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ABSTRACT

The response of a two-dimensional, stably stratified shear flow to diabatic cooling, which represents the
evaporative cooling of falling precipitation in the subcloud layer, is examined using both a linear analytical
theory and a nonlinear numerical model. The ambient wind is allowed to reverse its direction at a certain height
and the cooling is specified from the surface to a height below the wind reversal level.

From a scale analysis of the governing equations, a nonlinearity factor of the thermally induced finite-amplitude
wave, g0ul/(c, ToUo>N), is found. From a scale analysis of the linear system, it is shown that the wind shear
can modify the condition in which the upstream propagation of the density current is opposed by the ambient
wind. When the shear and the basic wind are of opposite sign, small basic wind is enough to prevent the upstream
propagation of the density current. This is because part of the cooling is used to compensate the positive vorticity
associated with the positive wind shear. Therefore, the effective cooling rate, or the speed of the density current,
becomes smaller than that in the uniform wind case. .

In the nonlinear numerical simulations, it is found that the response of the atmosphere to a steady cooling
in a shear flow may be categorized as either a stationary cold pool or a density current, depending upon the
strength of the effective cooling. For a strong shear flow, the cold pool is stationary with respect to the upstream
flow becduse most of the cooling is used to compensate the positive vorticity associated with the positive wind
shear. In this case, the response is similar to the linear steady-state case. For a weak shear flow, the cold pool is
able to propagate upstream because the effective coolmg, which increases with time, is strong enough to push
the outflow against the basic wind. From the comparison of linear and nonlinear numerical model simulations,
it is found that the nonlinearity appears to reduce the wave disturbance below the critical height and above the

VoL. 48, No. 23

cooling top, while it tends to strengthen the density current or cold poo! near the surface.

1. Introduction

The cold air outflow produced by the evaporation
of falling precipitation in the subcloud layer has been
regarded as one of the important mechanisms for con-
vective storm dynamics. Many observational and nu-
merical studies have indicated that the cold air outflow
from thunderstorms can trigger and maintain convec-
tive storms (e.g., Charba 1974; Mitchell and Hovermale
1977; Matthews 1981; Thorpe et al. 1982; Seitter 1986;
Droegemeier and Wilhelmson 1987). The leading edge
of the outflow, called a gust front, tends to lift air parcels
ahead of it and generate deep convection under favor-
able conditions.

Environmental wind shear is a crucial dynamic fac-
tor that can either enhance or suppress deep convec-
tion. Vertical wind shear has long been observed as an
important factor in the convective storm dynamics
(Newton 1950; Newton and Newton 1959; Pastushkov
1975; Ogura and Liou 1980). Effects of vertical wind
shear and rain-produced cold pools on the maintenance
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and generatlon of long—hved convective systems have
been a main research topic in the numerical modeling
studies (e.g., Thorpe et al. 1982; Weisman and Kiemp
1982; Rotunno et al. 1988; Weisman et al. 1988; Fovell
and Ogura 1989). Thorpe et al. (1982) proposed that
a strong low-level wind shear can prevent outflow from
moving away from convective cells, thus, providing a
favorable condition for long-lived convective systems.
Rotunno et al. (1988) suggested that when the cold
pool is balanced by the wind shear, the circulation in-
duced by a cold pool trying to spread downshear is
opposed by the wind shear and a deep penetration may
take place. Fovell and Ogura (1989) showed that in
multicellular storms wind shear is linearly proportional
to the density current speed for a large value of wind
shear. In studies pursuing the dynamical similarlity be-
tween a laboratory-produced density current and a
thunderstorm outflow, the vertical shear of the basic
flow has been ignored. Recently, Droegemeier and
Wilhelmson (1985a,b) investigated the effects of ver-
tical wind shear on convective cloud formation using
a three-dimensional numerical model. They found that
the vertical wind shear controls characteristics of the
cloud forming along an outflow collision line.

In theoretical studies, the evaporative cooling in the
subcloud layer associated with the thunderstorm
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downdraft is often specified by a local heat sink. Thorpe
etal. (1980) investigated the dynamics of the downdraft
using a two-dimensional steady-state analytical model
and a nonlinear numerical model with a specified
cooling. Several authors (e.g., Smith and Lin 1982;
Lin and Smith 1986; Raymond 1986) have studied
linear responses of a stratified atmosphere to a local
heat source or sink in a uniform environmental flow.
These theoretical studies pointed out that the response
of the atmosphere to a specified heating or cooling can
be characterized by a thermally induced Froude num-
ber, U/Nd, where d is the heating or cooling depth.
This dependency of the flow response on the Froude
number was also explained in terms of group velocity
by Bretherton (1988). Recently, Raymond and Ro-
tunno (1989) studied the response of a stratified fluid
to a specified cooling in a uniform flow using a non-
linear numerical model. They found that the flow can
be characterized by two nondimensional parameters
that combine three types of speed: basic wind speed,
horizontal speed of the dominant gravity wave, and
upstream propagation speed of the density current.
They concluded that in a stably stratified boundary
layer, the response of the atmosphere to cooling resem-
bles gravity waves rather than a density current, except
when the cooling is strong enough to produce faster
outflow speed than gravity waves. As mentioned above,
the vertical wind shear may play an important role in
the initiation and/or maintenance of mesoscale con-
vective systems. Therefore, it is important to extend
these types of studies to include the vertical wind shear.

