressure is drawn at the bottom.
Note that there is a wide pressure trough
produced by the heating. (From Smith and Lin,
1983)

nonlinear model, Grossman and Durran (1984) have
shown that the Western Ghats produce a deceleration
and convergence of the southwest monsoon winds,
triggering deep convection over the Arabian Sea.
The results seem consistent with results of Smith and
Lin (1983). However, as commented on by Smith

environment and fluxes of latent and sensible heat
from the ocean are essential. It appears that a theory
which includes these factors can be constructed,
similar to that of Lin (1987), and compared with the
numerical results of Ogura and Yoshizaki. The
combined effect of thermal and orographic forcing
has also been studied by Davies and Schar (1986).
In their theory, they incorporated a CISK-like
representation for non-precipitating convective cloud
in a linear, steady, hydrostatic flow over a mountain
ridge. They found that the combined effect of the
two forcing processes can be significantly different
from that of orography acting alone. In particular, in
certain situations an enhanced (resonant) response
can occur with strong winds on the lee slope and a
concomitant large. surface pressure drag. Their
results help to clarify the disparate results obtained in
earlier studies, and, unlike those studies, suggest that
diabatic effects might on occasions have a major role
in inducing strong surface lee-side winds.

Similar theories have also been developed and
applicd to the mesoscale lake-effects on the
generation of snowstorms in the vicinity of Michigan
Lake (Hsu, 1987a, b) and the steady state response
of the atmosphere to prescribed temperature
perturbations corresponding to melting snow (Lin,
C.A. et al., 1988a,b; Robichaud and Lin, C.A,,
1989).

4. Transient Flow over a Meso-y Scale Heat

Source
Mesoscale problems of thermal or mechanical
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forcing cannot be fully understood using a steady
state model. - The importance of solving a time-
dependent problem has been demonstrated in the
studies of mountain waves (e.g., Hoiland, 1951;
Palm, 1953; Queney, 1954), which provided insight
into how a forced perturbation is established when
the wind becomes practically steady over
mountainous terrain. The transient heat island
problem has been treated by Smith (1957), but
without a full discussion of the energetics and the
problematic approach to steady state. The internal
gravity waves generated by local prescribed heating
have been investigated by Blumen and Hendl (1969)
with application to Joule heating in the ionsphere.
The mathematical problem of wave generation by

local thermal sources also arises in the study of large

cxplosions (e.g., Pekeris, 1948; Scoror, 1950; Hunt
¢t al., 1960; Weston, 1962). These studies,
however, are primarily concerned with the far field
radiation of acoustic-gravity waves. In this section,
we will review the transient response of a flow to a
meso-y scale heat source investigated by Lin and
Smith (1986).

4.1 Flow response to a pulse heating

Consider a two-dimensional, inviscid,
nonrotating, hydrostatic, Boussinesq flow. The
governing equation can be reduced from Eq. (2.15)
or extended from Eq. (3.5) to be

2

d d \ 28 o B
(§+UB?) WE+NWXX—

cplo

Q'xx

(4.1)
To solve the above equation, we again apply the
Green's function method in the vertical direction.
Taking the Fourier transform in x (x -->k) and
Laplace transform in t (t -->s) of the above equation,

we have

W+A w= -4
cpIoN

(4.2)
where

iNk
lEs_«lf-_i'ﬂE and Re(s) > 0.

Assume the heating is released in a very short
time period as a pulse at a single level, z=0, in an
unbounded fluid,

q (tx2) = Qo (22) 82) 89
x2+b :

4.3)
Taking the Fourier and Laplace transforms of the
above equation and substituting into Eq. (4.2) gives

4 blz -bk

Wath W= &’—ez 3(2)
cpl N
(4.4)
Similar to the steady state problem, the interface
condition can be obtained by assuming the continuity
of the vertical velocity at the interface (z=0) and
integrating the above equation across it. Thatis,
w0 -w(0)=0,

(4.5)

2
gQ A e

w 0" -w0)= :
CploN
(4.6)
An appropriate set of upper and lower boundary
conditions for an unbounded fluid are the
Sommerfeld radiadon conditions, i.e.
W ~ eidd as |q --> e
4.7

Thus, the solution of Eq. (4.4) can be obtained

wis, k, z) = L‘%le.bkciud
2¢,T,N2 . (4.8)
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The above solution decays at infinity because
Re(s)>0. The vertical displacement, 1, defined by

w'=Dn E}q+U8n

Dt ot 5;_
(4.9
may be written as

~ -bk
s, k, 2) = —ERDEZ__ (. N
2¢,ToN(s+iUk)? silk
(4.10)

The inverse Lapalce transform of the above
equation can be performed to obtain

i _ ngbkC'bk t 112 LUkt .1If Il |
nt, k.2)= 2cpTo (Nldd) s BN 0,
4.11)

where Tl denotes the Fourier transform of 1) and Ji
the Bessel function of order 1. The inverse Fourier
transform can also be performed to yield the solution
in physical space
t R

ngO = exp(;::::z}
2¢, TN(X?+b?%)
[@?x? cos(gﬂb’:) +2bX sin(:wzi)]

Zy Y,

n(, x, z) =

(4.12)
where X=x-Ut is the horizontal coordinate in the
reference frame moving with the basic wind. In the
moving frame, the above equation is just the
response of the fluid to a pulse heating in a quiescient
stratified fluid.

The solution for a more realistic heating function
in the vertical can be obtained by use of Green's
function method. The rigid lower boundary can also
se incorporated by applying the method of images.
The vertical displacement for a pulse heating
listributed uniformly in a layer from zy-d to zZotd in
. half plane can be written as

n(, %, 2) = &'2‘:_@ {26(8(z0-0)-S(z+d)])

+sgn(z-z,-d)e°B k-zd|.[X sin(BX lz-zo-d)

+b cos(BX lz-zo-d ]-sgn(z-zo+d)e B bzl
[X sin(BX lz-zo+d )+b cos(BX lz-zo+d ]
+ebB+ztd)(Xsin[BX (z+zo+d)]
+b cos[BX (z+2z,+d)])-e bBE+z-d)
(Xsin[BX(z+2o-d)]+b cos[BX(z+z-d)]) }

(4.13)
where
A —

_ g0, Nt
2’
2% TN

s xip?
The symbol S and sgn denote the step function and
the sign function, respectively. The above ¢quation
is an extension of the result of Raymond (1983) as it
allows a heating distribution of finite width and
height and includes the advection effect of a constant
basic wind. The last two terms, which include
z+24+d and z+24-d, are the effects of wave reflection
from the lower boundary. If these two terms are
excluded, the response of the unbounded fluid to a
heat source distributed in a layer of finite depth has
the form of a region of mostly upward displacements
drifting with the basic wind.

