
 

 

 

 

 

 

1 

AST 853                Numerical Weather Prediction           Dr. Yuh-Lang Lin 
Applied Scie&Tech (AST) PhD Program ylin@ncat.edu 

Department of Physics http://mesolab.org  

North Carolina A&T State University   

 

NWP Lecture 3 - Numerical Methods  
[Based on Ch. 12: Numerical Methods of "Mesoscale Dynamics" by Y.-L. Lin, Cambridge 

University Press 2007, 630pp] 
 

Lin (2007) Ch.12: Numerical Methods 
12.1  Introduction 

12.2  Finite Difference Approximations of Derivatives 

12.3  Finite Difference Approximations of the Advection Equation  

12.3.1 Two-Time-Level Schemes 

12.3.2 Three-Time-Level Schemes 

12.4  Implicit Schemes 

12.5  Semi-Lagrangian Methods 

(Equation editor: rxF
x

p
fv

Dt

Du








1
) 

 

3.1 Introduction 
 

 Available analytical solutions of nonlinear PDEs (partial 

differential equations) are rare, such as the  

o Burger equation (see Project 2) 

o Long’s equation for idealized flow over a bell-shaped 

mountain (see Lin and Wang (1996) or Ch. 5 of Lin (2007)) 

o KdV equation for solitary waves or solitons 

o Schlodinger equation for propagation of light in nonlinear 

optical fibers and planar waveguides and to Bose-Einstein 

condensates, and  

o nonlinear dynamical system for strange (Lorenz) attractor 

etc.,  

and are normally limited by having to make small-perturbation 

(linear) assumption and apply analytical methods. 

 

mailto:ylin@ncat.edu
http://mesolab.org/
http://www.math.chalmers.se/cm/education/courses/0405/ala-b/tex/diffequation.pdf
http://mesolab.ncat.edu/publications%20%28web%29/1996_Lin_Wang_JAS.pdf
http://demonstrations.wolfram.com/SolitonsFromTheKortewegDeVriesEquation/
http://en.wikipedia.org/wiki/Nonlinear_Schr%C3%B6dinger_equation
http://demonstrations.wolfram.com/DynamicalSystemsWithLorenzAttractors/
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 For large scale flow, quasi-geostrophic approximation or 

geostrophic momentum approximation are often adopted for 

simplifying the governing equations.  However, this does not work 

for mesoscale flow since the Rossby number is not small enough.   

 

 For small scale flow, the Coriolis force can be ignored, but 

nonhydrostatic and compressibility often has to be included to add 

the complexity to the governing equations.   

 

 An option to solve those nonlinear equations or a set of nonlinear 

equations is by applying numerical approximations on certain grid 

points in space and time. 

 

 Advantages of numerical simulations or experiments: 

 

(a) The full set of nonlinear PDE’s can be solved approximately. 

(b) It provides a powerful way in setting the environments for 

testing different forcing or physical processes, such as 

deactivating nonlinearity, orography, PBL, latent heating, 

radiation, etc.  This is called “sensitivity test” or “sensitivity 

experiment”. 

 

 Important questions to ask in numerical modeling: 

 

o Does the approximate equation converge to the real differential 

equation when the time and grid intervals approach zero? 

 

o Is the numerical solution well-behaved in time, or more 

precisely speaking, is it stable numerically? 

 

o How well do the amplitude and phases of the approximated 

waves or disturbances represent those of the exact solution?   
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 Major numerical methods used in NWP modeling: 

 (1) Finite difference methods  

 (2) Galerkin methods  

 (3) Lagrangian methods 

 

 Finite Difference Methods (most popular in NWP models) 

o Dependent variables are defined at certain grid points in space 

and time, and the derivatives in the equations are approximated 

using the Taylor series expansion.   

 

o Since finite area is used, mesoscale and NWP models are often 

referred to as limited-area numerical models. 

 

o Initial conditions and boundary conditions are needed for 

integrating the PDE’s.   

 

 Galerkin Methods 

 

 Dependent variables are represented by a sum of functions that 

have a prescribed spatial structure. 

 The coefficient associated with each function is normally a 

function of time.   