It is often observed in midlatitude squall lines that
a level exists at which the basic wind normal to the
line is equal to the propagation speed of the moving
system. This level is often referred to as the critical
level. Observations by Ogura and Liou (1980) indicate
that a typical midlatitude squall line exhibits a critical
level near 6 km. Climatological studies by Bluestein
and Jain (1985) and Wyss and Emanuel (1988) also
have shown that most midlatitude squall lines have a
critical level near 6 km. In the simulation of midlatitude
squall lines using a wave-CISK model, Raymond
(1984) used a linear shear with a critical level for the
downshear mode. The linear response of a stably strat-
ified atmosphere to a local heating in a constant shear
flow with a critical level has been investigated by Lin
(1987).and Lin and Li (1988). They found that the
low-level vertical velocity is strongly dependent upon
the vertical wind shear and heating depth. In a linear
theory, Booker and Bretherton (1967) found that when
an internal gravity wave approaches a critical level,
most of the wave energy is absorbed there and only a
small amount of wave energy can be transmitted if the
Richardson number of the basic flow is larger than one-
fourth. Using a nonlinear model, Breeding (1972)
showed that for a relatively small Rxchardson number
a considerable amount of the incident wave is reflected,
while for a large Richardson number, the response is
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similar to that in a linear case. If the incident wave is
in phase with the reflected wave, wave resonance is
possible in the lower layer. It remains unclear how the
cooling-induced nonlinear wave behaves if a critical
level exists. In addition, one should examine whether
there are any waves being reflected from the top
boundary of the model.

The purpose of this study is to investigate the effects
of diabatic cooling in a two-dimensional shear flow
with a critical level using both a linear analytical theory
and a nonlinear numerical model. In section 2, the
governing equations are presented and the nonlinearity
parameter of thermally induced finite-amplitude waves
is discussed. In section 3, linear steady-state solutions
and a condition for which the density current is able
to propagate upstream against the wind shear are ob-
tained. The numerical model description and results
with different wind shears are discussed in section 4.
In addition, nonlinear effects of a critical level are
compared with the wave-breaking theory in a corre-
sponding mountain-wave problem. Summary and
conclusions are presented in the last section.

2. Governing equations

The governing equations of a two-dimensional, hy-
drostatic, Boussinesq, nonrotating flow can be written
as

u +(U+wu, +wu, + Uyw+ 7, =0, (1)
w,=b, (2)

b+ (U u)b, + wh, + N*w = gQ/(¢,To), (3)
U, +w, =0, 4)

where 1 and w are the perturbation horizontal and ver-
tical wind velocities, w is the kinematic pressure per-
turbation (p/pg), b the buoyancy perturbation, U the
horizontal basic wind, NV the Brunt-V4iisili frequency,
g the gravitational acceleration, ¢, the specific heat ca-
pacity at constant pressure, and T a constant reference
temperature, The Q represents diabatic cooling, which
is assumed to have a form of Q(x, z) = Qo f(x)h(z),
where Qy is the amplitude of the cooling rate and f( x)
and h(z) are the distribution functions of the cooling

in the horizontal and vertical. In this study, N is as-
sumed to be constant and U is given by
U(z) = =Up + az, (5)

where o (=U,/H,) is the constant wind shear. Here
Uy is the magnitude of the basic flow at the surface and
H_ is the wind reversal height. Equations (1)-(4) can
be combined into two prognostic equations of vorticity
and buoyancy,

Qo + U,y + by (6)

(7)

—J(p, 0::) =0
b, + Ub, — No, — J(o, b) = gQ/ (¢, To),
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where ¢ is the streamfunction defined by ¢, = —w, ¢,
= u. Notice that ¢, is the vorticity under the hydro-
static approximation. The symbol J represents the Ja-
cobian defined by J(A4, B) = A.B; — A.B,. We may
introduce the following nondimensional variables;

t=(Up/Dt, X=x/l, Z=(N/Up)z,
U=U/Us, &= 1[c,ToN*/(gQo])]e
b = [¢,ToUs/(8QoD)1b, O = f(x)h(2),
H.=NH,/U,

where / is the horizontal length of the cooling. After
nondimensionalization, Eqgs. (6) and (7) become (the
tildes are dropped in the rest of this section and section
3)

Pzz + Ugzex + bx — (0, ¢2:) = 0, (8)
b+ Uby— ox— pJ(p, )=Q, (9)

where u is defined by
= 8Qul/(c, ToUo*N). (10)

The u represents the nonlinearity of thermally induced
waves. In fact, u can be interpreted as a scale ratio of
the horizontal velocity perturbation to the basic wind.
Equation (10) indicates that the amplitude of the wave
is proportional to the cooling rate and the horizontal
cooling length, and inversely proportional to the square
of the surface wind speed and the Brunt-Viisili fre-
quency. Many theoretical and numerical studies have
investigated nonlinearity factors in mountain-wave
problems (Clark and Peltier 1977; Klemp and Lilly
1978; Peltier and Clark 1979; Barcilon 1985). How-
ever, no similar studies have been made for finite-am-
plitude waves induced by thermal forcing. For moun-
tain waves with a mountain height of h, U,/Nh
(Froude number) has been proposed as a control pa-
rameter for wave amplitude. Smith and Lin (1982)
showed that the amplitude of thermally induced waves,
relative to the mountain waves, is determined by a
nondimensional parameter gQol/(c, ToUo> Nh) for a
linear system with uniform flow. Notice that Qy has a
different unit in Smith and Lin because the heating is
concentrated at a certain level instead of distributed in
a layer. They found that for a typical mountain height
and heating rate, the amplitude of thermally induced
waves may exceed that of orographically induced
waves.