The vertical displacement at the center of the
heating layer, z=0, in the unbounded fluid can be
written

PR R X % |
1 (')Ez+1){ exp(’i’+l)[xsm(i‘2+1)

+ cos(é—l—)]}

4.14)
where the nondimensional variables are defined as
2
-~ = a g G T
x= 5%'{3, t =§§. = 00

o

4.15)
We are interested in two regions: (a) the region of the
drifting heated air and (b) the region of the initial
heating. Fig. 192 shows the vertical displacement
around the center of drifting disturbance at different
times in a reference frame moving with the basic
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As t-> oo, Eq. (4.14) becomes
Npfee,x,z) = % forz,d<z<z +d
x +1
(4.17)

Fig. 19: (a) The vertical displacement at the center of
the pulse heat source in a reference frame moving
with the basic flow. The solution is given by
Eq.(4.14). Notice that the strong updraft at the
drifting center is accompanied by weak
downdrafts on both sides. (b) The vertical
velocity comresponding to (2). The numbers
indicate the nondimensional times. (From Lin
and Smith, 1986)

wind. The early response of the fluid to the heating
is an upward displacement at the drifting center and
downward displacements to the upstream and
downstream sides of the growing disturbance. The
weak downward displacements are necessary for
compensating the upward motion at the center as
required by the mass continuity even though that air
was also heated by the wings of the pulse. Once the
updraft at the drifting center weakens, the fluid in the
adjacent regions can rise. By letting x=0 in (4.14),
the equation reduces to the growth function

~

Mp=1-¢" (4.16)

which is everywhere proportional to the total amount
of heat received by that air parcel. Fig. 19b shows
the nondimensional vertical velocity which
corresponds to Fig. 19a. This is obtained by taking
the time derivative of Eq. (4.14),

~ =t tx 2
wp = exp ) 2X Sm( x>-1)
(‘2+1) (>?+ | )
4 o 5.
°°S(szz+1)]
(4.18)

The updraft at the drifting center is accompanied by
downdrafts on both sides in the early stages. At later
times, two updrafts develop and propagate outward.
This is analogous to the left and right moving waves
in a two-dimensional shallow water system. These
updrafts will overcome the downward displacement
produced earlier and generate upward displacement at
later times, as can be seen from Fig. 19a. At this
time, the original disturbance has split in two.

For the flow response at the origin of the initial
heating, the solution can be obtained by setting x=(
in X in (4.14). The nondimensional form of the
vertical displacement can be written as

Fo=—— {1~ exp(—) [isin(—i—)
(t +1) F(t +1) F(t +1)
+cos(-1-—)]
F(t+1)

4.19)
where F is the Froude number associated with the
thermal forcing, defined as U/Nd. A similar number
has been used in Thorpe et al. (1980). Notice that
the response of the flow at x=0 is strongly dependent
on F and changes sign at F=1/nx. With a shallow
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Fig. 20: The time evolution of nondimensional
vertical displacement at the origin of the pulse
heating. The solution is given by Eq. (4.19).
The response is an upward displacement
followed by a downward displacement, as the
heated air drifts away. (From Lin and Smith,
1986)

heating, the Froude number is always greater than
1/r. Thus, the vertical displacements near the origin

of the heating have the same sign. Eq. (4.19)

indicates that Tlo decays as 1/ tas t > oo (Fig. 20).
The response of the flow at the origin of pulse
heating is an upward displacement followed by a
downward displacement, as the heated air drifts
away. The downward displacement produced at later
times is associated with the compensating downdraft
as the growing updraft drifts downstream. Raymond
(1986) has investigated the flow responsc to a
prescribed steady heat source for a wide variety of
Froude numbers.

4.2 Flow response to a steady heating

As mentioned earlier, studies of steady heating in
a moving atmosphere in connection to orographic
rain (Smith and Lin, 1982), heat islands (Fig. 25;
Garstang et al., 1975; Mahrer and Pielke, 1976) and
thunderstorm downdrafts (Thorpe et al. 1980)
showed a curious negative relationship between
heating and vertical displacement. That is, a
downward (upward) displacement in the vicinity of

the heat source (sink) is produced by the heating
(cooling). This result is directly related to the
steadiness of the heating (Smith and Lin, 1986;
Bretherton, 1988) and will be explained below.

The vertical displacement of a moving stratified
fluid to a pulse of point heat source may be obtained
by taking b --> 0 and keeping bQy constant in Eq.
(4.12),

ot z cos(yxﬁ)
2aNX

nt, x,z) =

(4.20)
where qp=bQo, and X=(x-Ut)/b. The above
equation is identical to Eq. (3) of Bretherton (1988).
Fig. 21 shows the vertical displacement at time t after
a localized impulsive buoyancy source is imposed at

Fig. 21: The vertical displacement at time t after a
localized impulsive buoyancy source is imposed
at t=0 in a stratified fluid. The dashed lines are
the nodal lines z=(n+1/2)xX/Nt on which there is
no vertical displacement. The solid lines are dye
lines that were initially horizontal and have been
displaced in response to the source. (From
Bretherton, 1988).
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1=0 in a stratified fluid. Since we are interested in the
response near the origin of the heating (x=z=0), the
above equaiton reduces to

- Qo

1(t,0,0) = —=
2rNU't

(4.21)
The steady state heat source may be regarded as a
succession of very short heat pulses. Thus the
vertical displacement at the origin of the heating can
be obtained by the Green's function method which
amounts to integrating Eq. (4.21) with respect to
time

n(,0,0)= J- ‘11(t-r, 0,0)dt= f n(‘]‘) dar

-Qo

tU
In (=)
aNu? A%

- [ nmar-

(4.22)
where Ax is a characteristic horizontal distance such
that Ax<Ut. The contribution to the displacement
from times less than Ax/U is assumed to be
negligible (Bretherton, 1988). Therefore, the vertical
displacement grows logarithmically and negatively at
the origin of the heat source. The vertical
displacement for the steady heating which is
distributed horizontally and vertically can also be
obtained by integrating Eq. (4.13) with respect to
dme.