 A partial differential equation is transformed into a set of 

ordinary differential equations (in time) for the coefficients.  

These equations are usually solved with finite difference 

approximations in time.    

 

Galerkin methods may be divided into two major categories: (a) 

spectral method and (b) finite element method.   

 

(a) In spectral methods, dependent variables are represented by 

orthogonal, global basis functions, such as sinusoidal 

functions used in Fourier transform. 
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 Less popular in mesoscale or NWP models because it is 

more difficult to handle the nonperiodic lateral boundary 

condition.   

 More popular in large-scale and global models due to the 

periodic nature of the boundary conditions.   

 

(b)  Finite element methods are similar to spectral method 

except it uses local basis functions, instead of globally (in 

terms of the integration domain) basis functions, such as the 

chapeau or tent function.   

 

 Advantages: their accuracy and the flexibility of treating 

irregular geometry of the internal and external 

boundaries.   

 Disadvantages: requiring a significant amount of 

computing time to invert a large matrix at every time 

step.   

 

 Lagrangian methods 

 

 The PDE’s are solved by following a fixed set of particles 

throughout the period of integration. 

 

 Advantages: treating the total derivative at once, instead of 

having to treat the individual terms, such as the local rate of 

change and advection terms. 

 

 Practically, it is very difficult to trace the air parcels at the next 

time step since they normally are distributed randomly in the 

computational domain, instead of located right at regularly 

distributed grid points.  
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 In order to avoid this problem, the fluid variables at the 

predicted time step are defined at the regular grids and traced 

back to where at the previous time steps.  This is called the 

semi-Lagrangian method.   

 

 Semi-Lagrangian method is getting more popular since a 

relatively large time interval for integration can be used due to 

its unconditional stability. 

 

 There are some other numerical methods, such as upstream 

interpolation methods and finite-volume methods etc.  

 

 In an interpolation method, dependent variables at grid points 

are used to derive interpolation formulae for the spaces 

between as well as at the grid points.   

 

 In a finite-volume method, the grid-point value if represents 

the average of the function f(x) over the grid cell 

])2/1(,)2/1[( xixi  .   

 Finite-volume methods are very useful for approximating 

solutions that contain discontinuities.   

 Finite-volume methods generate approximations to the 

grid-interval or grid-cell average.    

          

3.2 Finite Difference Approximations of Derivatives 
 

 Forward difference scheme 

 

 Consider the Taylor series to approximate )(xf  at xx  , 
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   (12.2.1) 

http://mathworld.wolfram.com/TaylorSeries.html
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 where x (>0): spatial increment or grid interval.   

 

 

 Thus, the derivative of )(' xf  can be solved,  

  

 ),(
)()(

 xxR
x

xfxxf
f'(x) 




 , (12.2.2) 

 

 where 
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In the above expression, R is called the remainder term, which has a 

magnitude of )( xO  . 

 

If the remainder term is much smaller than the first term on the right 

hand side of Eq. (12.2.2), then the above equation may be 

approximated by 

 

 
x

xfxxf
xf






)()(
)(' . (12.2.3) 

          

 The above equation is called a finite difference equation or 

difference equation. 

 

 The scheme is called a forward difference scheme on the order of 
x  (first order scheme).  

 

 The remainder term (R) is the truncation error (on the order of x  

or first order of accuracy).   
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 Review of the concept of numerical modeling 

 

 Consider Newton’s second law of motion: 

 

  maF   
 

  
m

F

dt

du
a  . 

 

For an object with constant mass pushed by a constant force, 
cmF / , the above equation of motion reduces to 

 

  c
dt

du
 . 

 

Q: How do you calculate or “predict” the speed of the object (i.e., u) 

at certain time t later? 

 

 

Based on (12.2.2), there are two ways to reduce the truncation error:   

   (a) reduce the space interval (x) or 

 (b) use a higher-order approximation method.   

 

  This also can be seen from the sketch in Fig. 12.1.  
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Fig. 12.1: A sketch of the forward finite difference scheme, as shown in Eq. 

(12.2.3). The actual derivative, )(' xf , is approximated by the slope )(' xfD . 

 

The distance between )( xxf  and xxfxf  )(')(  at xx   is 

xR .      