3. Linear analytical solutions

Under the assumptions of steady-state and small-
amplitude perturbations, Egs. (8) and (9) can be re-
duced to a single equation in ¢ (all variables are non-
dimensionalized ):

U2¢zzx+‘Px=_Q- (11)
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After making the one-sided Fourier transform in x
(— k), the above equation becomes

U%p.. + ¢ = iQ/k. (12)
The homogeneous part of the above equation is the
Taylor-Goldstein equation. The solutions with a dia-
batic heating have been obtained by Lin (1987). Lin’s
solution has also been used as the initial condition for
simulations of moist convection by Crook and Mon-
crieff (1988). The diabatic cooling, which represents
the evaporative cooling of falling precipitation, is as-
sumed to have the form

ai’*/(@? + x) — aay/(a;? + x?),
O(x,z2) =

0, for z=d,

O0<z<d

(13)

for

where a; and d denote the half-width of the bell-shaped
function and the cooling depth, respectively. The cool-
ing depth (d) is assumed to be smaller than the wind
reversal height (H,). The second term with a, in Eq.
(13) is necessary to avoid the net cooling in an inviscid
steady-state problem (Smith and Lin 1982; Bretherton
1988). Here, we have nondimensionalized a,, a,, and
x by /. The structures of the cooling and the basic wind
are sketched in Fig. 1. The cooling is concentrated in
the shaded region. Making the Fourier transform of
Eq. (13) and substituting it into Eq. (12) yields

for 0<z<d

(14)

—ay(e7k — ™),

25 4+ 6=
Ut & [0, for z=d.
Notice that the nondimensional form of Eq. (5) is U(z)
= —1 + z/H,. The wavenumber k is always positive
since we have used a one-sided Fourier transform. Fol-
lowing the procedure of Lin ( 1987), we obtain the so-
lution,

FIG. 1. Structures of basic horizontal wind and diabatic cooling
used in this study. The symbols d and H, represent the cooling depth
and the wind reversal height, respectively. The cooling is concentrated
in the shaded region.
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@(x, z) = [s:{cosX] — cosX2
+ 5(sinX1 ~ sinX2)} — 55 cosX3]TNXI
— [s:{sinX1 — sinX2 — s,(cosX1 ~ cosX2)}
— 53 sinX3]LNXI + TNXI,
for

e(x, 2) = [5{cosX1 + cosX2

0<z<d (l5a)

+ 52(sinX1 + sinX2)} — 53 cosX3]TNXI
— [s1{sinX1 — sinX2 — s5,(cosX1 — cosX2)}
— 53 sinX3]LNXI, d<z< H, (15b)
o(x, z) = e ™[5 {s2(cosX1 — cosX2)
—sinX1 + sinX2} + 53 sinX3] TNXI
— e ™[s1{cosX1 + cosX2 + s,(sinX1 + sinX2)}
— 53 cOsX3]LNXI, zz= H, (15¢)

for

for
where

v = (Ri — %)V2,
s1= 0.5{|Ri"2 — z| ((Ri!/2 = g)} 72,
5 =0.5/»,
s3 = {IRi'? — z|/Ri'?}1/2,
X1 =y In[{(Ri'? — d)|Ri'/? - z|}/Ri],
X2 =y In{(Ri"”2 ~ d)/|Ri"2 - z|},
X3 =vIn{|Ri'* - z|/Ri'/?},
TNXI = a,[tan""(x/a;) — tan~' (x/a,)],
LNXI = ,[0.5 In{(a3 + x?)/(a? + x*)}].

The linear assumption near the critical level breaks
down because the vertical wavelength becomes infi-
nitely small as the wave approaches the critical level
and the horizontal perturbation velocity approaches
infinity (Booker and Bretherton 1967). However, the
above solutions are still valid outside the critical layer.
In this study, we assume that the critical level is located
above the cooling top and the Richardson number is
greater than i/4. When the wave propagates upward
toward the critical level, most of the wave energy is
absorbed there and attenuated by a factor of e~ ™.
When the Richardson number is less than 1/4, the crit-
ical layer may act as a reflector. In the nonlinear regime,
the wave behavior is different from that of the linear
system. Breeding (1962) showed that for a relatively
small Richardson number (<2.0), the critical layer can
reflect a large amount of energy in the nonlinear flow
even though the Richardson number is larger than
l/4. Breeding also found that the nonlinear response
for a large Richardson number is similar to a linear
one. However, the work of Breeding should be treated
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with caution since it had low resolution, and may be
affected by reflections from the model boundaries. In
addition, it used a periodic forcing rather than a steady-
state forcing in the present study. We will investigate
these effects in next section.

From Eq. (15), it can be seen that the wave ampli-
tude is proportional to the reciprocal of (Ri'/? — d)!/2
or Ri!/2. For a fixed cooling depth, the perturbation
streamfunction is inversely proportional to the Rich-
ardson number. Thus, solution does not imply that the
response is linearly proportional to the Richardson
number as shown by Lin (1987). The difference comes
from the different scale factors used in nondimension-
alizing the governing equations. The Richardson
number and the nondimensional diabatic heating term
in Lin were defined by Ri = (NH./U,)? and Q
= (QuglH,)/(c, ToU,>). Figure 2a shows the maximum
perturbation streamfunction for different Richardson
numbers and cooling depths in the domain calculated
by Eq. (15) with a, = 1 and a, = 5. The magnitude is
independent of the Richardson number for a small
cooling depth, while it increases as the Richardson
number decreases for a large cooling depth. Figure 2b
shows the maximum vertical-velocity field in the do-
main for the same range of Richardson numbers and
cooling depths. As shown in Fig. 2b, the vertical velocity
is independent of the Richardson number for small
cooling depth, while the magnitude is strongly depen-
dent on the Richardson number for large cooling depth
and strong shear. However, a maximum value exists
near Ri = 4.0 and 4 = 1.67. Notice that near Ri = 3.0
and d = 1.7, the linear solution breaks down because
(Ri'/? — d) is almost zero, and s,, X1, and X2 in Eq.
(15) approach infinity.

