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lower layer adjacent to the surface has a uniform
basic wind and serves as a wave duct when the
conditions are met. They showed that when the
shear layer is dynamically stable (Ri>1/4), almost all
of the wave energy is absorbed near the critical level.
However, when the shear layer is dynamically
unstable, waves can be partially- or over-teflected
from the critical level depending upon the strength of
the stability of the shear layer. The wave is almost
entirely reflected when (Ri-1/4)1/2 is near 0.4. The
transmission coefficient increases as the reflection
coefficient increases. In addition, the wave
amplitude below the shear layer also depends upon
the depth of the lower layer of uniform flow. The
wave amplitude in the lower layer becomes
maximum when the ratio of the vertical wavelength
and the depth of the lower layer is n/2+1/4. These
factors may modify the vertical motion field
significantly, which in turn will either enhance or
suppress the new cells produced by the density

current.

5.2 Three-Dimensional Flow
a. Uniform flow

Before we discuss the response of a three-
dimensional shear flow to elevated heating, it is
essential to understand the response of a three-
dimensional uniform flow to an elevated heating.
Thus, we will review the work of Lin (1986a) first
and then the work of Lin and Li (1988). The small-
amplitude equation governing the vertical velocity for
a steady state, three-dimensional, stratified,
incompressible, Boussinesg, non-rotating flow can
be written
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where v is the coefficient of both Rayleigh friction

and Newtonian cooling. To solve the above
equation, we determine the relevant Green's function
as in previous sections. Taking the double Fourier
transform in x and y (x --> k, y --> 1) of the above
equation, we have
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where K=(k2+12)1/2 is the horizontal wave number.

Consider a bell-shaped heat source with

circular contours
Q
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where

1/2
r= (x2+ y2) .

Taking the double Fourier transform of the above
equation and substituting into Eq. (5.16), we obtain
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An approximate set of lower and upper boundary
conditions are w=0 at the surface (z=-H) and the
radiation condition, i.c. W ~ exp(iAz) as z > o=, At
the interface z=0, one condition is that wis
continuous across the interface. Integrating Eq.
(5.18) across the interface yields another condition
that “?2 is continuous. Thus the solution of Eq.
(5.18) can be obtained



120

Yuh-Lang Lin

4, To(Ukeiv) N2-(Uk-iv)2l'”
(5.20)
The vertical displacement, 1), defined by w=Udn/ox,

may be written as
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The above equation may be nondimensionalized by
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to yield
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Notice that the nonhydrostatic effect is represented
by a nondimensional number M (=U/bN), which is
proportional to the ratio of the period of a buoyancy
oscillation (25/N) to the time it takes for an air parcel
to pass the heat source (b/U). This reasoning is
similar to the mountain wave problem in which the
horizontal scale is measured by the mountain width.

For simplicity, we assume the flow is hydrostatic

(M<<1) in most cases. A two-dimensional FFT
(Fast Fourier Transform, see Smith, 1979 for a brief
review) algorithm can be employed to invert the
above solution back to the physical space.

Fig. 36 shows an example of hydrostatic flow

Fig. 36: Vertical displacement of a three-
dimensional, continuously stratified, hydrostatic,
uniform flow over an isolated heat source which
is added at z=0. The dashed circle is the heating
contour at r=b. The basic flow is directed from
left to right in the positive x direction. The
solution is given by Eq. (5.23) with H==, M=0,
v=0.2. The four levels shown are: (a) -1/2, (b)
0, (c) 7/2, and (d) . (From Lin, 1986a)

(M=0) over a shallow heat source with H=x. The
dimensional parameters may be considered as U=10
m s-1, N=0.01 s-1, b=5 km, and H=3.14 km. The
response of the fluid to the heating at the heating
level (z=0) is a downward displacement upstream of
the prescribed heat source followed by an upward
displacement downstream. This is similar to the
rwo-dimensional flow as studied in earlier sections.
The region of disturbance widens in general as one
moves aloft and beneath the heating level. A V-
shaped pattern in the region of upward displacement
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forms above the heating center at the level of z=n/2.
This region of upward displacement is shifted
upstream as one moves further aloft as required by
the upper radiation condition. At the level of z=n, a
new region of downward displacement forms just
downstream of the V-shaped area of upward
displacement. The response is almost periodic in the
vertical with a wavelength of = (¢.g., comparing Fig.
36a,c) like that in the hydrostatic mountain waves
(Queney, 1947; Smith, 1979). The amplitude of the
vertical displacement decreases vertically, which is
mainly due to the divergence above the heating
region and the viscosity.

The vertical cross section at y=0 for the above
case is plotted in Fig. 37a. - The upstream phase tilt
of the disturbance above the heating level (z=0)
indicates that the wave energy is able to propagate
upward (Eliassen and Palm, 1960). The term
exp(iA(z+2H)) in the numerator of Eq. (5.23)
represents the reflected waves from the surface,
which may cancel the direct upgoing wave, i.e., the
term exp(iAl4 ), above the heating level with certain
values of H. This is similar to the two-dimensional
flow (Smith and Lin, 1982). One example with
H=2x is shown in Fig. 37b in which the disturbance
above the heating level (z=0) is much weaker than
the case of Fig. 37a.

The formation of the V-shaped pattern of the
vertical displacement can be explained by the group
velocity argument (Lin and Li, 1988). The
dispersion relation for an internal gravity waves ina
stagnant Boussinesq fluid is
NZa>HD v
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(5.24)
where @ and m are the frequency and the vertical
wave number, respectively. The group velocity can
then be found:
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Fig. 37: (a) Vertical cross section along y=0 for Fig.
36 (H=n), (b) as in (a) except H=2x. (From Lin,
1986a)
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For steady waves on a basic flow we replace @ with
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the intrinsic frequency kU, so (5.24) becomes

i R
kU

(5.26)
The components of the group velocity in a reference
frame moving with the disturbance can be obtained
by adding U to (5.25) and using (5.26):
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With Eqg. (5.28a,b), we obtain
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Use of Egs. (5.29) and (5.28a) leads to
3
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The above equation reduces 0 Eq. (31) of Smith

(1980) in the hydrostatic limit, i.e., k2<<(N/U)?2 for
2 uniform basic flow. For a certain height, the wave
energy is concentrated near the parabola described by
Eq. (5.30). However, the latus rectum becomes
smaller compared to the hydrostatic case, The
parabola becomes wider for higher altitudes, stronger
stratification, and weaker basic wind.

To apply the above results to the real atmosphere,
one has to consider a heat source distributed in a
layer instead of being located at 2 certain level. Fora
heat source distributed uniformly from z1 t0 3, the
mathematical problem can be obtained by applying
the Green's function method to the solution of Eq.
(5.23)
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The variables are nondimensionalized according to

Eq. (5.22) except Qo = Qo8b/(C,T JUN). Figure 38
shows the vertical displacement for a hydrostatic
flow over an elevated heat source distributed from
z1=1 to z2=5. The dimensional flow parameters
correspond to N=0.01 s1, ;=1 km, z2=9 km, b=5
km, and U=10 m s'1. The nondimensional

n3 =

-
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Fig. 38: Vertical displacement of a three-
dimensional, continuously stratified, hydros tatic,
uniform flow over an isolated heat source which
is uniformly distributed from z1=1to z=9. The
solution is given by Eq. (5.31) with M=0 and
v=0.2. The four levels shown are: (2) 1, (b) 5,
(©) 9, (d) 14. (From Lin, 19862)

parameter M is set to 0 in this case. In the heating
layer, the response of the airstream (o the thermal
forcing is a downward displacement upstream of the
heating center followed by an upward displacement
downstream. This is similar to the two-dimensional
case discussed earlier. There exists no phase tlt in
the heating layer. The vertical orientation of the
disturbance is directly related to that of thermal
forcing as demonstrated by Lin and Li (1988) (see
their Fig. 3). As we move aloft to z=14 (Fig. 38d),
V-shaped regions of upward and downward
displacement are formed and located on the upwind
and downwind sides of the heating center,
respectively. The V-shaped regions are formed by

the action of the basic wind on the direct and
reflected upward propagating gravity waves. In
relation to the thunderstorm generated V-shaped
cloud tops, the cold (warm) area can be explained by
the adiabatic cooling (warming) associated with the
upward (downward) displacement. In addition, the
upwind displacement of the cold area in the upper
level with respect to the storm center may be
explained as a gravity wave phenomenon.