An alternative way to explain this phenomenon is
by considering the energy budget. The linearized
steady state energy equation may be derived by
introducing the relation, 6'/80 ~ -p'/Po (which may
be obtained by linearization and combination of
Poisson's equation and the equation of state for an
ideal gas) in Eq. (2.16) and excluding the basic shear
terms,

2

2 @Urpw)+ g W)= —E 0

TN (4.23)

where E=0.5p[u'2 + (gp'/Npo)?] is the perturbation
wave energy in a hydrostatic atmosphere. According
to the above equation, in order to add the thermal
energy to the system the steady heating must be
added where the air density is low, i.e. at high
temperature. This implies that the perturbation flow
field must adjust itself so that the regions of negative
density anomaly (negative displacement) receive the
heat.

Using a group velocity argument, Bretherton
(1988) indicates that the ' dependence of 7 is a
geometrical effect, which relies only on the fact that
there are wavenumbers with zero group velocity
around which there is a finite rate of dispersion. The
small, but nonzero, group velocities of nearby
wavenumbers spread their energy into a region of
space that expands linearly with time in each
direction, so that the energy density, a quadratic
function of 7, decreases as t'2. The vertical
displacement of the fluid to a maintained heat source
grows logarithmically since the displacements
produced by individual heat pulses are all in phase at
the origin of the heating. Notice that the waves of
zero group velocity also have zero frequency.

Since the vertical displacement grows
logarithmically near the origin of the steady heat
souce, the flow must undergo a permanent change,
instead of a localized steady state response. As
discussed by Smith and Lin (1982), this is due to the
fact that a net amount of heat has been received by
the airstream. To avoid this net heating problem,
Smith and Lin have shown that a steady state
response will occur if the horizontally integrated
heating is zero. Bretherton (1988) extended Smith
and Lin's result to a more general criterion. He
proved that if a steady buoyancy source q'(x,z) is
turned on at t=0, then a finite, steady displacement
field n(x,z) will set up only when
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f q'(x,z)t‘,:hmz‘(U dxdz=0

(4.24)

That is, when there is no projection of the heat
source on the wavenumbers +ko=(0,£N/U)
corresponding to the @* and @ modes which have
zero group velocity. The @* modes denote the
internal gravity waves which have frequencies of
UktNk/m and group velocities of cgi(k)=(UiN/m,
-Nk/m?2).

The gravity waves produced by a pulse heating in
an unsheared flow are symmetric about its center and
impart no net momentum flux to the flow. Thus,
there are no vertically propagating gravity waves
produced. However, vertically propagating gravity
waves can be generated by a steady heating or
cooling. Similar to Eq. (4.22), the vertical
displacement for the steady state heating can be
obtained by integrating Eq. (4.13) with respect to
ﬁm ]

nt.x,z) = j n(-, x, z) dt

o (4.25)
Fig. 22 shows an example in which a heat source
concentrated in the stippled region is given by a
Heaviside function at t=0 in an unbounded stratified
fluid. The solution is given by Egs. (4.25) and
(4.13) by excluding the lower boundary reflections
(i.c., the last two terms in (4.13)). The integrand in
Eq. (4.25) is computed numerically using Simpson's
rule. The response of the fluid has two separate
parts. First, there exists a region of upward
displacement generated initially at the origin of the
heat source and which is subsequently advected
downstream by the basic wind. The amplitude of the
displacements keeps growing with time. Notice that
the peak of the upward displacement appears to
propagate downstream with 2 slower speed (~0.7U)
than the basic flow. The upward displacement is a
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Fig. 22: Vertical displacement of a hydrostatic
atmosphere to a steady heating (stippled)
imposed at t=0. The solution is given by Egs.
(4.25) and (4.13), excluding the lower boundary
reflections (the last two terms), with U=10 ms"1,
N=0.01 s°1, To=273 K, Qo=1J kg'! s°1, b=20
km, d=1 km, and zo=0 km. (From Lin and
Smith, 1986)

superposition of an infinite number of individual
elements corresponding to individual pulse heating
separated by infinitesimal time intervals. In addition,
there is a downward displacement in the vicinity of
the stationary source, which develops at a much
slower rate than that of the drifting disturbance. The
corresponding vertical momentum fluxes are shown
in Fig. 23. There exists a layer of negative (positive)
momentum flux above (below) the heating layer.
The magnitude of the momentum flux increases as
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Fig. 23: The corresponding vertical momentum
fluxes for the flow fields of Fig. 22. The units
of the momentum flux are 10* Newton mrL.

the gravity wave associated with the steady heating
becomes stronger and propagates to higher (lower)
layers. In the upper layer, the downward transport
of momentum is a consequence of the upstream
phase tilt of the vertical displacement, which gives a
greater horizontal perturbation velocity in the
downward motion. This is similar to the mountain
wave theory (Eliassen and Palm, 1960). The
convergence of momentum flux at the heating level
must act to accelerate the flow slowly (as a second-
order quantity) there while air above and below is
decelerated.

4.3 Applications
a. Flow over a heat island

The above theory has been applied to the problem
of stratified flow over a heat island by Lin and Smith
(1986). This helps to explain the downward
displacement observed over a heated island and
upward displacement on the downstream side (Fig.
25 Malkus, 1963; Garstang et al., 1975). Figure 24
shows the disturbance generated by a stationary heat
source (stippled region) introduced at an initial time,
t=0, in a hydrostatic atmosphere over a flat surface.
The heating represents the low-level sensible heating

28 48

Fig. 24: Vertical displacement for an airflow over a
heat island. The stationary heat source is
concentrated in the stippled region. This flow is
given by Eq. (4.25) with U=5 ms-1, N=0.01 s°1,
To=273 K, Qo=0.35 J kg1 51, z,=0.5 km,
b=10 km, d=0.5 km and ¢=20 km. Two times
are shown (a) 5000 s, and (b) 20000 s. (From
Lin and Smith, 1986)

caused by a heated island in the daytime. For the
heating rate, we consider a simple case of a heat
island which warms 10 K from 0600 to 1400 LST.
For simplicity, we assume that the heating extends
uniformly to the top of the boundary layer, say 1 km.
The heat flux thus calculated is approximately 348 J
m2 s-1. This gives a heating rate of 0.35 J kg'! s°1.
The response of the fluid to the low-level heating is
similar to the case in Fig. 22 in that heating correlates
with negative displacement. The dynamics is
essentially the same as explained in Section 4.2.
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Notice that the air parcel ascends on the downwind
side of the heat island. Figure 25 shows the
divergence and vertical velocity fields over Barbados
(DeSouza, 1972; summarized in Garstang et al.,
1975), which indicates that there exists a downward
motion over the island and an upward motion
downwind during the day. Rainfall enhancement is
often observed on the downwind side of
metropolitan areas, such as St. Louis (Fig. 1;
Braham and Dungey, 1978; Changnon, 1981). This
phenomenon is often explained by the addition of
condensation nuclei which are swept downstream
when air flows past an urban heat island. A study of
the combined effects of the addition of condensation
nuclei in the region of ascending motion downstream
of an urban heat island may provide a better
explanation of the phenomenon. A similar
phenomenon has also been obtained in linear studies
of Hsu (1987b) and Luthi et al., 1989) and in the
nonlinear numerical study of Hjelmfelt (1982).