 

When x is reduced, the approximated derivative )(' xf  (i.e., the 

R.H.S. of (12.2.3) is closer to the real derivative. 

 

 Backward difference scheme 

Similarly, the Taylor series expansion may also be expanded in a 

backward manner,  

 

   ....
!3
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32
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

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    (12.2.4) 

 

 which may also be rearranged in the following form, 
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Eq. (12.2.5) may be approximated by the backward difference 

scheme, 

 

   
x

xxfxf
xf






)()(
)(' . (12.2.6) 

 

The meaning of Eq. (12.2.6) can be easily understood by replacing 
xx   and x by x and xx  , respectively, in Fig. 12.1.   

 

Similar to the forward difference scheme, the backward scheme has 

accuracy on the order of x or is referred to as the first order of 

accuracy. 

 

 Centered difference scheme 
 

An alternative way to approximate the derivative can be obtained by 

subtracting (12.2.4) from (12.2.1), 

 

  ....
!3

)('''2)('2)()(
3





x

xfxxfxxfxxf  (12.2.7) 

 

 The derivative, )(' xf , may then be solved, 
 

 R
x

xxfxxf
xf 






2

)()(
)('  (12.2.8) 

 

 The remainder term is on the order of 
2x , 

 

  








 ....
!5

)(
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xfxf
xR . (12.2.9) 

 

Neglecting the remainder term leads to the centered difference 

scheme, 
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x

xxfxxf
xf






2

)()(
)(' . (12.2.10) 

 

Based on (12.2.9), the centered difference scheme has accuracy on 

the order of 
2x or the second order of accuracy and the numerical 

method is called second-order scheme. 

 

The mathematical meaning of the scheme is depicted in Fig. 12.2.   

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 12.2: A sketch of the relationship of )(' xf  and its centered difference approximation,

)(' xfD . 

 

Comparing with Fig. 12.1, the centered difference scheme is more 

accurate than the forward or backward finite difference scheme.          

       

 Approximation of the second-order derivative, )(" xf :  

 

Adding Eq. (12.2.4) to Eq. (12.2.1), 

 

 )(
)()(2)(

)('' 2

2
xO

x

xxfxfxxf
xf 




 . (12.2.11) 

 

Again, )(" xf may be approximated by the first term on the right- hand 

side of the above equation.                       
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 Two questions may be raised for the above 1st and 2nd order finite 

difference schemes: 

 

 How accurate are they? 

 Are these numerical solutions well-behaved, or say, are they 

stable? 

 

 Accuracy of a finite difference scheme   

 

To find the accuracy of the finite difference methods, we may 

consider the centered difference approximation to the first derivative 

of the sine function, 

 

 
L

x
Axf

2
sin)(  . (12.2.12) 

 

The first-order derivative may be easily obtained analytically, 

 

 
L

x

L

A
xf

 2
cos

2
)('  . (12.2.13) 

 
 

Now, we can apply the centered difference scheme, Eq. (12.2.10), to

)(' xf , 

 

 
x

L

xx
A

L

xx
A

xfD









 








 


2

)(2
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)(2
sin

)('



, (12.2.14) 

 

which may be rearranged to be 
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x

L

x

L

x
A

xfD









 











 2
sin  

2
cos 

)(' . (12.2.15) 

 

Dividing the above approximation by )(' xf yields 

 

 
Lx

Lx

xf

xfD

/2

)/2sin(

)('

)('









. (12.2.16) 

 

The relationship between )(' xfD and )(' xf is also sketched in Fig. 12.2.   

 

 
 

 

 

 

 

 

 

 

Fig. 12.2: A sketch of the relationship of )(' xf  and its centered difference approximation,

)(' xfD . 

 

From the above expression, we obtain 

 

 

 0
2

        1
)('

)('





L

x
as

xf

xfD 
, (12.2.17) 

 

because sin  when the angle  approaches 0, based on the Taylor 

series of expansion of sin  
 

In other words, the truncation error of the center difference scheme 

approaches 0 when x L  .  Thus, in order to have a good 

http://math2.org/math/algebra/functions/sincos/expansions.htm
http://math2.org/math/algebra/functions/sincos/expansions.htm
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approximation, the grid interval chosen should be much smaller than 

wavelength.    