The transient response of a hydrostatic airflow
over a heat source has also been studied by Lin
(1986a). A V-shaped region of upward displacement
with an embedded region of downward displacement
above the heating layer are produced. The whole
system then advects downstream with a slower speed
than the basic wind and eventually disperses.

Other mechanisms for the formation of V-shaped
cloud tops have been proposed by others. Adler et
al. (1981), Negri (1982), and Heymsfield et al.
(1983a) proposed that the close-in warm area.
(Heymsfield and Blackmer, 1988) is produced by
subsidence of negatively buoyant overshooting cloud
air downshear of an ascending cloud top. Using a
one-dimensional cloud model to simulaté an
overshooting cloud top, Adler and Mack (1986)
suggested that mixing of the cloud air with the
warmer stratospheric air is important in explaining
the occurrence of the close-in warm point and the
upwind offset of the cold point from the cloud
summit. Schlesinger (1984, 1988) used a three-
dimensional clond model without ice processes to
exarmine the origin of air in the cold and warm points
associated with severe storm cloud tops. Schlesinger
indicated that the strength of the cold-warm couplet is
related to the magnitude of the shear in the near-
tropopause region. The model showed that the warm
area consisted of air parcels originating from both the
updraft and stratospheric air above the cloud top
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level. Schlesinger's results are consistent with the
cloud dynamics arguments of Adler and Mack
(1986). However, neither paper discussed the nature
of the mixing processes and the ice processes are
ignored in Schlesinger's model. The importance of

the ice processes in thunderstorm dynamics has been*

demonstrated by Lin, Farley, and Orville (1983).
Heymsfield et al. (1983b) offered another
explanation in which the strong divergent outflows
of the storms produce a variation in the ice content
across the anvil top, such that higher concentrations
of ice particles occurred in a V-shaped region.
Heymsfield and Blackmer (1988) and Heymsfield et
al. (1991) proposed a conceptual model in line with
the wave theory of Lin (1986) and Lin and Li
(1988). They suggested that the V-shaped cloud
tops may be explained by the adiabatic cooling and
warming associated with upward and downward
motion of airflow over the cloud top which acts like 2
mountain. In reality, the cloud top may act like
something in between a solid body and a "soft"
warm air. In other words, the cloud should be
represented by a thermal forcing which is also able to
exert a drag on the environmental fluid such as a
mountain.

The vertical velocity can be obtained immediately
from the dimensional relationship w'=Udn/ox for a
steady flow. Figure 39 shows the vertical velocities
at the heating base z; for (z1, 22) = (2,18), (1,9),
(05,4.5), (0.25,2.25), and (0.125,1.125). The
dimensional parameters may be considered as
N=0.01 s-!, z;=1 km, =9 km, b=5 km, and U=5,
10, 20, 40, 80 m s-!. For a fixed heating depth
(dimensional), a smaller z2-z1 corresponds to a
higher basic wind speed. Fig. 39b corresponds to
the case of Fig. 38. The advection effect is more
significant for cases with larger basic winds, which
gives a more pronounced V-shaped patern. This

Fig. 39: Vertical velocity at z=z of a three-
dimensional, continuously stratified, hydrostatic,
uniform flow over a heat source which is
uniformly distributed from z; to z3. The solution
is given by Eq. (5.31) with M=0 and v=0.2.
The four cases of different (z1,z2) shown are: (a)
(2,18), (b) (1,9), (c) (0.5, 4.5), (d) (0.25,
2.25), and (e) (0.125, 1.125). (From Lin,
1986a)

figure indicates that an upward motion at the cloud
base as required by a wave-CISK mechanism may be
satisfied with a wide variety of the basic wind speeds
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in the present model. Although, the air still has to0
overcome the downward displacement established
upstream of the heating region, as pointed out by
Raymond (1986). '

In a study of three-dimensional inviscid airflow
over an isolated mountain, Smolarkiewicz and
Rotunno (1989) found that a pair of vortices form on
the lee side of the mountain in a low Froude number
(Fr=U/Nh < 0.5) flow. The formation of these lee
vortices are explained by the tilting of horizontal
vorticity produced baroclinically in an inviscid
continuously stratified fluid. Smith (1989)
commented that the lee vortices can be generated by
either a density surface interaction or by overturning
and turbulence in an inviscid fluid. It is suspected
here that a similar phenomenon may occur in an
inviscid flow over a heating source or sink.
However, this hypothesis remains to be tested. A
nonlinear model is needed to examine the possibility
of the formation of vortices on the lee of heat source
or sink. With the Coriolis force included in a study
similar to Smolarkiewicz and Rotunno, Lin et al.
(1992) demonstrated that a lee mesocyclone can be
generated in a three-dimensional, inviscid, low
Froude number flow past an isolated mountain. A
similar analogy may be drawn for a flow over a
meso-P/a scale heat source or sink. If a
mesocyclone forms, it may be related to the
formation of coastal cyclones. Again, it remains to
be investigated in further studies.

b. Shear Flow with a Critical Level

The theory developed in the last section may be
extended to include a multi-directional shear flow
with a critical level. The governing equation is a
combination of Egs. (5.1) and (5.15)
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After making the double Fourier transform in x (-->
k) and y ( --> 1), the above equation becomes
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Again the heating can be assumed to be a bell-shaped
function in x and y and uniformly distributed in
vertical. The mathematical problem is complicated.
Thus, a simple numerical technique may be adopted
to obtain the solution which can provide a physical
solution to the problem. Egq. (5.33) in the Fourier
space is a special case of the general form of the

Taylor-Goldstein equation
£t p@E=1(2)
(5.34)
with the boundary conditions
lzo=C, atz=z,
{zp=Cr a i
(5.35)

where the subscripts o and T represent the lower and
upper boundaries, respectively. Applying a center-
difference numerical scheme to the above equation
yields

(20, + ) + h2P1C1 = hzl'l -Gy

(€1 20,+ Ciop +hpL=h7ry,  i=2,3,....001
(Cn-]_'zCn) + thncu = hzrn - C'I‘

(5.36)
where h is the interval for numerical integration. In
the following examples, the h and horizontal grid
interval are chosen to be 250 and 1500 m,
respectively. The above linear system can be solved
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by applying the Gaussian elimination scheme to the
banded matrix column vector [{y, ...., Cnl as long as
the boundary conditions are known. The upper
radiation boundary condition is simulated by a
sponge layer (Klemp and Lilly, 1978) in which the
coefficient of Rayleigh friction and Newtonian
cooling is gradually increased by a factor of 5 in the
sponge layer according to a sine square function.
Once the numerical solution in the Fourier space is
obtained, then a two-dimensional FFT algorithm can
be adopted to invert the solution back to the physical
space.

Figure 40 shows the flow fields for a
nonhydrostatic shear flow over an elevated heat
source. A linear shear, U(z)=-Uy+(Uo/2c)z and
V(z)=0, is assumed in this case. The critical level
(zc) is located at 2 km. Other parameters chosen are:
N=0.01 s-1, Up=10 m s-1, Qo=4 J kg 5°1, b=5 km,
z1=1.5 km, z3=12 km, and v=104s1, A rather
small heating rate is used to avoid the violation of the
small amplitude assumption. The cloud base and top
can be assumed to be 1 km and 14 km, respectively.
Even though these values are not involved in the
calculation, it should be noted that the cloud base and
top are not necessarily located exactly at the same
height as the heating base and top, respectively. The
Richardson number associated with the basic flow is
4. The grid resolution is 64 x 64 x 101. The actual

horizontal domain is 94.5 km x 94.5 km. Ony the
central portion, 46.5 km x 46.5 km, are shown in the
figure. The horizontal domain is chosen to be large
enough so that the effect of periodic conditions
assumed by the FFT algorithm can be minimized.
The vertical extent of the physical layer is 15 km,
while the sponge layer extends from 15 km to 25
km.