Figure 3 shows the total streamfunction and vertical-
velocity fields with N = 0.01 s™', Up = 20 m s, Qo
=—1Jkg™'s7',d=2.0km, g, = 10 km, a, = 50 km,
and H, = 2.5 km. The Richardson number associated
with the basic flow is 1.56. The streamfunction, vertical
velocity, and other parameters shown in Fig. 3 are in
dimensional values. Below the wind reversal level, a
strong updraft is located at the upstream edge of the
cooling region and a weaker downdraft at the down-
stream edge. The updraft at the upstream edge is as-
sociated with the compensated downdraft, which
moves downstream (Lin and Smith 1986). The down-
shear tilt of the downdraft below the critical level is
caused by the advection effect of the basic wind as
shown by Lin (1987). Above the critical level, almost
no perturbations are found because the waves are at-
tenuated exponentially as they pass through the critical
level (Booker and Bretherton 1967). Figure 4 shows
the maximum vertical velocity for different wind shears
with the same parameters used for Fig. 3. Since the
critical height is fixed, large surface wind speed implies
strong wind shear and small Richardson number.
When the surface wind is larger than 15 m s™! or is
between 5 and 7.5 m s~!, the maximum vertical ve-
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FIG. 2. (a) The domain maximum perturbation streamfunction
for different cooling depths and the Richardson numbers from Eq.

(15). (b) As in (a) except for the maximum vertical velocity. All
variables are nondimensionalized.
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locity decreases as the wind shear increases. The re-
sponse is opposite otherwise. Notice that the linear so-
lution is not valid for the surface wind speed below or
near 5 m s ! because the nonlinear effect becomes im-
portant and cannot be ignored. These three different
characteristics of the solutions may be related to the
combinations of three types of speed, as suggested by
Raymond and Rotunno (1989). For the given param-
eters, the speed of the density current and the horizontal
speed of gravity waves with a vertical wavelength of
2d, defined by [Qogld/(c,To)]'? and (Nd/~), are
10.91 m s™! and 6.36 m s, respectively. The surface
wind that can prevent upstream propagation of the
density current is approximately greater than or equal
to 15 m s~' when the ambient wind is taken as the
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averaged basic wind in the cooling layer. Also, the-
gravity wave is able to propagate upstream when the
surface wind is smaller than 7.5 m s ! because the av-
eraged ambient wind speed against the upstream prop-
agation of the gravity wave is smaller than the hori-
zontal speed of the gravity wave in this case. Raymond
and Rotunno (1989) found a condition in which the
upstream density current is just opposed by the ambient
wind.

For a flow with constant shear, we find the following
relationships:

[Qogld/(c, To)1/1U?

* =
WU =T oo+ ey (19
G2 1/3
F=F.= FO[(I — BoU,d/U)G? + G¢2| ° (17)

where u* is the perturbation horizontal velocity in the
cooling region and Fy, Gy, and B, are proportionally
constants. We define F and G by

F = |Ul/[Qogld/(c,To)]'?, G = =|U|/(Nd). (18)

Equations (16) and (17) are similar to Egs. (10) and
(11) of Raymond and Rotunno (1989) for a uniform
flow case. In a shear flow, | U| can vary with the cooling
depth and F and ( are functions of height. Equations
(16) and (17) indicate that the wind shear modifies
the relative magnitude of density current speed and
basic wind speed, which can prevent upstream prop-
agation of the density current. The effect of wind shear
is determined by the sign of U,d/U. For a positive
wind shear in the flow coming from right to left, U,d/
U becomes negative and the denominator of Eq. (16)
becomes larger than that in the uniform flow case. This
implies that smaller ambient wind is enough to prevent
an upstream-propagating density current for a positive
wind shear. This is because part of the cooling is used
to compensate the positive vorticity generated by the
positive vertical wind shear. Accordingly, the effective
cooling rate, or the speed of the density current, be-
comes smaller than that for the uniform flow case.
Thorpe et al. (1982) showed that a relatively large value
of inflow speed is necessary to prevent the upstream
propagation of a density current for a uniform flow
and suggested that the vertical wind shear may modify
that value. From Egs. (16) and (17), it is clear that
the vertical wind shear at the lower layer makes the
upstream-propagating density current more stationary,
which is important for initiation and regeneration of
deep convections.