 

 For a wave with              (also called         wave).   

 

Substituting xL  2  into the right side of Eq. (12.2.16) leads to  

  

 0
sin

)('

)('






xf

xfD
. (12.2.18) 

 

The above equation implies that the centered difference scheme fails 

to resolve a x2  wave.   

 

It also can be shown that for a fixed grid interval, shorter waves are 

poorly resolved by the centered difference scheme, while longer 

waves are reasonably well resolved.   

 

  

xL  2 x2
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 Formulas for Finite Difference Approximations of Derivatives 

(Adapted from Gerald and Wheatley 2003; see Lin 2007) 
 

Formulas for the first derivatives: 

 
),(

)()(
)(' xO

x

xfxxf
xf 




  (forward difference) 

),(
2

)()(
)(' 2xO

x

xxfxxf
xf 




  (2nd-order centered difference) 

),(
2

)(3)(4)2(
)(' 2xO

x

xfxxfxxf
xf 




 (one-sided 2nd-order centered difference)  

).(
12

)2()(8)(8)2(
)(' 4xO

x

xxfxxfxxfxxf
xf 




  

 (4th-order centered difference) 

Formulas for the second derivatives:      

 

),(
)()(2)2(

)("
2

xO
x

xfxxfxxf
xf 




  (forward difference) 

),(
)()(2)(

)(" 2

2
xO

x

xxfxfxxf
xf 




  (2nd-order centered difference) 

),(
)(2)(5)2(4)3(
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2
xO

x

xfxxfxxfxxf
xf 
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
  (one-sided) 

).(
12

)2()(16)(30)(16)2(
)(" 4

2
xO

x

xxfxxfxfxxfxxf
xf 




  

 (4th-order centered difference) 

Formulas for the third derivatives: 

),(
)()(3)2(3)3(

)('''
3

xO
x

xfxxfxxfxxf
xf 




  

).(
2

)2()(2)(2)2(
)(''' 2

3
xO

x

xxfxxfxxfxxf
xf 




   

 (averaged differences) 

Formulas for the fourth derivatives: 
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4
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x
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xf iv 




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3.3 Finite Difference Approximations of the Advection 

Equation 
 

 One of the simplest finite difference models is the one-dimensional 

advection equation with a constant advection velocity (c), which 

composes only one dependent variable, one time derivative and one 

spatial derivative,  

 

 0









x

u
c

t

u
, (12.3.1) 

 

 where u is the horizontal velocity.   

 

If c is replaced by u in Eq. (12.3.1), then it is called the inviscid 

Burgers’ equation.  The inviscid Burger equation has also been 

adopted as a model for fluid dynamical systems. 

 

 An analytical solution of Eq. (12.3.1) can be found, 

 

 )(),( ctxftxu  , (12.3.2) 

 

where f  is an arbitrary function, which determines u at t = 0, or say, 

the initial condition, fi(x).   

 

 For example, if 

 

 22

2

)(
ax

au
xf o

i


 ,  (12.3.3) 

 

 then 

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/www.bcamath.org/projects/NUMERIWAVES/Burgers_Equation_M_Landajuela.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/www.climatescience.org.au/sites/default/files/Numerical_Lab_Analysis.pdf
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  22

2

)(),(
actx

au
ctxftxu o

i


 . (12.3.4) 

 

If the advection velocity (c) is positive (negative), then the wave 

propagates to the right (left).   

 

 Note that Eq. (12.3.3) is called the bell-shaped function which has 

amplitude ou  and a half-width a .  It is also called the Witch of Agnesi. 

 

 Physical meaning of Eq. (12.3.4)  

 

The solution ),( txu  always keeps its initial shape along the phase line 

x-ct=constant.   

 

That is, the wave or disturbance propagates along a constant phase 

line x-ct, the characteristics of the advection equation or the wave 

propagates at the speed c.   

 

This wave or disturbance propagation along a constant phase line is 

illustrated in Fig. 12.3.   