At the cloud base (z=1km), the basic wind blows
from right to left. Upward motion is generated
upstream of the heating center with downward
motion downstream of the heating. The region of
upward motion forms a V-shaped pattern with the
vertex pointing upstream. The V-shaped pattern of
upward velocity in the low levels have also been
found in numerical simulations (e.g., Klemp and
Wilhelmson, 1978; Schlesinger, 1980). The
formation of this V-shaped pattern is similar to that
discussed in the last section except with downward
propagating gravity waves. Evidence of these
downward propagating waves is also shown in the
upstream shift of the maximum uvpdraft from Fig.
40a, b and f. At the heating base z1 (Fig. 40b), the
heating region is dominated by upward motion. The
colocation of the upward motion and the heating at
the heating base is important in supporting the
existing convection. Moving further aloft to the
critical level, z.=2km, the response of the airflow to

Fig. 40: Vertical velocity fields fora nonhydrostatic continuously stratified shear flow over
an elevated heat source. The critical level (z¢) is located at 2 km. The solution is
given by Eq. (5.33) solved by the numerical scheme Eq. (5.36) and an FFT
algorithm. Other parameters chosen are: N=0.01 s, Ug=10m s-1, Q=4 T kg 571,
b=5 km, z;=1.5 km, zp=12 km, and v=104 s°1. The Richardson number
associated with the basic flow is 4. Five levels are shown for : (a) 1 km, (b) 1.5
km (z1), (¢) 2 km (z¢), (d) 5 km, and (¢) 14 km. The vertical cross section along
y=0 is shown in (f). Units for the vertical velocity is in m s-1, (From Lin and Li,

1988)



128

Yuh-Lang Lin

the diabatic heating is an axisymmetric region of
upward motion (Fig. 40c). Similar to the two-
dimensional case (Eq. (5.14)), the vertical velocity at
the critical level is directly proportional to the heating
according to the thermodynamic equation since the
basic wind vanishes there. Thus, the region of
upward motion reproduces the bell-shaped pattern of
the heat source. Notice that the basic wind profile
used in this case agrees better with squall lines and
multicell storms than right or left moving supercells,
which would maintain a constant storm-relative V-
component V(z)=tV, to the wind. The gravity wave
pattern produced by this type of supercells is better
represented in Lin (1986a) and Raymond (1986).
The positive response of vertical motion at the cloud
base depends upon the heating-induced Froude
number [F=U/N(z3-z1)], which corresponds to the
wave-CISK modes (Raymond, 1986). At higher
levels, such as 5 and 14 km (Fig. 40d and e), the V-
shaped regions of upward motion are pronounced.
This result is consistent with the non-sheared case
studied in Lin (1986a) and with numerical modeling
studies of Klemp and Wilhelmson (1978) and
Schlesinger (1988). The vertical motion is weaker at
14 m than at lower levels because of the divergence
above the heating region and the viscosity. Due to
the nonhydrostatic effect, repeating, damped
oscillations of the disturbance may be produced
(e.g., Fig. 2e of Lin and Li, 1988). The formation
of V-shaped patterns of vertical velocity is explained
earlier by Eq. (5.30).

The vertical cross section of vertical velocity
along y=0 is shown in Fig. 40t. In the concentrated
heating region, the vertical velocity is positive in the
heating layer, with a maximum located at about 5.5
km. The vertical orientation of the updraft core
depends on the vertical shear. of the environmental
wind. The slightly downshear tilt is due to the

strong advection of the basic wind. For a relatively
weak shear case, the updraft is almost erect. The
upstream tilt of the vertical velocity above the heating
top (12 km) is offset by the advection effect (Fig.
40f). The downward motion on the downshear side
(right side in Fig. 40f) of the updraft is evidence for
the existence of the thermally forced gravity wave.
Below the cloud base (1 km), the updraft is shifted
upstream followed by a downdraft region. This
sloping np&raft near the cloud base may enhance the
formation of new convective cells. These new
convective cells may develop to be part of the
supercell or as a short-lived cell in a long-lived
convective system (Rotunno et al., 1988).

The propagation of wave energy induced by a
stationary heat source in an unbounded, steady
stratified shear flow is sketched in Fig. 41. Atupper
levels, the energy propagates upward and upstream
relative to the air (cga), but is advected downstream
by the basic wind. Thus, the wave energy is found
to be along the direction of Cghy OT Cgh- relative to the
heat source. The formation of the repeating, damped
oscillations of the disturbance (Fig. 40f) is mainly
caused by the nonhydrostatic effect. Similar to
mountain wave theory (Smith, 1979), this
nonhydrostatic wave only occurs when the dominant
squared wave number (K?2) is less than the Scorer
parameter (N2/UZ(z)) for a Boussinesq, constant
shear flow. This result also can be explained by the
group velocity argument. For simplicity, let us
consider a corresponding two-dimensional flow for
which Eq. (5.28a) reduces to

1/2
z_ Ny U’y
x U k

(5.37)
The wave energy propagates along the straight line
given by the above equation, emanating from the
origin where the heat source is located. Now it
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Fig. 41: A sketch for the propagation of wave
energy associated with steady waves forced by a
prescribed heating in an unbounded,
nonhydrostatic continuously stratified shear
flow. Symbols Cpa, Cga, Cgh+» and Cgh. represent
the phase velocity with respect to (w.r.t.) the air,
group velocity w.r.t. the air, upward group
velocity w.r.t. the heat source, and downward
group velocity w.r.t. the heat source. (From Lin
and Li, 1988)

becomes clear that in order to have the wave energy
propagate downstream (x>0) and upward (z>0), it
requires that K2<N2/U%(z). To determine the control
parameter of the downstream wavelength of the
heating-induced gravity wave, we assume that the
wavelength at a certain height z* above the critical
level (denoted by C.L. in Fig. 41) is L. Thus, x*,
k*, and U(z) are equal to L, 2n/L and Uz,
respectively. Substituting z*, x*, and k* into Eq.
(5.37) and solving for L, we obtain

L =121z [ + /(1 + Ri/D) |
Ril”2 ;

Thus, the downstream wavelength is approximately
proportional to Ri-1/2 for a stable flow with a
relatively strong shear (Ri << ©t2). A rough estimate
from Fig. 40f gives L=34 km for Ri=4. This result
is consistent with the above conclusion.

Figure 42 shows a case with a multi-directional
shear. The hodograph is depicted in Fig. 42e. At
the cloud base, 1 km, the basic wind blows from the
southeast (Fig. 42a). The regions of upward and
downward motion are located on the upwind and
downwind sides, respectively. The extrema of the
vertical velocity are lined up along the direction of the
basic environmental wind. The vertical velocity field
shows an asymmetric pattern which is caused by
weak advection of gravity waves by the north-south
component of the basic wind. This asymmetry is
also shown in the field of vertical displacement (Fig.
42b). In the vicinity of the heating region, the flow
is dominated by an upward displacement. The
downward displacements on the upstream
(southeast) and downstream (northwest) sides are
relatively small compared with the upward
displacement. Even though the north-south wind is
relatively weak at the cloud top level (14 km),
asymrﬁetﬁc patterns are still pronounced in the fields
of vertical velocity and displacement (Fig. 42¢ and
d). Thus, the thermally forced gravity waves in a
multi-directional shear help to explain (Heymsficld et
al., 1983a; Lin and Li, 1988) the asymmetric pattern
of V-shaped cloud tops, such as those observed by
Anderson (1982).

6. Three-Dimensional Flow over a Meso-ot/[3
Heat Source s
For a stably stratified flow over a diabatic heat
source or sink with a horizontal scale on the order of
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Fig.42: As in Fig. 40 except with a multidirectional
shear as sketched in the hodograph (¢). Ficlds
plotted are: (a) w' at 1 km (cloud base), (b)n at 1
km, (¢) W' at 14 km (cloud top), and (d) 1 at 14
km. (From Lin and Li, 1988)
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one hundred kilometers, the rotational effect plays an
important role in generating inertia-gravity waves.
Those waves behave differently from pure gravity
waves which are generated by a heat source or sink
with a horizontal scale on the order of ten kilometers
or smaller. They are also different from quasi-
geostrophic planetary waves which are generated by
a heat source or sink with a horizontal scale on the
order of thousand kilometers. In this type of flow,
the B-effect may be neglected, but the inertial effects
should be included.