4. Nonlinear numerical simulations

a. Model description

In this section, we develop a time-dependent, non-
linear numerical model based on Eqs. (1)-(4) with
subgrid-scale mixing included. The hydrostatic ap-
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F1G. 3. (a) The total streamfunction calculated by the corresponding dimensional form of Eq.
(15)with N=001s5", Uy=20ms™", Qy=—-1Jkg's™',d=20km,q =10 km, a, = 50
km, and H, = 2.5 km. The Richardson number associated with the basic flow is 1.56. (b) As in
(a), except for the vertical velocity. Contour intervals in (a) and (b) are 1000 m* s~ and 0.03
m s~ respectively. Positive (negative) contours are indicated by solid (dashed ) lines in the rest
of the figures.
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F1G. 4. The domain maximum vertical velocity for different wind
shears. The parameters considered are the same as in Fig. 3. The
solution is in the dimensional form of Eq. (15).

proximation may appear rather strong near the head
of a density current, but the overall balances that de-
termine the density current propagation are hydrostatic
(Raymond and Rotunno 1989). In the numerical
model, the potential temperature, instead of buoyancy,
is predicted. Therefore, Eqgs. (2) and (3) are replaced
by the following equations:

Or/0z = g0’/ 8o, (19)

D6/Dt = 6Q/(c,To) + Dy, (20)
where D/Dt = 3/t + ud/dx + wad/0z. Here 6 is the
potential temperature, #' the perturbation potential
temperature, and # the undisturbed mean potential
temperature. Notice that in the numerical model, the
variables # and # denote mean plus perturbation quan-
tities.

The governing equations are solved numerically us-
ing the finite-difference method. The horizontal deriv-
ative terms are approximated by the fourth-order finite-
difference scheme, while the vertical derivative terms
by the second-order scheme. The leapfrog scheme is
used for the time differencing. The finite-difference
schemes of the model are similar to the LAMPS model
(Perkey 1976). A weak numerical space smoothing
based on the fourth-order diffusion is applied to all
variables in order to reduce amplitudes of short waves
that are not properly represented by the finite-difference
approximation and to prevent the nonlinear aliasing,
In addition, the Asselin (1972) time filter is used to

prevent time splitting due to the leapfrog time differ- .

encing. To reduce the reflection of gravity waves from
the upper and lateral boundaries, radiation boundary
conditions are employed according to the numerical
techniques proposed by Klemp and Durran (1983) and
Orlanski (1976).

The subgrid-scale mixing processes for momentum
(D,) and potential temperature (D;) are parameterized
using the first-order closure:
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D, = (K,A)x + (KuB);, (21a)
Df) = (Khax)x + (Khoz)za (21b)
where
A=u—w,, B=u,+w,

K, = k*AxAz(A% + B?)'/?
X max[1 — (Kx/Km)Ri, 0]'/2,
Ri = gdInf/(4> + B?). (22)

Here Ax and Az are the grid intervals in the horizontal
and vertical directions and k is a numerical constant
(Lilly 1962). For simplicity, the eddy Prandtl number
K,/ K,, is set to one. The diabatic cooling term Q is
specified as

for

QO) lx‘—XOISL
and O0<z<d

(23)

Qx,z)=

0, for elsewhere,

where Qy is the cooling rate, x, the cooling center in
the horizontal, L the half length of the cooling, and d
the cooling depth.

In all simulations except for the case of Fig. 11a, the
horizontal and vertical grid intervals are taken to be
2.5 km and 100 m. The time step is 10 s. It is impossible
to completely resolve the vertical wavelength in the
vicinity of the critical level because it approaches zero
there. Even in the nonlinear numerical model, a finer
resolution in the vertical is necessary to investigate the
wave behavior near the critical level. Varying the ver-
tical grid interval is one way to resolve this problem
without requiring large memory and computing time
in the model. However, Breeding (1962) showed that
the model results with a uniform Az of 100 m reason-
ably agree with those with a finer resolution. For all
simulations shown in this paper, all parameters are
fixed except the surface wind speed. Again, large surface
wind means strong wind shear and small Richardson
number since the critical height is fixed. The parameters
specified are N = 0.01s™!, H, = 2.5 km, Qy = -3
Jkg7's™, d=1.5km, and L = 10 km. The cooling
rate of Oy = —3 J kg™! s~ ! is equivalent to the evap-
orative cooling produced by a precipitation rate of 7
mm h L. This value is rather small compared with the
cooling rate used in Thorpe et al. (1982). However,
since the cooling is applied steadily (more than 2 h)
in this study, a relatively small value of the cooling rate
appears to be necessary. In addition, this cooling rate
is equal to the nondimensional cooling rate of 0.008
in Raymond and Rotunno (1989).

b. Model results and discussion

Figure 5 displays the wind velocity and the potential
temperature fields at ¢ = 7200 s for a case with Uy = 30



1 DECEMBER 1991

4.0 L

Z(KM)

=
.

YR ST S OO VT NN W SN DA W ST AT SR AN W X 1

Z(KM)

X (KM)

FIG. 5. (a) Horizontal velocity with contour interval of 2.0 m s™,
(b) vertical velocity with contour interval of 0.1 m s™*, and (c) po-
tential temperature (contour interval of 1 K) superimposed on the
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m s~!. The flow reaches a steady state rather quickly
under this situation. The response in the vicinity of
the cooling is similar to the linear steady-state case (Fig.
3) because the nonlinearity parameter, Eq. (10), is
about 0.22 in this case. The air parcel decelerates (ac-
celerates) on the upstream (downstream) side of the
cooling region. Associated with the horizontal decel-
eration and acceleration of the air parcel, regions of
convergence and divergence, respectively, must exist.
The convergence (divergence) then induces an upward
(downward) motion on the upstream (downstream)
side of the cooling region (Fig. 5b) through the con-
tinuity equation. The upward motion on the upstream
side of the cooling region is caused by the compensated
updraft (Lin and Smith 1986; Lin 1987) and the con-
vergence of the flow there. Unlike the linear solution,
the horizontal wind speeds do not approach infinity
near the critical layer, where the total horizontal wind
speed vanishes, in the nonlinear system.