e Wi

Fig. 25: Divergence and vertical velocity fields over
Barbados during the summers of 1968 and 1969
during the day. The horizontal and vertical
distance units are in km and m, respectively.
(From Garstang et al., 1975, after DeSouza,
1972)
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Fig. 26: Hydrostatic vertical displacement generated
by a mountain and an elevated heat source
(stippled) imposed at t=0. The solution is given
by Egs. (3.44¢c), (4.13) and (4.25) with U=10

“ms-1, N=0.01 51, To=273 K, Qo=11J kgl sl

b=20 km, d=1 km and c=20 km, 2a=20 km,
ho=400 m. The dashed lines represent the
vertical displacement of the adiabatic mountain
waves. Two times are shown: (a) 3000 s, and
(b) 13000 s. The heating corresponds to a
precipitation of 2.5 mm h-l. (From Lin and
Smith, 1986)

b. Orographic rain

Figure 26 shows an example in which the heating
is associated with a stationary precipitating upslope
orographic cloud in a hydrostatic atmosphere. The
solution is obtained by superimposing the mountain
induced wave (Eq.(3.44c)) and the heat induced
wave (Eq.(4.25)). The dry mountain wave solution
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is also plotted for comparison. The heating rate
corresponds to a rainfall rate of about 2.5 mm h-l.
The heating is concentrated in the stippled region and
activated at t=0 s. After some time, the thermally
generated disturbance has grown and drifted
downstream. This displacement keeps growing as
the stationary heating continues and reaches
considerable magnitude by 13,000 s=3.6 hrs (Fig.
26b). If the heating continues for some time, a
negative displacement is produced in the vicinity of
the upslope orographic cloud. This phenomenon
was found by Smith and Lin (1982) and is explained
more completely here. In the real atmosphere, broad
upslope rain may be limited by the heat induced
descent either in durartion or intensity. This result
has some similarities to a number of studies of
mountain waves and orographic rain (e.g.,
Raymond, 1972; Fraser et al., 1973; Barcilon et al.,
1980). The vertical transport of the horizontal
momentum is convergent at the heating layer, which
is similar to the case of an unbounded fluid (Fig. 23)
with the modification of orographic effects. With
certain realistic values of the parameters U, N, Qq, b,
d, and zy, a positive momentum flux below the
heating layer is produced implying a reverse of the
mountain drag as discussed in Smith and Lin (1982)
and Durran and Klemp (1982).

To avoid the addition of latent heat in a region of
downward motion, Lin (1986b) adopts a simple rain
parameterization in a linear, finite-element numerical
model. The diabatic heating is parametrized by

2
q"= (EggN—) ew' a(wm)

(4.26)
where
e*lNiNzgr N, =l <T)
T

?

a(wn)=1 ifw>0 andn>0,

a(w,n) =0 otherwise
' 427
In the above formulation, the cloud forms
immediately in a region of upward velocity and
displacement and falls to the surface immediately in a
region of downward velocity or displacement. This
parameterization of a precipitating cloud is similar to
that used by Fraser et al. (1973) and Barcilon et al.
(1980). The parameter € can be as small as 0.2 in the
cold air (Barcilon et al., 1980). Eq. (4.26) may be
substituted into the thermodynamic equation; Eq.
(2.13), with the terms of V, Uz and V; excluded to
obtain
Qg- + U%—i—-l— N;B 2 (l-ea)w' =0

(4.28)
The parameter o will be greater than or equal to zero
depending upon whether the point of interest is
inside or outside the cloud. The air parcel follows a
moist adiabat if it is inside the cloud and a dry adiabat
if outside the cloud.

Figure 27 shows the numerical results of
orographic rain in a stable atmosphere with £=0.8.
The stability parameter (€) is approximately equal to
an actual lapse rate of 6.25 K km1 with a moist lapse
rate of 7 K km-l. The incoming airstream is
saturated and the moisture is limited to the lower 6
km. The parameterization is turned on at 10,000 s.
Four time steps are shown to indicate the time
evolution of the flow. The heating regions are
outlined, which may represent the cloud boundaries.
At 30,000 s, two drifting clouds appear to the
downwind side of the mid- and low-level stationary
clouds. These drifting clouds originate and
subsequently separate from the stationary clouds.
The flow reaches a steady state locally in the vicinity
of the mountain at later times as shown in Fig. 27d.
The local features of the low-level stationary cloud
are similar to those found by Barcilon et al. (1980).
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Fig. 27: Streamlines and heating regions of
precipitating orographic clouds in a stable
atmosphere with €=0.8 simulated by a linear,
finite element model. Other parameters of the
flow are U=10 ms-}, N=0.01 s-1, To=273 K,
and po=1 kg m'3. The flow is directed from left
toright. The mountain height and half-width are
400 m and 20 km, respectively. The dotted lines
in (d) are the corresponding dry mountain waves.
Four time steps are shown: (a) 30000 s, (b)
40000 s, (c) 50000 s, and (d) 60000 s. (From
Lin, 1986b)

The two stationary clouds at the lower and middle
levels may be interpreted as local quasi-stationary
heat sources. According to the finding of Smith and
Lin (1982), the phase relationship between the
stationary heating and the heat-induced vertical
displacement in the flow parameters chosen here is
negative. However, the orographie lifting acts to
support the existence of the stationary clouds. In
short, the two stationary clouds in Fig. 27d are
supported by the orographic forcing and limited by
the long-term heating generated by the clouds
themselves. The corresponding dry mountain wave
is plotted (dotted lines) against the moist flow (Fig.
27d). In general, the streamlines are depressed

upstream in the lower layer (€.g., z=2 km) and lifted
downstream in the middle layer (e.g., z=4 km) by
the presence of moisture.