By prescribing an isolated diabatic heat
source/sink, Rotunno (1983) has investigated the
rotational effects on the land and sea breeze
circulation theoretically. Using a similar approach,
Hsu (1987a) has studied the two-dimensional flow
response to a prescribed, finite surface heating with
Fickian thermal diffusion included. The horizontal
scale of the heating varies from 1 to 1000 km. This
work was extended numerically to include the three-
dimensionality and applied to the snowstorm
problem of Lake Michigan (Hsu, 1987b). Some
interesting results have been found by Hsu by
varying the shape of the diabatic heating and the
basic wind directions. However, the energy
propagation of the heating-induced inertia-gravity
waves has not been emphasized, which need to be
investigated for a better understanding of the
dynamics. Using a linear theoretical model, Luthi et
al. (1989) studied the nature and the flow response to
prescribed low-level, mesoscale steady state diabatic
heating with Rossby numbers greater and smaller
than 1. They found that the response is strongly
sensitive to: the horizontal scale of the diabatic
region, three-dimensional effects, basic rotation of
the flow system and the strength of the momentum
and thermal damping. The inertial effects of a three-
dimensional uniform flow over a mesoscale heat

source have been investigatea by Lin (1989a) by
comparing the response with that of a quasi-
geostrophic flow. This work will be reviewed in this
section.

The above problem is related to the shear flow
over the East Coast of the United States.
Cyclogenesis along the east coast of the United
States has received considerable attention since the
recent completion of the Genesis of Atlantic Lows
Experiment (GALE). These cyclones often form off
the Carolina coast, develop rapidly, and move
northeastward, which may bring heavy snowfall and
damage over the mid-Atlantic states. Different kinds
of approaches, such as observational data analysis
(e.g., Bosart, 1981; Uccellini et al., 1984),
numerical simulations (e.g., Anthes et al., 1983;
Orlanski and Katzfey, 1987) and theoretical studies
(e.g., Smith, 1986; Lin, 1989b, 1990a), have been
used to investigate the problem of East Coast
cyclogenesis. Observational studies suggest that
there are two major mechanisms responsible for the
East Coast cyclogenesis. The first may be called the
boundary-layer control of cyclogenesis (e.g., Bosart,
1981; 1988). It is proposed that the cyclonically
curved coastline under a northeasterly flow is
favorable for the growth of cyclonic vorticity in
response to differential heating and differential
friction between a relatively warm ocean and colder
landmasses. The second mechanism may be called
the upper-level jet streak/trough control of
cyclogenesis (e.g., Uccellini et al., 1984; Uccellini
and Kocin, 1987). Itis proposed that the circulation
patterns associated with jet streaks establish an
environment within which low-level processes can
further contribute to cyclogenesis. The transverse
ageostrophic components associated with jet streaks
aloft combine with the longitudinal components
associated with trough-ridge systems and can



132

Yuh-Lang Lin

provide for the upper-level divergence conducive to
surface cyclogenesis as envisioned by Bjerknes
(1951). It appears that the boundary-layer
mechanism is more responsible for the early
formation of the coastal cyclone, while the upper-
level forcing mechanism is more responsible for the
later development. One example is the case of GALE
I0P#2 (GALE, 1986), in which there are no
migratory shortwave trough/jet streaks aloft to
account for the cyclogenesis at the early stage. Asa
shortwave trough aloft moves over the genesis
region at a later time, the cyclone then begins 10
move northeastward and develops further along the
coastal front. In order to understand the effect of
differential heating on the development of a coastal
cyclone, it is important to study the response of a
baroclinic flow to a low-level heating. In this paper,
we will review the responses of a baroclinic flow
over a prescribed low-level heat source studied by
Lin (1989b; 19902) and some recent results.

6.1 Steady Barotropic Flow

The small-amplitude equation of vertical
velocity for a steady, three-dimensional, stratified,
hydrostatic Boussinesq flow in 2 rotating system
may be written

Uu'y- fv' =-(1/p) P's

(6.1)

Uv' +fu'=-(1/p) Py

(6.2)
p'z=(ep/0) 9

6.3)
u' vy +w',=0

(6.4)
Ue', + O NTR W' =(0/,T0a"

(6.5)

The above equations may be nondimensionalized by

&, P=(x/b,y/b); Z=2/Ho; @,V)=(u'/U,v'/U);
w=w'b/(RoUH,); 5=?'f(Pobe):9=(9'gHo)f(f90Ub);

q=q'gHJCTUD,

(6.6)
to yield (with tildes dropped)

Rpu,-v+ps=0

(6.7
Ryvg+u+py=0

(6.8)
p.-0=0

(6.9)
ug+ vyt Rw,=0

(6.10)
8, +w=4q

(6.11)

where b is the horizontal scale of the heat source,
R,=U/fb and Hy=fb/N are the Rossby number and
the deformation depth (e.g. see Buzzi and Tibaldi,
1977; Pierrehumbert and Wyman, 1985).

To investigate the inertial effects, we consider the
flow response in a quasi-geostrophic system. This
will provide a basis for comparison. Egs. (6.7)-
(6.11) can be reduced to a single equation for the
pressure perturbation by making the quasi-
geostrophic approximation, i.e. retaining the zeroth
and first order terms in a Taylor series expansion of
the dynamical variables in powers of Ro (for details,
see Pedlosky, 1982)

d : S
= (pz+VHP) =% _
(6.12)
The lower boundary, with Ekman friction (Charney
and Eliassen, 1949) included, requires

W= (-pJofﬁ) s + (%TiNz) q =HQE) ¢

at z=0, (6.13)
where E=V/(fH,2) is the Ekman number and ' is the
vertical component of the relative vorticity. The
nondimensional form of the above equation is

Pt (EVDRJC=q az=0

- 6.14)
For a low-level thermal forcing, we may assume
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Q' (%, y, D =h'(x,y) e

(6.15)
where h'(x, y) is the horizontal distribution of the
heating and H is the e-folding depth of the heating.
The above equation can be expressed in

nondimensional form

q(x, ¥, 2) = h(x,y) e#7
(6.16)

where y=H1/Ho=NH,/fb is the aspect ratio of the
heating depth to the deformation depth.

To solve the problem, we make the double
Fourier transform in x and y of Egs. (6.12), (6.14),
and (6.16)

~ L _H_ )
Pzz K% (i‘yk)em’

6.17)
with

~  2EYXK? ~_ Bhe™
P,- { Rk Jp=——x at z=0

(6.18)
The general solution of Eq. (6.17) can be written
-~ ,u‘T
P= Ac'Kz-i- BCKZ- _.h_w;z_
ik(1-y KD,

(6.19)
The upper boundary condition requires p --> 0,
which implies B=0. After applying the lower
boundary condition (6.18), the solution in the
Fourier space can be obtained

ﬁ

12 -
{ [l (EY4/2)(1-YK) ] 'K?-e"d‘(}
Pka sz) Roik+(E2/2)K

(6.20)
Other variables are related to p by the following
relationships:

W=-Py+q U=-Py V=Py

2
C=VHP’ =R, (Pxzz- 92>
(6.21)

where { and 6 are the vertical component of relative
vorticity and the horizontal divergence, respectively.
The vertical velocity in the Fourier space can then be
obtained by using Egs. (6.20) and (6.21).

Again, we assume a bell-shaped warm region
associated with low-level sensible heating,

T'(x,y)= _;3&

(*b7+1)
(6.22)
To a first approximation, the diabatic heating rate

associated with the above specified warm region in a

basic flow (U) can be specified as
qQ' _ DB aT'
Cp

(6.23)

As discussed in Stern and Malkus (1953), the
diabatic heating rate is mainly created and maintained
by horizontal temperature advection due to small-
scale turbulence, and is not altered significantly by
convective motions of the scale of w'. Thus, the last
term of the above equation may be neglected. After
making the Fourier transform of Eq. (6.22) and the
approximated form of Eq. (6.23), we have

B (k, ) = iTeke /21
(6.24)
Substituting Eq.(6.24) into Egs. (6.20) and (621) in

Fourier space, the variables E, w,u,V, {, and & can
be solved analytically in the Fourier space and then
transformed back to the physical space numerically
using a Fast Fourier transform (FFT) algorithm.
Figure 43 shows a case of quasi-geostrophic
inviscid flow over an isolated warm region which
has a maximum temperature and a half-width of 7.5
and 1, respectively. The basic flow blows from the
left to right. According to Eq. (6.2?;). there exists
heating (cooling) upstream (downstream) of the
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center of the warm region. Both R, and ¥ have a
value of 0.2. The dimensional parameters may be
considered as U=10 ms-1, b=500 km, f=10-4 s-1,

N=0.01 s°1, Hy=1 km, Ho=5 km, and Ts=20 K.
The response of the atmosphere to the heating and
cooling associated with the warm region at z=0.05
(250 m) is an upward (downward) motion upstream
(downstream) of the center of the warm region (Fig.
43a). Upstream (downstream) of the region of
upward (downward) motion, there exists a region of
weak compensating downward (upward) motion. In
fact, the vertical velocity field is in phase with the
diabatic heating. The thermal forcing produces a
region of high buoyancy (less dense) air in the
vicinity of the warm region (Fig. 43b). The
buoynacy is defined as g6'/8o, which then produces
the low pressure region near the surface (Fig. 43c) as
required by the hydrostatic balance. On both
upstream and downstream sides of the region of high
buoyancy and low pressure, there exist regions of
weak low buoyancy and high pressure, respectively.
At this level (z=0.05), the air parcel experiences a
cyclonic circulation near the center of the low
pressure region where there exists a cell of positive
relative vorticity (Fig. 43d and e). Two regions of
weak negative vorticity appear to be on both
upstream and downstream sides of the positive
vorticity. Notice that the relative vorticity reaches a
maximum of about 0.6f, which is relatively high for
the quasi-geostrophic approximation to be valid.