A region of acceleration exists just below the critical
layer and above the cooling region, which is responsible
for the downward motion (Fig. 5b). The acceleration
in the layer from 1.5 to 2.5 km also helps shift the
region of minimum vertical velocity to a higher level
than that of the maximum vertical velocity. The wind
vector field is shown in Fig. Sc, with the vertical velocity
exaggerated by a factor of 30. The horizontal velocity,
vertical velocity, and potential temperature fields all
indicate that the disturbance is very weak above 3 km,
which is caused by the critical layer absorption. This
is consistent with the linear theory of Booker and
Bretherton (1967), in which they found that gravity
waves tend to be attenuated exponentially as they pass
through the critical level when the Richardson number
is greater than /3.

The potential temperature field (Fig. 5¢) indicates
that a cold pool exists near the surface from the center
of the domain to downstream. A weak gust front forms
near the center of the domain, associated with the con-
vergence formed by the cold pool and the basic wind
advection. Air parcels are lifted up in the vicinity of
the gust front and forced downward over the cold pool.
The cold pool appears to be stationary and cannot
propagate upstream. The strong surface wind tends to
retard the upstream propagation of the cold air. The
stationarity of the cold pool allows for initiation of
convection. Thorpe et al. (1982) used this mechanism
for initiating convection in a numerical model. At the
upstream edge of the cooling region, the cold pool has
a height of about 1.5 km, which is about the height of
the specified cooling. The cold pool extends far down-

wind vector field at £ = 7200 s when Uy is 30 m s, The Richardson
number associated with the basic flow is 0.69. The parameters con-
sidered are N =0.01s7!, Qo= —3Jkg™'s,d=1.5km,L =10
km, and H, = 2.5 km. The vertical velocity in the wind vector is
exaggerated by a factor of 30.
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stream and has a smaller depth because the cold air is
swept downstream by the mean wind. It is important
to mention that the cold pool acts like a mechanical
forcing that forces the air parcel to go upward at the
upstream edge. Thus, it may act more or less as a very
asymmetric mountain. This behavior is different from
the flow over a heat source (e.g., Lin 1987), which
allows the air parcel to penetrate the forcing region.
The difference results from the fact that the cold air
produced by cooling tends to accumulate near the sur-
face while the warm air produced by heating tends to
rise. Above the gust front, the cold region extends to
the critical layer and tilts upstream or downshear. This
region of cold air is formed by the adiabatic cooling
associated with the upward-propagating gravity waves
rather than by the diabatic cooling. This is evidenced
by the upstream tilting of the potential temperature
field.

Figure 6 shows the wind velocity and potential tem-
perature fields at 1 = 7200 s for a case similar to that
of Fig. 5, except with Uy = 20 m s~!. The Richardson
number associated with the basic flow is 1.5. The ef-
fective cooling rate is larger in this case because the
basic wind speed in the cooling layer is smaller. Under
this situation, the cold pool is still unable to propagate
upstream. However, the gust front becomes stronger
and deeper than the case with U = 30 m s~* (Fig. 5).
A stronger wave than the previous case is present in
the layer of 2 to 3 km. Again, there is no significant
wave activity above 3 km. This implies that the waves
are absorbed by the critical layer, similar to the previous
case. The possibility of wave reflection from the critical
level, as suggested by Breeding (1972), will be exam-
ined later. ) '

Figure 7 shows the wind velocity and potential tem-
perature fields at ¢ = 7200 s for a case similar to that
of Fig. 6, except with Uy = 10 m s™'. The Richardson
number associated with the basic flow is 6.25. One in-
teresting finding in this case is that the cold pool is able
to develop into a density current and propagate up-
stream. The upstream propagation of the density cur-
rent in the present case is evidenced by a region of
positive horizontal velocity near the surface, which has
a maximum value of about 18 m s™! and is located
near the head of the density current. The averaged
speed of the density current propagation is about 5.6
m s~ ', Notice that the propagation speed of the density
current increases with time. This is because the strength
of the cold pool increases with time due to the steady
cooling. Crook-and Moncrieff (1988) suggested that
the term “density current” can be used only if the sur-
face air on the upstream side of the system does not
return to the surface behind the system. Using their
definition, both the present case and the flow of Fig. 8
in Raymond and Rotunrio (1989) may fall into the
category of a gravity wave with stagnation. To avoid
ambiguity, we define a density current as a propagating
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cold outflow against the ambient fluid in a moving
frame with the outflow. The cold pool in previous cases
may develop into a density current after 2 h because
the steady cooling keeps strengthening the cold pool.
In numerical simulations of midlatitude multicellular
squall lines, Fovell and Ogura (1989) found that the
density current speed is almost linearly proportional
to the lower-layer wind shear if the shear is strong. This
will predict a zero speed of the density current inves-
tigated in this study and other dry-model results
(Thorpe et al. .1982; Raymond and Rotunno 1989).
For a dry model with specified cooling, such as the
present case, the speed of a density current is fixed no
matter what value of the inflow speed is used. Because
the cooling rate is fixed, the magnitude of the effective
cooling that can produce an upstream-propagating
outflow decreases as the wind shear increases. Conse-
quently, no upstream propagation of the density cur-
rent is possible for a strong shear flow. In the real at-
mosphere with the presence of moisture, the inflow
may contribute to either strengthen or weaken the
cooling rate and the speed of the density current.