 

 
 

 

 

 

 

 

 

 

 

Fig. 12.3: A sketch of the propagation of ),( txu along a constant phase line, x-

ct=constant=0. [From Lin 2007 – Mesoscale Dynamics, Cambridge Univ. Press] 

 

http://en.wikipedia.org/wiki/Witch_of_Agnesi
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 In the following, we will discuss some major numerical 

approximations of the advection equation, which have been adopted 

in mesoscale numerical models, and their characteristics.   

 

 Based on the levels of time integration, the major methods which 

have been adopted in NWP may be categorized as two-time-level 

schemes and three-time-level schemes.         

 

 3.3.1 Two-Time-Level schemes 
 

 The finite difference schemes for approximating )(' xf , as discussed 

in the previous subsection, may also be applied to the time 

derivative. 

 

 Similarly, one may choose to adopt the forward, backward, or 

centered difference approximations in time.   

 

 If one chooses to use forward or backward finite difference in time, 

then the method belongs to the so-called two-time-level schemes 

since there are only two time steps involved at each time of 

integration.   

 

 On the other hand, if one chooses to use the second-order centered 

difference in time (or known as leapfrog), and then the method 

belongs to the so-called three-time-level schemes since there are 

three times involved at each time step of integration.   

           

(a) Forward in time and centered in space scheme and its 

computational instability 

 

The derivatives in the advection equation, Eq. (12.3.1), may be 

approximated by a combination of forward difference of the time 
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derivative and center difference of the spatial derivative on a time-

spatial grid system  

 

 0
2

  11

1

















 



x

uu
c

t

uu iiii



, (12.3.5) 

where 

  : time step, 

 i : grid point in space. 
 

What we are really interested in prediction is u at grid point i and time 

step 1 , i.e. 
1

iu , which can be obtained from the above equation, 
 

  
11

1   
2



 











 iiii uu

x

tc
uu . (12.3.6) 

 

 Eq. (12.3.5) or Eq. (12.3.6) is called the difference equation for the 

advection equation under the scheme of forward in time and 

centered in space (FTCS).  
   

 The algorithm of the scheme is sketched in the following figure.   

 

 

 

 

 

 

 

 

 

 

Fig. 12.4: The grid system and algorithm for forward-in-time and centered-in-space finite 

difference scheme of the advection equation. The values of u at t=0 are provided by the 

initial condition (i.c.) and the values at the left and right boundaries are determined by the 

boundary conditions (b.c.). 
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 The interior points ui, 1,3,2,1  ni , at time step 1  are predicted by 

Eq. (12.3.6) using the values of 1,1   ,  iii uuu at time step  .   

 

 Note that initial condition is needed for obtaining values at time 

step 2. Boundary conditions are also needed at both the left and 

right boundary points.  The values at the boundary points, i.e. 
1

0
u

and 
1

nu , are determined by the boundary conditions. 

 

 Although many schemes exist to approximate a differential equation, 

there is no guaranty that every numerical solution is well behaved. 

 

 In other words, the numerical solution may not necessarily converge 

to the real solution of the differential equation when t and x

approach 0.   

 

When this occurs, the scheme is called numerically or computationally 

unstable.  Otherwise, the scheme is numerically stable.   Now, let us 

check to see whether this natural choice of numerical method, i.e. 

forward-in-time and centered-in-space scheme is numerically stable or 

not.                

       

 Numerical stability of the forward-in-time and centered-in-space 

scheme  
 

Consider the following sinusoidal wave in both t and x directions, 

 
)(  ),(ˆ),( tkxiekutxu   , (12.3.7) 

 

û : wave amplitude  
k : wave number  
 : wave frequency.   

 

All of  , ,ˆ ku are complex numbers.   
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Both x and t are represented by the grid interval and time interval, 

respectively, 

 

 ttandxnx      , , 
 

      n : number of grid intervals 

 

      : number of time intervals 

 

Thus, Eq. (12.3.7) can be rewritten as           
 

 
)( ),(ˆ),(),( txkniekutxnutxu   . (12.3.8) 

 

Substituting (12.3.8) into the finite difference equation, (12.3.5), yields 
   

 
    ( 1)

ˆ( , )
i kn x t i kn x t

u k e e
  


      

  

  
    ( 1) ( 1)

ˆ( , ) 0
2

i k n x t i k n x tc t
u k e e

x

 


       
  



, (12.3.9)  

or 
             

  xkiCtie  sin 1 
, (12.3.10) 

where 

 

 
x

tc
C




 , (12.3.11) 

 

is called the Courant number.   