Fig. 43f shows the divergence field at z=0.05, which
has a convergence (divergence) upstream
(downstream) of the center of the warm region. The
divergence field is related to the vertical motion by
the relationship 8=-w.

Fig. 43g and h displays the vertical cross
sections of the vertical velocity and perturbation
pressure along y=0. The vertical velocity field (Fig.
43g) near the warm region center is mainly
dominated by an upward motion upstream followed
by a downward motion. The absolute value of the
vertical velocity increases with height until z=0.2 and
then decreases. Weak compensative downward and
upward motions are found far upstream and
downstream, respectively. The air parcel is lifted
near the center of the warm region and displaced
slightly downward far upstream and downstream.
There exists strong vortex stretching near the center
of the warm region and two regions of weak vortex
compression far upstream and downstream. The
pressure perturbation (Fig. 43h) is almost confined
below the e-folding depth of the heating, i.e. z=0.2.
Near the warm region center, the perturbation
pressure decreases exponentially with height'and
reverses its phase at a level of about z=0.35. The
resulting high pressure is associated with the
compensative divergence at this level, instead of
convergence at the lower level. The amplitude of the
perturbation pressure decays exponentially with
height as also can be detected from the solution,

Fig. 43: Inviscid quasi-geostrophic barotropic flow over a bell-shaped warm region with the maximum
perturbation potential temperature (To) and the half-width (b) of 7.5 and 1, respectively. The parameters
associated with the basic floware: Ro=0.2, y=0.2, E=0. Six horizontal fields at z=0.05 are shown: (a)
vertical velocity, (b) buoyancy , (c) perturbation pressure, (d) relative vorticity, (e) horizontal vector wind,
and (f) divergence. Three cross sections along y=0 are shown: (g) vertical velocity and (h) perturbation
pressure. The thick dashed lines in (a) and () indicate the contour of T=4. Notice that all variables are.
nondimensionalized. (From Lin, 1989a)
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Eq.(6.20).

To investigate the inertial effects, we may
combine Eqs. (6.6)-(6.10) into a single equation for
w,

2 2 2

RyWyggzt Wopt VW= V.

' (6.25)
Making Fourier transforms of the above equation and
Eq. (6.16) gives

2 ~ 2.
& K2 ~ hKke™
W + W=

“RA 1 RE-1L
(6.26)

The general solution of the above equation can be

written
w=A exp(Kz/ (RB2-1))+B exp(-iKz/V (R3k*-1))
hyPK2e#

+ —
PK2+(R2k2-1)
(6.27)
The lower boundary condition requires w=0 at z=0.

2

The solution composes two parts: (a) RX*>1 and

2.2 2
(b) R?,k <1, For ng >1 the upper boundary
condition requires B=0 for allowing the energy to
radiate upward to infinity. Thus, the solution in this
upward propagating wave regime can be obtained

2
5y 2 22 2
K ; ' )
. hy [ KHRED

YK+ RX-1)

5=
for RX*>1 (6.28)

The solution in the other regime (Rél(2 < 1) can be
obtained in a similar way except it requires the
solution to vanish at infinity. As discussed in
Section 2, this regime is called the evanescent wave
regime. The solution reads

12
2
Kl(RE) _ 7y

P
-hy K2 e
Y K- (1 -RED

~~
w=

forRXk%< 1 (6.29)

The other variables can be obtained

b Waa [ B ]
' ’ (6.30)
- RA&Z-il
= p
1RET
| (6.31)
~ RAd+ik-~
v= p
1-RX?
(6.32)
G . -I-IE (A - CV)
) ' (6.33)
{=-K’-iRgkw,
R (6.34)
8 =-RoW,.
(6.35)

Figure 44 shows an example of an inviscid flow
with Ro=1 past an isolated warm region. The
parameters associated with the flow and the diabatic
source/sink are y=1 and To=1.5. The dimensional
parameters may be considered as U=10 ms-1, b=100
km, f=10-4 5’1, N=0.01 s-1, Hy=1 km, Ho=1 km,

and To=4 K. The response of the fluid to the
diabatic heating at z=0.25, corresponding to 2
dimensional height of 250 m, is an upward motion
upstream and near the center of the warm region
followed by a downward motion downstream (Fig.
44a). Compared with the quasi-geostrophic case
(Fig. 43), the major regions of upward and
downward motion are shifted downstream. This can
be explained by the advection effect because the
inertial terms, i.e. the R, terms, play a significant
role in the present case. Even though not shown in
Fig. 44a, there still exists a weak compensative
downward motion associated with the major region
of upward motion (Fig. 44g). The horizontal pattern
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of the vertical velocity is more asymmetric in the
basic wind direction than that in the quasi-
geostrophic case. The buoyancy field (Fig. 44b) is
similar to that of the quasi-geostrophic case, except
there exists a region of high buoyancy (less dense)
air far downstream. The major region of high
buoyancy near the center of the warm region is
mainly produced by the diabatic heating and cooling.
The indirect effect on the buoyancy due to vertical
motion (Eq. (6.11)) is not pronounced at such a low
level because the vertical velocity is weak near the
surface.

The perturbation pressure pattern (Fig.44c) is no
longer similar to the perturbation buoyancy pattem as
that of the quasi-geostrophic case. This is mainly
caused by the vertical propagation of the thermaily
induced inertia-gravity waves. In fact, the pressure
field is almost out of phase with the buoyancy field.
The V-shaped (or U-shaped as used in Smith, 1980)
pattern of the perturbation pressure, also pronounced
in other fields, is an indication of the upward
propagation of energy as shown in a nonrotational
mountain wave problem (Smith, 1980) and in a
nonrotational diabatic heating problem (Lin, 1986a;
Lin and Li, 1988). The group velocity calculation of
Smith can be extended to include the Coriolis force,
which gives the concentrated region of the wave

energy

2 = [ z lz(R%k'z' 1)1;2
k@212

for ngz >1
(6.36)

With no rotation, the above equation reduces to the
formula derived by Smith. With the rotational effect
‘ncluded, the wave energy is still concentrated near
‘he parabola described by the above equation.
dowever, the latus rectum becomes larger compared
10 the nonrotational case. In addition, the above
>quation indicates that only the wave part of the

¥

disturbance contributes to the upward propagation of
the energy. Therefore the V-shape is less
pronounced for a flow with a smaller Rossby
number. Further evidence for upward propagation
of the wave energy is the upstream tilt of the
disturbance as shown in the cross sections at y=0
(Fig. 44g and h). The region of maximum and
minimum perturbations are shifted farther
downstream with height, which indicates that the
wave energy is both propagated upward and
advected downsmeam. The vorticity field indicates
that there exists a negative vorticity center just
upstream of the warm region center followed by a
strong positive vorticity center and a negative
vorticity center far downstream (Fig. 44d). The
significant difference from the quasi-geostrophic case
is that the positive (negative) vorticity is associated
with the high (low) pressure, and not the low (high)
pressure. The positive vorticity is no longer in phase
with the low because the vertical velocity term is as
important as the pressure term in Eq. (6.34) for a
flow with a larger Rossby number. This distinction
has also been made in a study of a low-Froude
number flow over a mesoscale mountain, such as the
Central Mountain Range of Taiwan, by Lin et al.
(1992). In their case, the Taiwan mesolow does not
coincide with the mesovortex. The mesolow is
located on the southeast slope of the mountain, while
the mesovortices are drifting downstream with the
basic wind.