Associated with the region of strong positive hori-
zontal velocity near the surface, a region of strong con-
vergence exists at the head of the density current, near
x = 40 km. Convergence at the head of a density cur-
rent has been considered as an important mechanism
for the initiation or regeneration of convective storms
(Thorpe et al. 1980). A region of strong updraft is
produced by this strong convergence zone (Fig. 7b).
The maximum vertical velocity reaches about 0.9
m s~', which is much higher than 0.3 and 0.5 m s™!
in the cases of Figs. 5 and 6. Unlike previous cases,
this updraft is separated from the downdraft associated
with the cooling. The downdraft is located at x = —-10
km. Above this updraft is a region of strong downdraft
associated with the upward-propagating gravity waves.
The gravity wave structure can also be found in the
potential temperature field (Fig. 7c). The horizontal
scale of this gravity wave is about 10 km and is closely
related to the scale of the convergence at the head of
the density current. The magnitude of the wave in-
creases as it propagates upstream. In the layer from
1.5 to 4 km above the cooling region, a relatively strong
disturbance exists that tilts downshear (Figs. 7a,c). It
appears that this disturbance is associated with the
upward-propagating waves generated by the steady
cooling.

The potential temperature field is shown in Fig. 7c.
A region of cold air is located in the region below 1.5
km and between x = 10 and —10 km. This cold air is
produced by the specified cooling. Above this cold pool,
a region of warm air exists that extends to 4 km and
tilts downshear. This warm air is produced adiabatically
by the downdraft associated with the stationary up-
ward-propagating wave. A narrow but deep region of
warm air is riding on the density current and propa-
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gating upstream with it. This warm air is produced by
the strong downdraft (Fig. 7b) above the density cur-
rent.

From the above results, we may categorize the flow
response as a stationary cold pool case (Figs. 5 and 6)
and the case of Fig. 7 as a density current case (Fig. 7)
due to their remarkable differences. In order to un-
derstand the transient response, we will examine the
time evolutions of the vertical velocity for cases of Figs.
6 and 7. Figure 8 shows the vertical-velocity fields at
three time steps: namely, 1000, 3000, and 5000 s for
both the density current case (Fig. 8a) and the station-
ary cold pool case (Fig. 8b). During the early stage of
the evolution (at 1000 s) for both cases, two regions
of upward motion have developed. The stronger one
is located upstream; the weaker one, downstream. Both
are compensated updrafts associated with the down-
draft at the center. The upstream updraft is stronger
because it is strengthened by the convergence produced
by the inflow. As time proceeds, these two modes
propagate out of the cooling region with the cold out-
flow in opposite directions. The downstream mode
propagates faster than the upstream one because it is
accelerated up by the advection of the basic wind. Sim-
ilarly, the downstream mode of the stationary cold pool
case (Fig. 8b) propagates faster than that of the density
current case (Fig. 8a). In the density current case, the
magnitude of the vertical velocity associated with the
downstream mode increases as it propagates because
the effective cooling increases with time. The upstream
mode starts to propagate upstream against the inflow
as more cold air is accumulated. Since the cold air
outflow is strong enough, the upstream mode splits
and propagates away from the cooling region. The
magnitude of the vertical velocity for this mode also
increases as it propagates because of the steady cooling.
The strong convergence at the head of the density cur-
rent in the lower layer (below 400 m) is responsible
for enhancing the updraft there and may regenerate
convection ahead of the density current if moisture is
abundant enough. This may provide a possible mech-
anism for long-lived convective systems. This is not
true in the stationary cold pool case in which the ef-
fective cooling is too weak to push the cold air up-
stream. The magnitude of the vertical velocity for the
upstream mode in this case increases in the beginning
and then approaches a steady state. The overall struc-
ture of this mode is similar to the linear steady-state
solution. Although the stationarity of the updraft may
be favorable for generating deep convection, the mag-
nitude of the updraft is only about half that of the
density current case.

To investigate the nonlinear effects on the shear flow
response to the cooling, we perform one linear mod-
eling simulation for comparison with the nonlinear
simulation of Fig. 7. For the linear simulation, one
should use parameters different from those used in the
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nonlinear simulation in order to keep the linear as-
sumption valid. However, a direct comparison between
the linear and nonlinear simulations is possible only
using the same parameters. Thus, we use the same pa-
rameters for the linear simulation (Fig. 9) as in the
nonlinear simulation (Fig. 7). For the linear case, the
minimum horizontal velocity is located near 1.8 km
height at the center of the domain, which is lower than
that of the nonlinear case (Fig. 7a). In addition, the
minimum value is much larger than that of the non-
linear case. On the other hand, the maximum hori-
zontal velocity near the surface, representing density
current, is smaller than that of the nonlinear case. This
is due to the advection of the perturbation horizontal
velocity, which can produce positive tendency of the
horizontal velocity and is ignored in the linear case.