 

Substituting ir i  into the left side of (12.3.10) yields 
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titti ri eee

 


. (12.3.12) 

  (1)      (2) 
 

Term (1): wave amplitude change in one time step t.  

Term (2): phase change.  

 

Since the first term is a real number and the second term is an imaginary 

number.  If we let 
tie




 , then Eq. (12.3.10) becomes 

 

 xkCie
tri




sin  1 


 ,     
tie




 . (12.3.13) 

 

Equating the real and imaginary parts yields  
 

 1cos tr , and 

 xkCtr  sin  sin  . (12.3.14) 

 

Summing the squares of the above two equations gives 

 

 xkC  22 sin1 . (12.3.15) 
 

Combining Eqs. (12.3.8), (12.3.12) and (12.3.13) lead to  

 

     tixikn reekutxu
   ),(ˆ),( .  (12.3.16) 

 

Term  ri tikn xe e   
: can only change the phase of these waves   

Term 
 : may change the amplitude as time proceeds.  

 

In order to have a converged solution, or numerical stability, of Eq. 

(12.3.16), it requires 1 .  
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 However, Eq. (12.3.15) implies that the absolute value of is always 

greater than 1.   Thus, surprisingly, the amplitude will grow with time 

and the scheme of forward-in-time and centered-in-space is 

unconditionally unstable since any small perturbations will grow 

fictitiously.    
 

 This type of analysis is called stability analysis, which determines 

whether the scheme is stable or not, should be made before a 

numerical scheme is adopted for approximating a differential 

equation.    

                

In general,  

 ttiikxtiiikx

tiikxtkxi

irir eeekueeku

eekuekutxu
















 ),(ˆ ),(ˆ

  ),(ˆ  ),(ˆ),(

)(

)(

 
 












)(

)(

)(

 ),(ˆ

 ),(ˆ

 ),(ˆ),(

txkni

ttxkni

ttxkni

r

ir

ir

eku

eeku

eekutxnu













 

where 
tie




  is different for different numerical scheme. In order to 

have a stable numerical solution, i.e., numerical stability, we require 

1 .   

 

(b) Forward in time and upstream (upwind) in space scheme 

 

Under this scheme, the advection equation is approximated by 
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x

uu
c

t

uu iiii








 

 
1

1

   if c>0,                    (12.3.17a) 

 

x

uu
c ii




 


1                    if c0.       (12.3.17b) 

 

Stability check: Consider a positive constant advection velocity, c>0, 

and substitute Eq. (12.3.8) into Eq. (12.3.17a) 

 

{ )( ),(ˆ),(),( txkniekutxnutxu    (12.3.8)} 
 

 Make sure you can perform this type of stability check, i.e. substitute 

(12.3.8) into any finite difference equation, such as (12.3.17a) or so, 

to (12.3.20) and the conclusion! 
 

  xiktii
eCe ir 

 1  1 
)( 

,    
x

tc
C




 , (12.3.18) 

or 

  xkCtr   cos-1  1cos  , (12.3.19a)  

 xkCtr  sinsin  ,     
tie




 . (12.3.19b) 

Summing the squares of the above equations yields 

 )1)(1 cos(21 CxkC  . (12.3.20) 

Numerical or computational stability requires 1  or 

 0)1)(1 cos(2  CxkC . (12.3.21) 

 

It holds if 1C  since )1(cos xk is always negative.   
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Thus, it requires cxt /  for the forward in time and upstream in 

space scheme to be stable.  This condition is called the CFL (Courant-

Friedrichs-Lewy) stability criterion.           

 

Thus, the scheme of forward in time and upstream in space is 

conditionally stable when it meets the CFL criterion.  

 

 Note that the CFL stability criterion is just a necessary condition for 

numerical stability of this scheme and the sufficient condition for 

stability is often more restrictive and difficult to obtain.   