Barcilon and Fitzjarrald (1985) investigated the
nonlinear effects on a precipitating orographic cloud
using a theoretical approach and a similar rain
parameterization of Eq. (4.26). They found that the
nonlinearity and lower boundary affects the
dynamics of mechanically and thermally induced
waves and wave drag. The wave drag depends
upon: (1) the location of the moist layer with respect
to the ground, (2) the amount of moisture, (3) the
degree of nonlinearity and (4) the asymmetry in the
bottom topography. For symmetrical mountain
profiles, substantial drag reductions are obtained
when the moisture is adjacent to the topography. In
addition, an increase in the nonlinearity increases the
drag.

c. Moist convection

The maintenance of a quasi-steady squall line
remains an unsolved dynamical problem. One may
regard the evaporative cooling in the subcloud layer
produced by the precipitation falling from the updraft
aloft as a stationary heat sink in the reference frame
of the moving line. The steady state assumption for
the cooling in a squall-line type of thunderstorm is
not an unreasonable one (Lilly, 1979). Figure 28
shows an example of an airflow over a stationary
heat sink. In a moving frame, the stationary heat
sink may be regarded as a left-moving squall line.
The propagation speed of the heat sink is 15 ms™!
and the Froude number (U/Nd) is 1.5 In the
vicinity of the heat sink, the air is displaced
downward at first and then upward. The approach to
steady state is essentially the same as in the flow over
a heat source but in an opposite way. The local
features near the heat sink are similar to the steady
state solutions of Thorpe et al. (1980) and Lin and
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Fig. 28: Vertical displacement near a stationary heat
sink representing evaporative cooling under a
precipitating cloud. This flow is given by Egs.
(4.25) and (4.13) with U=15 ms!, N=0.01 s°1,
Qo=-4J kg'l 5°1, z5=1 km, b=5 km, d=1 km and
¢=20 km.. Two times are shown: (a) 1000 s,
and (b) 4000 s. (From Lin and Smith, 1986)

Smith (1986). The phase relationship between the
evaporative cooling and the induced vertical
displacement in the region near the heat sink is

negative, as shown earlier. The upstream tilt of the -

vertical displacement indicates the upward
propagation of the generated internal gravity waves.
In addition, there is a region of positive displacement
propagating downstream kinematically, which is
similar to the heating case studied earlier.

The positive displacement in the vicinity of the
heat sink resembles the flow strucure near the gust

front of a squall line and may provide a possible
mechanism for the maintenance of a squall line.
Robustness of this result can be demonstrated by
solving the same problem with a linear finite-element
numerical model (Lin, 1986b). This is also a
convenient way to exhibit other aspects of flow field
as all of the flow variables are computed by the
model. Figure 29 shows that the vertical
displacement, penurb'ation fields of the density,
horizontal velocity and vertical velocity at 4000 s.
The field of vertical displacement produced by the
numerical model (Fig. 29a) is slightly smoother than
that of the analytical solution (Fig. 28b) because a
numerical smoothing technique is applied in the
model to avoid the spurious growth of high|wave
number modes. In general, the agreement between

Fig. 29: Airflow near a stationary heat sink
simulated by a numerical model at 4000 s; The
parameters are same as those in Fig. 28: (a)
vertical displacement, (b) perturbation density,
(c) horizontal perturbation velocity, and (d)
vertical velocity. (From Lin, 1986b)
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the numerical model and analytical results is- good.
The density field (Fig. 29b) shows that there exists a
pool of cold air near the stationary heat sink. The
sharp density difference in front of the heat sink (x=-
35 km) may be regarded as an upstream gust front
produced by the density current. The high density
region may correspond to the mesohigh as often
observed under the strong downdraft region. On the
downwind side, the cold air is advected more
dispersively, i.c., the density difference is not as
sharp as on the upstream side. From the velocity
fields (Fig. 29c.d), there exists upstream motion and
a region of surface convergence in front of the
stationary heat sink. This is consistent with the
finding of the positive displacement near the heat
sink (Fig. 28). With application to the low-level
flow associated with a squall line, the upward motion
and low-level convergence may play an important
role in generating a new convective area on the
upstream side of the moving squall line. This is
consistent with the nonlinear numerical results of
Rotunno et al. (1988), in which new cells of the
squall line system keep developing along the gust
front, which helps to explain the maintenance of a
squall line.

Raymond (1986) solved a similar two-
dimensional initial value problem with both
prescribed condensational heating and evaporative
cooling considered. The strong speed selectivity of
wave-CISK is explained as a constraint in which the
actual vertical velocity at the level of free convection
must exceed the diabatic mass flux there. The
solution, however, proposes a potential problem
within the wave-CISK formalism. Though a moving
region of heating can indeed produce upward motion
at the level of free convection, upstream subsidence
makes it doubtful that sufficient net upward
displacement of low-level air can be generated by this

mechanism. This problem is alleviated when the
evaporative cooling associated with precipitation is
present. The subsidence generated by the heating
can be canceled by the lifting generated by the
cooling. This lifting is also shown in Figs. 28 and
29.

Nicholls et al. (1991) considered a special case of
Lin and Smith (1986), in which the basic state
atmosphere is quiescent and bounded above by a
rigid top. There exists two modes in the flow: (1) a
deep fast-moving mede which is responsible for
subsidence warming throughout the depth of
troposphere; (2) a slower moving mode which
corresponds to midlevel inflow and lower- and
upper-level outflows. They also obtained an
analytical solution for a pulse forcing in a flow
topped by a rigid lid. The solution shows a result
similar to that of Lin and Goff (1988), in which two
symmetric waves propagate outward from the origin
of initial heating. The structure of these propagating
waves is similar to gravity waves produced in two-
dimensional numerical simulations of convection
occuring over the Florida penninsula.

d. Gravity waves on inversions

The generation mechanism of internal gravity
waves on a low-level inversion by a thunderstorm
has been proposed by Lin and Goff (1988). The
model described in the last section (Smith and Lin,
1982) and in this section (Lin and Smith, 1986) may
be modified to include: (1) a sharp temperature
inversion, (2) a quiescent basic state, and (3) height
dependency of the Brunt-Vaisala frequency. Thus,
Eq. (4.1) becomes

g
pto

1 2 1 ]
W'zt N (@) w xx= ¢ q xx
(4.29)

where N(z) and q'(t,x,z) are represented by
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N(z) = N [8(z) + S(=2)], -H<z

(4.30)
2
q'(tvxvz) = an 2 6({) B(Z‘Zl) % Z >0
x"+b
(4.31)

where S is a step function. Notice that the surface is
located at z=-H. In Eq. (4.30) we assume a sharp
temperature inversion riding on a neutrally stratified
layer of depth H. The Brunt-Vaisala frequency is
constant in the upper layer above the inversion (z>0).
The heating is released instantly as a pulse located at
z=Z1."