Due to the weaker rotational effect, the vector
wind does not deflect as strongly as for the quasi-
geostrophic case. However, the cyclonic flow
around the region of positive vorticity, not the low
pressure, is still evident in this case (Fig. 44¢). The
divergence field is related to the vertical velocity field
by Eq.(6.35) (Fig. 44f). A region of convergence
near the center of the warm region is accompanied by
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two regions of divergence upstream and
downstream. Fig. 44g and h shows the cross
sections of the vertical velocity and perturbation
pressure along y=0. The major difference from the
quasi-geostrophic case is that the phase tilts upstream
with height. The perturbation pressure field is in
phase with the vertical velocity overall, which
indicates that the wave energy is propagated upward
because the vertical energy flux, f P'W'dx, is
positive (Eliassen and Palm, 1960; Jones, 1967).
With the Ekman friction included in the quasi-
geostrophic flow, there are three significant features
of the resulting disturbance: (i) an upstream-
downstream asymmetry, (ii) an upstream phase tilt in
the lower layer, and (iii) weakening of the positive
vorticity and the low (Lin, 1989a). The upstream-

downstream asymmetry is similar to that of Buzzi .

and Tibaldi (1977) for a quasi-geostrophic flow over
a mountain. The low-level upstream phase tilt is
consistent with that of Smagorinsky (1953) who
investigated the response of a quasi-geostrophic flow
over a diabatic source with B effects and baroclinicity
included. These two phenomena are explained by
the following argument. At z=0, the maximum
positive vorticity is located at the warm region center
as shown in Fig. 43. According to the lower
boundary condition, Eq.(6.13), associated with the
Ekman friction, the maximum upward motion will be
shifted from the upstream in the interior fluid to the
warm region center at the top of Ekman layer (z=0).
Thus, there exists an upstream phase tilt with height
in the lower layer. The disturbance associated with
the upward motion is then advected by the basic
wind, which gives the asymmetric pattern of the
vertical velocity.

6.2 Baroclinic Flow
The development of this theory of coastal

cyclogenesis is analogous to the development of the
theory of lee cyclogenesis proposed by Smith (1984,
1986). Both quasi-geostrophic and semigeostrophic
flow over a low-level diabatic heat source have been
investigated by Lin (1989b, 1990a) and will be
reviewed below.

For an inviscid Boussinesq fluid on an f-plane
with constant basic state stratification, the linearized
quasi-geostrophic potential vorticity equation and the
thermodynamic equation applied at the surface can be
written (e.g., see Smith, 1984; Bannon, 1986)

G+ v2) (i + o) = (e,

¢y T N2
(6.37)

(24' Ui-i-Vg) e' + u'zex + V‘gey + wlez

ot ax
= _92 '
To) q

(6.38)
where subscripts denote partial differentiation. With
the hydrostatic, geostrophic wind and thermal wind
equations,

8'=(0/gp )P,
(6.39)
u',=(Up)p'y Vv'g=(l/ip) p'x,
(6.40)
U, = (-g/ £6) ey: V-z = (g/f’ﬂo) ex'
(6.41)
Eg. (6.38) becomes

a a a 1 1 ' 2.0
(a“t*'Uﬁ*"é';) Pz - (Uzp'x + Vap'y) + poN2w

at z=0. (6.42)
The baroclinic waves associated with the system of
Egs. (6.37) and (6.42) are dispersive waves with
real frequencies (Smith, 1984), which can propagate
along the surface of the earth in the presence of a
ho;izontal temperature gradient.
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The deformation depth or Rossby depth of the
flow, Ho=fL/N, has a value of about 10 km for a
flow with f=104 s-1, L (horizontal scale) = 1000
km, and N=10-2 51, Compared with the
deformation depth, the thickness of the diabatic
heating (~1km) is very small. In this way, we may
assume that there exists no interior thermal forcing as
a first approximation. Using the shallow heating
assumption, Eq. (6.37) reduces to the homogeneous
form,

2 f 2
Vup'+ @) P'z=0
‘ (6.43)

In deriving the above equation, we have assumed
that there exists no initial potential vorticity anomaly.
Making the Fourier transform of the above equation
and applying the upper boundary condition, which
requires the solution to be bounded at infinity, and
the lower boundary condition, which requires w=0 at
z=0 for a flow over a flat surface, we obtain

~ T U, Vo y1a _ (_8Pof -~
Be + [11<(Uo+ﬁﬁ)+ll(vo+—ﬂi—[ql)]p = TN )a

(6.44)
where Ug and V,, are the surface wind speeds in the
x and y directions, respectively. The vertical shears,
U, and V3, are assumed to be constant.

The above equation is similar to Eq. (4.1) of
Smith (1984) except for the forcing term. Similar to
the uniform flow case (see Sec. 6.1), the heating rate
may be approximated by

@' (x9) = ¢ (U + Vogp) Tx9)
(6.45)
Making the Fourier transform of the above equation
and a straightforward manipulation of Eq. (4.1) of
Smith (1984) and Eq. (6.44), we obtain a
relationship between the orographic forcing and the
thermal forcing, namely,

huxy) = (—22) T'(x.)
TN
' (6.46)

where hp(x,y) is the shape of the mountain. The
above equation means that the response of a quasi-
geostrophic flow over a stationary cold (warm)
region is equivalent to that over 2 mountain (valley) if
the forcings are of the same shape. According to the
above equation, a cold region with potential
temperature anomaly of 5.3 K corresponds to a
mountain with height of 2 km if To=260 K and
N=0.01 s-1. This analogy has also been illustrated
by Smith (1979, Fig. 15) in which an anticyclonic
circulation can be produced by a quasi-geostrophic
flow over either a2 mountain or a cold dome.

The solution of Eq. (6.44) can be found by
assuming that there exists no pressure perturbation
initially,

0 G (1o e MKH!

k,1,z,t) = (
p( C T NIK| B ,
(6.47)
where
: fU z - sz
B= ‘-k(Uo'l'ﬁ‘T('[) + ll(vo"ﬁﬂ}
(6.48)

The perturbation pressure in the physical domain is
then recovered by the inverse Fourier transform. Eqg.
(6.47) describes the formation of a baroclinic cyclone
if there exists a level at which the basic wind reverses
direction as will be discussed later. This is similar to
the lee cyclogenesis problem as studied in
Smith(1984, 1986). We thus propose this
mechanism as a possible prototype of East Coast
cyclogenesis. The problem is also similar to the
Eady model (Eady, 1949) except that the rigid lid
assumption is removed. In this way, the baroclinic
instability of the Eady type is avoided (e.g.,
Pedlosky, 1982).
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a. Quasi-geostrophic baroclinic wave Igenera:fon by
two-dimensional diabatic heating

For a two-dimensional quasi-geostrophic flow
with diabatic heating, Eq. (6.47) reduces to

a) = (8P [ 300 (L-eBgenat
P(x.z,t}-(cp.r oN'J; B elkxdk
(6.49)
where
B = ik(Uo+HgU,); H=f/Nk|
(6.50)

As discussed in Smith (1984), the integral in Eq.
(6.49) will go 10 zero (p-->0) as [x|-->e= due to the
rapid oscillation of the exp(ikx) term if the integrand
is well behaved according to the Riemann-Lebesque
lemma (Lighthill, 1970). This implies that the
disturbance will remain locally in the vicinity of the
diabatic heat source/sink. The baroclinic waves can
only be generated if the denominator of the integrand
vanishes for some value of k. This is possible if Uy
and U; have opposile signs, i.e. if there exists a
back-sheared basic flow and a wind reversal level
(k*| = f/NH* = - fU;/NU,). "An asymptotic
solution for large x and t, similar to that of Smith
(1986), can be obtained, which describes a train of
baroclinic waves extending from the center of the
diabatic heating to the moving point x=Uqt.

A bell-shaped heat source/sink in the x direction with
a horizontal scale of b, such as that of Eq. (4.3) can
be used. A Fast Fourier Transform (FFT) algorithm
is then employed to obtain the solution in physical
space.