Figure 10 shows the time evolution of the kinetic
wave energy for every hour in both linear and nonlinear
cases. The kinetic wave energy is defined by po(it?
+ Ww?2)/2, where p, is the ambient density which is as-
sumed to be 1 kg m~> and i and W are the horizontally
averaged velocity perturbations in horizontal and ver-
tical, respectively. The value of kinetic wave energy is
maximum at the surface for both cases because the
ambient wind is maximum (10 m s™') there. Above
the critical height, the value is almost zero even though
the ambient wind is large since the wave cannot pen-
etrate through the critical height from below. The sec-
ond maximum, near 1.8 km height in the linear case
and about 1.2 km in the nonlinear case, appears to be
related to the vertical wavelength of the dominant
gravity wave. In fact, there are an infinite number of
vertical wavelengths (27 U/N)A, between the ground
and the critical height in a flow with linear wind shear.
If we use the ambient wind speed averaged from the
surface to 4 km (U = 3 m s™'), the vertical wavelength
is about 1.8 km. This is roughly the height of the second
maximum in the linear case. Nonlinearity appears to
reduce the wave disturbance below the critical level
and above the cooling top, while it tends to strengthen
the wave disturbance near the surface. In addition, the
vertical wavelength of the upward-propagating wave is
reduced by the nonlinearity.

To examine the effects of the vertical resolution, we
perform a case similar to that in Fig. 7, except with a
finer resolution of Az = 25 m. The horizontal field is
shown in Fig. 11a for comparison. The result is very
similar to that of Fig. 7a, except Fig. 7a has a stronger
maximum value (18 m s™!) near the surface, compared
with that in Fig. 11a (14 m s™!). However, both of
them have a minimum value of about =20 m s, In
addition, the contour line near the top of the model
domain is slightly smoother than the case with Az
= 100 m.

In order to examine the possible artificial wave re-
flection from the model top, we run a case similar to
Fig. 7 except with the model top extended to 8 km.
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FIG. 9. Horizontal velocity (contour interval of 2 m s™') at = 7200
s from the linear numerical simulation with the same parameters
used in Fig. 7.

The result is shown in Fig. 11b. Below 4 km, the flow
structure is almost identical to Fig. 7a. Above 4 km,
there exists very weak wave disturbance since most of
the wave energy has been absorbed by the critical level.
No obvious wave reflection exists from the model top.
This indicates that the upper radiation boundary con-
dition of the numerical model is able to radiate wave
energy out.

6. Summary and conclusions

e The response of a two-dimensional stably stratified
shear flow with a critical level was studied using both
a linear theory and a nonlinear numerical model. The
diabatic cooling, which represents the evaporative
cooling by falling precipitation, is specified a priori in
a fixed region, and the ambient wind is allowed to in-
crease linearly with height and reverse its direction at
a certain height. In order to investigate wind shear ef-
fects, the magnitude of the surface wind must be varied
with other parameters held constant in all simulations.

e From a scale analysis of the governing equations,
we found a nonlinear factor, gQol/(c, ToUy*N), of the
thermally induced finite-amplitude waves. Consistent
with other linear theories, when the wave approaches
the critical level, most of the wave energy is absorbed
at the critical level and attenuated exponentially. From
a scale analysis of the linear solution, it was shown that
the magnitude of the perturbation streamfunction or
the vertical velocity is independent of the Richardson
number for a given cooling rate and depth. When the
thermally induced Froude number (U,/Nd) is rela-
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tively large, the maximum perturbation increases as
the Richardson number decreases, while for small
Froude number, the maximum perturbation is inde-
pendent of the Richardson number.

e The linear solutions for different Richardson
numbers are characterized by the relative magnitude
of three types of speed: basic wind speed, horizontal
speed of the gravity wave with a vertical wavelength of
2d, and upstream propagation speed of the density
current. From the scale analysis of the linear system,
we found a condition under which the upstream density
current is just opposed by the ambient wind. When
the shear and the basic wind are of opposite sign in the
forcing region, the wind shear can reduce the magni-
tude of the ratio of the basic wind to the upstream-
propagating density current speed. This implies that in
the sheared flow, small ambient wind is enough to pre-
vent the upstream propagation of the density current

‘because part of the cooling is used to compensate the

positive vorticity associated with the positive vertical
wind shear and, consequently, the effective cooling rate
or the speed of the density current becomes smaller
than that in the uniform wind case.

e In the nonlinear numerical simulations, it was
found that the responses of the atmosphere to a steady
cooling in a shear flow are categorized as either a sta-
tionary cold pool or a density current, depending upon
the strength of the effective cooling or ability of the
upstream propagation of the cold outflow. For a strong
shear flow, the effective cooling rate becomes weak and
the cold pool is stationary with respect to the upstream
flow because most of the cooling is used to compensate
the positive vorticity associated with the positive wind
shear. In this case, the flow quickly reaches a steady
state and the response is similar to the linear steady-
state case. For a weak shear flow, the cold pool is able
to propagate upstream because the effective cooling
that increases with time is strong enough to push the
outflow against the basic wind. The convergence at the
head of the density current in the lower layer is re-
sponsible for enhancing the magnitude of the distur-
bance and controlling the horizontal scale of the updraft
there.

e To investigate the nonlinear effects on the shear
flow with cooling, both linear and nonlinear numerical
model simulations are performed. From the time evo-
lutions of the kinetic wave energy in both linear and
nonlinear cases, it is found that the nonlinearity appears
to reduce the wave disturbance in the layer below the
critical level and above the cooling top, while it tends
to strengthen the density current or cold pool near the
surface. In addition, the vertical wavelength of the up-
ward-propagating wave is reduced by the nonlinearity.

¢ In this study, we considered a dry atmosphere only.
For the dry model with the specified cooling, the up-
stream propagation speed of the density current is fixec
no matter what value of the basic wind is used. In the
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presence of moisture, the inflow may contribute to ei-
ther strengthen or weaken the cooling rate and the
speed of the density current. These effects are currently
under investigation.
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