The problem is solved by determining the
relevant Green's function, as described earlier.
Taking Fourier transforms in t and x of Egs. (4.29)
and (4.31) gives

2 2

oo Ky oo BQPK

Wt (‘_
@ 2

c'Hklﬁ(z-zl)
4me, T 0 )
4.32)

The lower and upper boundary conditions are w=0 at
z=-H and w~exp(iN[k|®) as z --> o, respectively.
There are four interface conditions across the
interface. Across the interface z=zp, w is
continuous. Integrating Eq. (4.32) across the
interface yields another condition that ‘;z is
continuous. Likewise, at the inversion z=0, wis

continuous and integrating Eq. (4.32) across the
inversion yields a condition which relates to the

strength of the inversion; that is, g'=gA8/© (Geisler
and Bretherton, 1969). The solution in the lower
layer (-H<z<0) is given by

_igQb@ ) [ 12 (aiie
n= ancyTe Lke( Jdk

) cilNz (koo i
_ o(@? - iNHold - g'Hk?) ; (4.33)

where the vertical displacement is defined as
on/ot=w. A closed form for the above equation is
possible but is the algebra is tidious. An asymptotic
nondimensional form is obtained by applying the
method of stationary phase (see Appendix A of Lin
and Goff, 1988) for large t and x

= -(z+1)Qqt2e Mux?
2 (x2-12)% + (Fe)?]
-[(x2-1%) sin(MtAx)) + Fix cos(Mtx)]

(4.34)
The wvariables x, z, m, t and Qy are
nondimensionalized by b, H, H, b/co and cpToce/g,
respectively, where cg is the linear internal shallow
water phase speed, i.e. Yg'H, which is related to the
strength of the inversion. The two nondimensional
numbers M and F are defined as Nzj/co and NH/c,,
respectively. The parameter F represents a heating- '
induced Froude number defined by Lin and Smith
(1986). A similar result can be obtained for a case of
a neutrally stratified layer overriding a stable layer of
depth H with no inversion in between. Instead of
Yg'H, the linear internal shallow water phase speed
(co) becomes 2NH/m (e.g., see Case IITA of
Grimshaw, 1981).

Figure 30a shows a case with M=0.1, F=1, and
Qo=0.5, and the dimensional parameters H=5500 m,
21=550 m, c,=55 m 571, and N=0.01 s-!. Four time
steps are shown in the figure. Since the forcing
produces both right- and left-moving waves
symmetrically, only the right-moving wave is
plotted. In this case, a wave of depressicu is
produced by the latent heating. The gravity =ave is
dispersive and decays grad'ually. If the nonlinear
effect is included, a solitary weve of depression may
result due to the balance between the competing
effects of wave steepening and frequency dispersion.
In this way, the wave is able to retain its identity as
an isolated quasi-steady disturbance of permanent
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Fig. 30: Gravity wave generated on an inversion: (a)
The vertical displacement at the inversion level
(z=0) with M=0.1, F=1, and Qo=0.5 for t=3, 4,
5, 6. (b) same as (a) except with M=2, and F=1.
The solution is given by Eq. (4.34). (From Lin
and Goff, 1988)

form when it propagates a long distance from the
origin. Mesoscale solitary waves of depression with
wavelength on the order of 100 km have been
observed in the atmosphere (e.g., Pecnick and
Young, 1984; Lin and Goff, 1988). The generation
mechanism considered here may also lead to a
favorable circumstances for the creation of wave of
elevation on a low altitude inversion. Fig. 30b
shows an example with M=2, F=1 and the
dimensional parameters H=100 m, z;=2000 m,
co=10 m s°1, and N=0.01 s-1. An initial long wave
disturbance of this type may evolve into a finite
number of amplitude-ordered -solitary waves of

elevation followed by a relatively weak wave train if
the nonlinear effect is included. This type of solitary
wave of elevation with wavelength on the order of 10
km has been observed in the atmosphere (e.g.,
Abdullah, 1955; Christie et al., 1978). The well-
known morning glory observed in Australia belongs
to this type of wave. ‘
In addition to the above propagation mechanism
for mesoscale waves, linear waves may be able to
propagate a long distance if there exists a wave duct
in the atmosphere. Lindzen and Tung (1976)
showed that a stable wave duct adjacent to the
surface must be capped by an unstable layer which
contains a critical level. It is also noteworthy to
mention that mesoscale waves may be generated by
other mechanisms, such as shear instability (Gossard
and Hooke, 1975; Stobie et al., 1983), geostrophic
adjustment (House, 1961; Kaplan and Paine, 1977;
Uccellini et al., 1984; Koch and Dorian, 1988;
reviewed by Uccellini and Koch, 1987), in addition
to convection (Wagner, 1962; Feguson, 1967;
Bosart and Cussen, 1973; Lin and Goff, 1988).

5. Shear Flow over a Meso-y Scale Heat

Source

As discussed in the introduction, diabatic heating
in a flow with vertical shear is a common element in
various mesoscale circulations (e.g., Lin, 1987).
The mathematical problem of adiabatic perturbations
to a shear flow in a stably stratified fluid has been
studied extensively in the last three |decades.
Bretherton (1966) found that the vertical
wavenumber becomes large and that the group
velocity becomes more horizontally oriented as the
critical level is approached. Booker and Bretherton
(1967) found that the gravity waves are attenuated
exponentially as they pass through a critical level at
which the horizontal basic wind is equal to the
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horizontal phase speed if the Richardson number (Ri)
is everywhere greater than 1/4, i.e. if the flow is
dynamically stable. The horizontal momentum is
transferred to the basic flow. The critical level
problem in an adiabatic flow has been studied by
several authors (see Gossard and Monk, 1975;
Maslowe, 1986; LeBlonde and Mysak, 1978 for
reviews). The response of a stably stratified shear
flow with a critical level to a mountain (orographic
forcing) has been studied by Smith (1984, 1986).
The solutions have been applied to the lee
cyclogenesis problem. The response to a diabatic
heating has been studied by Lin (1987) and Lin and
Chun (1991). The solutions have been used to
explain the maintenance of a midlatitude squall line
and the formation of density current associated with
evaporative cooling.