Figure 45 shows an example of a baroclinic
quasi-geostrophic flow over a diabatic cooling with a
cooling rate of -0.24 J(kg-s)-1 and a half-width of 75
km. The basic wind is assumed to be of the form
U(z)=(-10+ 0.005z) ms-l. This gives a wind
reversal level of 2 km. The grid interval and the
number of grid points in the x direction used in the
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Fig. 45: Two-dimensional baroclinic waves forced
by diabatic cooling with a cooling rate of -0.24 ]
(kg-s)-! and half-width of 75 km. The solution
is given by Eq. (6.49) with U(z)=(-10+0.005z)
ms-1. Other parameters are: f=10-4 s{!, N=10-2
571, To=260 K, and po=1 kg m-3. Six levels and
four time steps of perturbation pressures are
shown: (a) 6 h, (b) 12 h, (c) 18 h, and (d) 24 h.
The wind reversal level is located at 2 km
(labeled by z=H). The location of an air parcel,
originating at x=0 and moving with the group
velocity (cg=Uo=-10 ms-1) is indicated by a dot
at each time step. The arrows in (a) illustrate the
direction of the basic wind. The dashed line in
(d) is a constant phase line. (From Lin, 1989b)

calculation are 30 km and 128, respectively. After 6
hr (Fig. 45a), there exists a region of perturbatiorn:
high pressure near the center of diabatic cooling
(x=0). The high is associated hydrostatically with
cold air near the cooling center. On the downstream
side (x<0), there exists a wider region of weak low-
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pressure perturbation. The disturbance decays
exponentially with height as indicated by Eq. (6.49).
After 12 hr (Fig. 45b), the perturbation high
pressure strengthens to a value of about 3.4 mb,
while the perturbation low pressure deepens gently to
a value of about -1.5 mb. After 18 hr (Fig. 45¢), the
high pressure deepens to about 3.6 mb, while the
low pressure increases to about -3.8 mb. Afier 24 hr
(Fig. 45d), the high pressure weakens to about 3.2
mb, while the low pressure keeps strengthening to a
value of -5.6 mb. The upshear vertical tilt of the
trough is evidence of the baroclinic wave generated
by the diabatic heating. This allows the heat flux to
be transported northward meridionally (in the
positive y direction) (e.g., see Gill, 1982). The
phase line of the trough becomes more vertical at
later stage (not shown). Once the available potential
energy (APE) stored in the basic baroclinic current
has been transferred to the forced baroclinic waves,
the phase line will become vertical. For the present
case with H=2 km (wind reversal level), the theory
predicts a reasonable wavelength of 1250 km
(A=2n/k*=2nNH/f) of the baroclinic wave with a
dipolar structure.

Figure 46 shows the time evolution of the
absolute minimum and maximum surface
perturbation pressures for the case of Fig. 45. The
perturbation high pressure grows rather rapidly in the
early stage, reaches its maximum of 3.65 mb at 17
hr, and then decays gradually afterwards. The
perturbation low pressure develops rather slowly in
the first 12 hr, then deepens much more rapidly at
later stage. The rapid development of the
perturbation low pressure after 12 hr can be
explained by a group velocity argument. The group
velocity of the baroclinic wave (Smith, 1984, 1986)
is
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Fig. 46: Time evolution of absolute minimum (a)
and maximum (b) surface perturbation pressures
for the case of Fig. 45.

where H=f/NIkl and U(z)=Up+U,z. The above
equation reduces to cgz=Uj, for a two-dimensional
wave (Smith, 1984). As indicated in Eq. (6.45), a
moving airstream over the diabatic cooling,
q'(x)=Qo/T1+(x/b)2], corresponds to that over a cold
region extending from x=0 t0 -e=, T(x)=(Qob/cpUo)
tan"1(x/b). This is analogous to an airflow over a flat
plain from a plateau, according to Eg. (6.46).
Therefore, the fluid is trying to form a high in the
vicinity of the cooling center (x=0) and a first trongh
downstream (x<0). For example, consider an air
parcel originating at x=0 near the surface (denoted by
a dot in Fig. 45). It will take 12 hr to advect to 432
km (i.c., x=-432 km in the figure) downstream at the
group velocity cg=Ug=-10 ms™}, which is about the
region of the developing low (Fig. 45b). During the
12 to 24 hr period, the air parcel reaches the region
of the developing low. Thus the low deepens much
more rapidly at this stage (Figs. 45¢ and 46). Like
the perturbation high pressure near the cooling
center, the perturbation low pressure will reach a
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minimum and increase its amplitude afterwards since
the air parcel originating at x=0 near the surface will
pass through the region of the well-developed low.
Thus we may conclude that the diabatic heating plays
an important role in converting the available potential
energy stored in the baroclinic current to the
thermally forced baroclinic wave.

To show the importance of the baroclinicity and
the existence of the wind-reversal level in the above
cyclogenesis mechanism, we perform four similar
cases to the one outlined above, except that now the
baroclinicity and wind-reversal level do not exist
(Fig. 47). For quasi-geostrophic, baroclinic flow
over the diabatic heat source with forward shear
(i.e., no wind reversal, Figs. 47a and b), the
disturbance is.much weaker compared with the

corresponding cases with wind reversal (Fig. 45). -

This indicates that forward vertical wind shear tends
to suppress the development of the low or high
pressure. For quasi-geostrophic, barotropic flow
‘over the diabatic heating (cooling) region, a
perturbation low (high) of -5 mb (+5 mb) is
produced after 24 hr (Fig. 47¢ and d). The surface
low (high) produced by the diabatic heating (cooling)
is located about 400 km downstream of the heating
(cooling) center. Notice that a moving airstream over
the diabatic heating corresponds to that over a warm
region extending from x=0 to -, but with the
gradient concentrated in the region of the diabatic
heating, for Fig. 47c. The low pressure at the
surface is produced by the less dense air above the
warm region in a barotropic flow as required by the
hydrostatic equation. Thus the low pressure forms
on the warm side or the downstream side of the
diabatic heating center (x=0). The results are
consistent with the quasi-geostrophic flow over a
warm region as discussed earlier in Section 6.1.
The response is quite different from the low-high
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Fig. 47: Six levels of perturbation pressures after 24
h are shown for four cases: (a) Qu=0.24 J (kg-
s)-1, U(z)=(-10-0.005z) ms'! (forward shear
with heating), (b) same as (a) except with Qg=-
0.24 J (kg-s)! (forward shear with cooling), (c)
Qo=0.24 J (kg-s)-! (no shear with heating), and
(d) same as (c) except with Qo=-0.24 J (kg-s)1
(no shear with cooling). The heating function is
same as that prescribed in Fig. 45.

couplet produced by diabatic heating in a
backsheared baroclinic flow.

b. Three-Dimensional Response

Some interesting discussions (Bannon, 1990;
Lin, 1990b) have been brought up after the
publication of the above proposed cyclogenesis
mechanism by Lin (1989b). The major comments of
Bannon on Lin's work are: (a) the forcing scale is
too small to use the quasi-geostrophic
approximation, and (b) the vertical distribution of the
surface heating should be included. Itis discussed in
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Lin's reply (1990b) to (a) that the heating scale
should be considered to be larger than its half-width
and that the cyclone scale is not directly proportional
to the forcing scale in a transient flow, unlike the
steady state flow over a mountain. In addition, the
quasi-geostrophic approximation is improved in a
subsequent paper (Lin, 1990a) using the geostrophic
momentum approximation in a semigeostrophic
model. For the second comment (b), it is shown by
Lin (1990b) that the contribution of the vertical
distribution of the surface heating does not alter the
low to be a high as claimed in Bannon (1990). In the
following, we will show some recent results of a
continuously stratified baroclinic flow over a
vertically distributed heat source.