Observations of large sheared cumulonimbus
convection also suggested that the environmental
wind relative to the storm movement often reverses
its direction at some height (e.g., Newton, 1966;
Marwitz, 1972). In order to understand the effects
of latent heating associated with cumulonimbus
convection on the environmental flow, it is important
to study the three-dimensional response of both
uniform and sheared stratified flows to diabatic
heating. In solving the three-dimensional response
to a prescribed elevated heating, representing the
latent heating associated with isolated supercell
thunderstorms, Lin (1986a) and Lin and Li (1988)
proposed that the V-shaped cloud tops over severe
storms (sce Heymsfield and Blackmer, 1988 for a
brief review) are formed by the thermally forced
gravity waves.

5.1 Two-Dimensional Shear Flow with a
Critical Level
The equation governing the two-dimensional

steady-state, small-amplitude vertical velocity
perturbation in a stratified, nonrotating, Boussinesq
fluid with diabatic heating can be simplified from Eq.
(2.15),

a2 ] ] T t [}
Uzﬂw xx+W'22)-UUzzw xx+N2W xx}cﬁq 31
(5.1

The homogeneous part of the above equation has
been discussed in Bretherton (1966). To simplify
the problem, we may assume that the flow is in
hydrostatic balance and the basic wind shear is
constant with height. After making the Fourier
transform in x, the above equation becomes

N’ -

W= £

q
U T U0

W+

(5.2)
In this section, we allow the basic wind to vanish ata
certain height. This will introduce a singularity to the
equation at the wind reversal level, which coincides
with the critical level in a steady state flow. The
Brunt-Vaisala frequency, N, is assumed to be
constant with height and U(z) is given by

U@)=az, -H,<z
' (53)

where o=-Ugy/H,, Uy is the basic flow at the surface,
and H,, is the depth from the surface to the critical
level. For convenience, the origin of the vertical
coordinate is chosen to be at the critical level. The
diabatic heating represents either low-level sensible
heating or elevated latent heating, and is assumed to
have the form

q'(x,2)=Q,f(x),  -HSz<-H,

=0, -Hi<z
. (54)

where H; may be positive or negative depending
upon whether the top of the hei:ting layer is below or
above the critical level. Substitution of the Fourier



114

Yuh - Lang Lin

transform of the above equation into Eq. (5.2) yiclds

2
5.+ () eI f,

-HSz<-H,
29
Cpl ot Z
=0, -Hj<z.
(5.3)

The general solution of the above equation may
be written

?f(k,z)=AzmﬁP+Bzm*iﬂ-|-§QLf@l, -H,<z<-H,

cpToN?

Fk) =GP L g AW , -Hsz
(5.6)
where
2 5. 2
1 =Ri-1/4, Ri=Nfa
(CN))

The upper radiation condition and lower boundary
condition requires C=0 (Booker and Bretherton,
1967) and w(z=-Ho)=0, respectively. The interface
conditions at z=-Hj appear to be that both w and W,
are continuous across it. Applying the boundary and
interface conditions to Eq. (5.6) leads to a solution of
w(k,z) in Fourier space. A perturbation
streamfunction y' may be defined as -oy'/dx=w'.
The vertical displacement (1) is related to the
perturbation streamfunction according to n=-y/U if
U0. The total streamfunction can then be calculated
by

w=$+w‘=J U@ dz +y'

G ?

(5.8)
or
Ucrl{o Z 2
=(=2)[1- | +V
v=(5) [ 1Y
(5.9)
Using a bell-shaped heating function with
compensative cooling such as that in Eq. (3.50) one
may obtain solutions in the physical space of the
form

-2 zls . .
v =22 [TNX (L] (cos T1 - cos T2) ATl
+ sin T2)]+20s-cos T3 - 1 } +LNX {%i[ﬁ

-(cos T1-cos T2)+(sin T1+sin T2)]-zOs-sin T3 } ]
-1<z<-H (5.102)

=%1g[mx {28 (cos T1 - cos T2 + L sin T1

- sin T2)|-(z1s-cos T1-2Ds-cos T3 } +LNX (&%
: [Elﬂ(cos Tl-cos T2) - (sin T1-sin T2)]

+(zls'sin T1-z0s'sin T3) } |
5 H1<z<0 (5.10b)
¥ = e [rvx {Z%S{Et(cos T1-cos T2)

- (sin T1 - sin T2)}+{(z1s-sin T1 - 0s'sin T3) }
LNX {Z£[(cos T1 - cos T2) + z_lu{sm T1

- sin T2)]-(zlscos T1 - 20s:cos T3) } |
0<z (5.10c)
where
z1s=V@/Hy; 20s=Vid; T1=t In(d/Hy);
T2=p In(Hld); T3=t In}z; TNX=tan'! x-tan"lx/by;
LNX=L In [ (@5+xD/(14+x2)]
The nondimensional variables are defined by (the
tildes are dropped in the above equation)

@ Hi) = (/Ho, Hy/Ho); V = y/UH.;
&, b2) = (x/by1, bafby); Qo = QogbiHo/(cpToUR),
(5.11)
The total streamfunction has the nondimensional
form

Y= % (1- zz) +y’
' (5.12)
Figure 31 shows the total streamfunction and the
vertical velocity for a shear flow with Ri=10,
H;=0.2, and Q1=0.25. Notice that these parameters
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Fig. 31: (a) Streamlines for a two-dimensional shear
flow with a critical level (z=0) over an isolated
heat source which is concentrated within the
dashed lines. The solution is given by Eq.
(5.10) with Qo=0.25, Ri=10, H;=0.2, and
by=10. (b) Vertical velocity for (a). Dashed
lines indicate negative vertical velocity. (From
Lin, 1987)

are nondimensionalized. The corresponding
dimensional parameters may be considered as
Un=6.3 m s, Hy=2000 m, H;=400 m, and N=0.01

s-1. The heat source is located below the critcal
level, z=0. The heating depth is 1.6 km. Below the
critical level, a broad region of downward
displacement is established upstream of the heat
source followed by a region of upward displacement
downstream. The vertical motion is almost
symmetric with respect to the heating center because
the differential advection effect of the basic wind is
small due to the prescribed weak shear. On both the
upstream and downstream sides of the updraft there
exist two weak compensated downdrafts. This
response is similar to the motions induced in a
quiescent stratified fluid (e.g.,.Lin and Smith, 1986;
Nicholls et al., 1991). Above the critical level, the
flow is almost undisturbed because the thermally
forced gravity waves are attenuated exponentially as
they pass through the critical level. This result is
consistent with the free wave solution of Booker and
Bretherton (1967) and the mountain wave solution of
Smith (1986). Beneath the critical level, the local
vertical wavelength decreases as the local horizontal
basic wind decreases.