Using the geostrophic momentum approximation
(Eliassen, 1962; Hoskins, 1975), the nonlinear
ageostrophic advection of the geostrophic wind can
be included in the model. The governing equaitons
in the geostrophic space may be written

d § o k0 i 5.8
| U= Mg+ (vwﬁ; Mx)57] Qe

2
. gPof 2) qz
cpToN
(6.52)
H'zt+(Ua 1 n'y)n'zx"'(vo";rl‘x)n'zy'uzn‘x
Pof Pof
-V 1-[! N‘Z tio gpo '
Ly tPoN“W (Cp__To) q
at Z=0,Zt (6.53)

where

Q= VAT + L1172
N2

(6.54a)

X=x+ VTg
' (6.54b)

s O
L =l (6.54¢)

Z=2z, . ) (6.54d)

T=t (6.34¢)

I=p +E_’i(u§ +v3)
) ' (6.546)
The potential vorticity is then equal t0 Qg/pof.
Similar to that in Lin (1990a), the pressure in the
geostrophic space is separated into a basic part and a
disturbance part, i.e. II(T,X,Y,Z) =
[1(Z)+I1'(T.X,Y,Z). The basic part is assumed to

satisfy the hydrostatic balance,
J ol g6
Po9Z g,

(6.55)
The lower boundary condition with the mountain and
Ekman friction included may be written as

w(T,X.,Y) = [% + (Ug+ug) % + (Votvg) aiY]

h(TXY) + ﬁ% Vi IT(T,X,Y)
P at Z=0

and the upper boundary condition at the imposed
rigid lid is

wi(T,X,Y)=0

at Z=Zy (6.56)

In the above equation, we have implemented a simple
Ekman layer boundary condition as described earlier
in Section 6.2. The Ekman number corresponds to
v/fHo2 where H, is a height scale. We then
substitute Eq. (6.56) into Eq. (6.53) for the lower
boundary condition. The system of Egs. (6.52) and
(6.53) can be solved numerically by the leapfrog and
the second-order center-difference schemes applied
to the time and space derivatives, respectively. The
pressure perturbation in the geostrophic space IT' can
be solved from Eq.(6.54a) in the Fourier space and
transformed back to the geostrophic space
numerically by an FFT algorithm. The variables in
the physical space are then recovered by applying the
inverse geostrophic transformation based on Eg.
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(6.54b-f). In the following, we have used the To check the model, we perform a simulation of
following numerical parameters: At=10 min, baroclinic flow over a bell-shaped mountain. The
Ax=Ay=60 km. The total grid numbers are 64 in mountain shape is assumed to be

both x and y directions. As mentioned earlier, a _ he

bounded upper boundary condition is applied at z=10 Bm(X,y) = (x¥a2 + y*/ad+1 P2

km. A periodic lateral boundary condition is ’ (6.57)
assumed implicitly by the use of a FFT algorithm. where ax and ay are the horizontal scales of the
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Fig. 48: Inviscid semi-geostrophic continuously stratified baroclinic flow over a bell-shaped mountain
with ho=1.5 km and ax=ay=250 km. The basic wind is U(z)=(-15+0.004z) ms-! and V(z)=0 ms-!, which
blows from east at the surface and reverses its direction at z=3.75 km. Other parameters are: f=10-%s-1,
N=0.01 s-1, Ty=260 K, and py=1 kg m-3. The dashed curve in (a) denotes the terrain contour of 360 m.| Four
horizontal fields at the surface after 24 h are shown: (a) perturbation pressure, (b) perturbation
potential temperature, (c) geostrophic relative vorticity, and (d) vector wind. Vertical cross
sections of perturbation pressure and potential temperature along y=0 are shown in (e) and (f), respectively.
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mountain in the x and y directions, respectively. The
mountain height (ho) and the horizontal scale (ay =ay
in this case) of the orography are assumed to be 1.5
km and 250 km, respectively. The basic wind is
assumed to be U(z)=(-15+0.004z) ms'! and V(2)=0
ms-1, which blows from east at the surface and
reverses its direction at z=3.75 km. The Coriolis
parameter is assumed to be 104 s-1. This case is
identical to that of Chen and Smith (1987) except that
the basic wind is incident from the east-west
direction instead of the north-south direction. Fig.
48 shows the perturbation pressure, perturbation
potential temperature, geostrophic vorticity,
geostrophic vector wind fields at the surface and
cross sections of perturbation pressure and
perturbation potential temperature along y=0 after 24
h. The basic features of the semigeostrophic model
results are similar to the theoretical results of Smith
(1984, 1986) and Chen and Smith (1987) and the
nonlinear primitive equation model results of Lin and
Perkey (1989). In the vicinity of the mountain top,
an anticyclonic flow (Fig. 48d) develops, which is
associated with the mountain-induced high pressure
(Fig. 48a). The maximum perturbation pressure is
22 mb. The mountain high is formed by the
subgeostrophic flow of fluid particles approaching
the mountain. Fluid particles are deflected slightly to
the left upstream of the mountain if one faces
downstream. This anticyclonic circulation is also
shown in the geostrophic perturbation vorticity field
(Fig. 48c). A pool of relatively cold air is associated
with this mountain high (Fig. 48b). The perturbation
temperature has a minimum of -4.0 K. The low,
which has been advected by the mountain high, is
formed in the northwest corner to the lee of the
mountain (Fig. 48a). The minimum value of the
perturbation pressure is 3.6 K. A similar pattern of
positive perturbation temperature (warming) (Fig.

48b) is associated with the low. The perturbation
temperature reaches a maximum value of 3.5 K.
Notice that this pool of warm air is a combined effect
of warm advection and downslope adiabatic
warming. The cross sections of perturbation
pressure and potential temperature (Fig. 48e and f)
indicate that the forced baroclinic wave is shallow.
Unlike the case of Lin and Perkey (1989), the
blocking effect is not pronounced in this case. This
is due to the combined effect of a smaller mountain
used and the neglect of the nonlinear ageostrophic
advection of the ageostrophic wind.

Fig. 49 shows the perturbation pressure,
perturbation potential temperature, geostrophic
vorticity, and geostrophic vector wind fields at the
surface and cross sections of perturbation pressure
and perturbation potential temperature along y=0
after 24 h of a continuously stratified baroclinic flow
over a bell-shaped heat source with circular contours.
The diabatic heating function is prescribed by

Q
K20 + YO+ 117

qxy) =

(6.58)
where bx and by are the horizontal scales of the heat
source in the x and y directions, respectively. The .
maximum heating rate (Qo) and the horizontal scale
(bx =by in this case) of the heat source are assumed
to be 0.24 J/kg-s and 150 km, respectively. The
heating decreases with height exponentially with an
e-folding value of 1.5 km. The basic wind is
assumed to be U(z)=(-10+0.005z) ms'! and V(z)=0
ms-1, which blows from the east at the surface and
reverses its direction at z=2 km. The Rossby
number associated with this flow is about 0.33,
which is estimated by Uo/2fbx with Up=10 ms-1,
f=104 s°1, and bx =by=150 km. Notice that we have
used the whole width (2by ) for the horizontal scale
of the bell-shaped heat source, instead of the half-
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Fig. 49: Same as Fig. 48 except for flow over a bell-

X (KM]

shaped heating region with Qo=0.24 J (kg-s)-! and

bx=by=150 km. The heating rate of 0.04 J (kg-s)-! is denoted by the dashed curve in (a). The basic wind is
U(2)=(-10+0.005z) ms! and V(2)=0 ms-1, which blows from east at the surface and reverses its direction
at z=2 km. The Rossby number associated with this flow is about 0.33.

width. Hoskins (1975) places a loose upper limit on
the Rossby number at Ro=0.5 for use in semi-
geostrophic theory. Therefore, the geostrophic
momentum approximation may still be adquate for
describing the flow in the present case. In response
1o this isolated diabatic heating, a region of low
pressure with a minimum of about -3.19 mb forms in
the vicinity of the heating region after 24 hr (Fig.
1041, There exists a much smaller region of

relatively weak high pressure downstream of the
concentrated heating region. Associated with the
perturbation low and high pressures are more
compact regions of warm and cold air, respectively
(Fig. 49b). This is required by the hydrostatic
equation. The low-high couplet associated with the
forced baroclinic wave is located in the vicinity of the
forcing region. The disturbance remains locally in
the vicinity of the thermal forcing because the
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thermally forced baroclinic wave has a zero phase
speed (Smith, 1984). At the surface, the fluid parcel
experiences a cyclonic circulation near the center of
the low pressure region where there exists a cell of
positive relative vorticity (Fig. 49c). A region of
very weak negative vorticity is generated upstream of
the heating, while a wider region of stronger negative
vorticity is generated downstream of the heating. An
inverted trough forms near the heating center (Fig.
494d), which is often observed to form along the
Carolina coast in many cyclogenesis events. Both
vertical cross sections of pressure and temperature
fields (Fig. 49¢ and f) indicate that the disturbance is
confined in a shallow layer. The present results are
consistent with those with the assumption of shallow
heating (Lin, 1989b, 1990a) except that the
magnitude of the disturbance is weaker.
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