Figure 32 shows a case similar to Fig. 33 except
with Ri=1. The corresponding dimensional
parameters may be considered the same as in Fig, 33
except with Up=20 m s-1. The response is
significantly different from the previous case. The
vertical motion is much stronger than the previous
case. A region of a strong downward motion is
established upstream of the heating center. The
region of maximum upward motion is shifted
downstream of the heating region. The broad
descent is produced by the compensating downdraft
associated with the updraft. Below the critical level,
the region of updraft is displaced downwind. This is
caused by the advection effect imposed by the basic
wind due to stronger vertical shear which now exists
as compared with previous case. Near the top of the
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Fig. 32: As in Fig. 31 except with Ri=1. (From
Lin, 1987)

heat source, there exists a region of flow
recirculation. The thermaily forced gravity wave is
able to propagate upward to the upper layer above the
critical level, although the amplitude is relatively
weak. The upstream tiit of the wave in this layer
indicates that the wave is able to propagate to
infinity. Figure 33 displays the momentum flux for
the case of Fig. 32. The momentum flux at the
surface is zero as required by the lower boundary

HE1CHT
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Fig. 33: The vertical momentum flux for the flow
field of Fig. 32. (From Lin, 1987)

condition. The momentum flux has a negative value
with increasing magnitude in the heating layer, i.e. -
1<z<-0.2, and a constant negative value above the
heating top until the critical level is reached. This
result is consistent with the theory of Eliassen and
Palm (1960), which states that the momentum flux
does not change with height in a region|with no
forcing, except possibly at levels where U=0. The
vertical flux of horizontal momenmum increases
almost discontinuously to a small positive value
above the critical level as the basic flow reverses its
direction and the disturbance is very weak there. The
abrupt increase of the momentum flux across the
critical level is associated with the absorption of the
wave energy by the critical level. The above
solution, Eq. (5.10), has been adopted by Crook and
Moncrieff (1988) in a study on the effect of large-
scale convergence on the generation and maintenance
of deep moist convection.
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Latent heating always exists in the vicinity of the
critical level in a moist convection. The procedure
for solving the mathematical problem of a shear flow
over an elevated heat source which exists in the
vicinity of the critical level is similar to the above

Fig. 34: (a) Streamlines for flow over an isolated
heat source in an unbounded continuously
stratified fluid. The heating is concentrated in the
region enclosed by dashed lines. (b) Vertical
velocity for (a). The Richardson number
associated with the basic flow is 1. (From Lin,
1987)

case (Lin, 1987). Figure 34 shows the response of a
shear flow over an elevated heating in a stratified,
unbounded fluid. The existence of thermal forcing in
the vicinity of the critical level can modify the flow
significantly. In the vicinity of the critical level
(z=0), the fluid particle on the left hand side iin the
lower layer experiences a strong upward motion near
the heating center (x=0), crosses the critical level,
and then returns to the left of the domain in theupper
layer. In addition, the flow near the concentrated
heating region is dominated by upward motion, as
indicated by Fig. 34b. The consistency of the
vertical motion and the heating at the heating base is
important in order to support the existing convection.
The heating base may represent the cloud base/or the
top of the moist boundary layer where the surface air
becomes unstably buoyant in a cumulus convection
(Lindzen, 1974). The vertical motion in the viciniry
of the critical level may be explained by inspecting
the thermodynamic equation [Eq. (3.4)]

ae' N290 ' 00
w'=

U-a-’-‘—+ = = o, q -
(5.13)
The above equation may be approximated by
W — zq.
cplo N
(5.14)

in the vicinity of the critical level since U=0 [there.
This indicates that the vertical velocity near the
critical level is proportional to the heating rate. Since
the flow structure resembles that asscociated with a
midlatitude squall line, one may conclude that the
condensational heating in the vicinity of the critical
level plays an important role in the interaction of the
flow below and above the critical level.

Lin and Chun (1991) solved a similar problem
analytically for a flow over a low-level heat sink and
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obtained a result similar to that of Lin (1987). From
a scale analysis of the governing equations, a
nonlinearity factor of the thermally induced finite-

amplitude waves ngbﬁ(cpTuUiN), is found. The
symbol Ug denotes the basic wind at the surface.
This factor reduces to that found by Raymond and
Rotunno (1989) for the uniform flow case. Using a
simple nonlinear model, Lin and Chun (1991) found
that the hydrostatic response of a shear flow with a
critical level to a steady cooling can be categorized as
either a stationary cold pool, or a density current,
depending upon the strength of the effective cooling.
For a small Richardson number flow, the cold pool
is stationary with respect to the upstream flow
because most of the cooling is used to compensate
the positive vorticity generated by the positive wind
shear (Fig. 35a). In this case, the response is similar
to the linear steady state case (Fig. 3a of Lin and
Chun, 1991). For a large Richardson number flow,
the cold pool is able to propagate upstream because
the effective cooling, which increases with time, is
strong enough to push the outflow against the basic
wind (Fig. 35b). It is interesting to observe that
internal gravity waves are produced and propagate
upward at the head of the density current. Similar
results also are obtained by Chen et al. (1992) ina
nonhydrostatic numerical simulation of gravity
currents. From the comparison between linear
theory and nonlinear model results, it is found that
the nonlinearity appears to reduce the wave
disturbance in the layer between the critical level and
the cooling top, while it tends to strengthen the
density current or cold pool near the surface.

. As mentioned in Section 4, Lindzen and Tung
(1976) proposed that a stable wave duct adjacent to
the surface may exists if it is capped by an unstable
layer which contains a critical level. Chun and Lin
(1992) have investigated the steady response
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Fig. 35: Potential temperature fields for a two-
dimensional, hydrostatic, continuously stratified
shear flow with a critical level (z=2.5 km) over a
steady heat sink (bj=10km, 2<1.5 km)|for (a)
Ri=0.69 and Uo=30 m s°1, (b) Ri=6.25 and
Uo=10 m s'. The basic wind blows from right
to left in the lower layer (z<2.5 km) and reverses
its direction in the upper layer. Notice that an
upstream propagating density current develops in
the large Richardson flow. (From Lin and Chun,
1991)

analytically in the same type of environment but with
a diabatic cooling in a three-layer atmosphere. The