 Beside the potential change in wave amplitude, the phase of a wave 

may be changed after applying a numerical method in solving a 

differential equation.        

 

To investigate the phase characteristics of the forward-in-time and 

upstream-in-space scheme, we may divide (12.3.19b) by (12.3.19a)   

 {  xkCtr   cos-1  1cos  , (12.3.19a)} 

 { xkCtr  sinsin  ,     tie



 . (12.3.19b)} 

to obtain  

 
)1(cos1

sin
tan






xkC

xkC
tr . (12.3.22) 

Based on the above equation and (12.3.16), the computational phase 

speed may be obtained 
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 













 

)1(cos1

sin
tan

1~ 1

xkC

xkC

tkk
c r

p


. (12.3.23) 

 

[A review of dispersion relation and dispersive waves
)( ˆ),( tkxieutxu  ] 

 

This indicates that the finite difference scheme of forward in time and 

upstream in space is dispersive since the computational phase speed is a 

function of the wave number (k).   

 

Based on the advection equation, (12.3.1), and Eq. (12.3.7), the physical 

phase speed for the advection equation may be obtained, 

 c
k

cp 


. (12.3.24) 

 

Thus, the wave is physically nondispersive since the physical phase 

speed is independent of the wave number.   

 

However, the numerical method applied here does introduce a 

computational wave mode, which is dispersive. In other words, similar 

to the physical dispersion, waves with different wavelengths propagate 

at different speeds.  In this way, the wave cannot preserve its original 

wave pattern and is called dispersive wave.   

 

It is interesting to observe that wave dispersion may be induced by a 

numerical scheme, in addition to the physical wave dispersion. 
  

The ratio of the computational phase speed ( pc~ ) to the physical phase 

speed (cp) is 
 

 













 

)1(cos1

sin
tan

1
~

1

xkC

xkC

tkcc

c

p

p
, (12.3.25) 

 

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/www.physics.usu.edu/riffe/3750/Lecture%206.pdf
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which indicates that 

 

 pp cc ~
 when 0.5 < C < 1.0 and 

 pp cc ~
  when 0 < C < 0.5. (12.3.26) 

 

Example of wave dispersion: 

 

 

 

 

 

 

 

 

      [From Lin (2007) - Fig. 3.1]  

 

 In addition to the numerical instability and numerical dispersion, a 

numerical method may also introduce numerical damping.   

 

 For example, based on Eq. (12.3.20), 

)1)(1 cos(21 CxkC   (12.3.20) 

when C=0, 1, or k 0 (very long waves), we have =1. This means that 

the amplitude will be kept the same, or say, there exists no damping 

under these special conditions (C=0, 1, or k 0).   




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However, this does not apply in general. Thus, the scheme of forward 

in time and upstream in space tends to damp waves in general, 

especially at C=0.5.       

 

 To demonstrate the damping characteristics, we may use a truncated 

Taylor series approximation to the advection equation 

 

 
2

2

2
1

!2

1
t

t

u
t

t

u
uu ii 









 

,  and (12.3.27) 

  

 Note 





























 
ii uxtuanduxttuwhere

t
t

u
t

t

u
xtuxttu

),(),(

!2

1
),(),(

1

2

2

2

 

 
2

2

2

1
!2

1
x

x

u
x

x

u
uu ii 













. (12.3.28) 

Substituting the above approximations into the scheme of forward in 

time and upstream in space, i.e. (12.3.17a), 

 

 
x

uu
c

t

uu iiii








 

 
1

1

  if c>0,                  (12.3.17a) 

 

 gives 
  

 
x

x
x

u
x

x
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c
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u
u iiii
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


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
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1 

,  

 

 which may be rearranged to be  
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 0
2

1

2

1
2

2

2

2




















xc

x

u
t

t

u

x

u
c

t

u
. (12.3.29) 

 

In the above derivation, we have assumed c>0 without loss of 

generality. 

 

Thus, in addition to the original advection equation, two additional 

terms have been artificially introduced by this particular numerical 

scheme.  In other words, computational mode can be generated by the 

use of a numerical scheme.   

 

If both xt   and  are approaching 0, then the above equation reduces 

to the original differential equation.   However, under normal 

conditions they have non-zero values, thus the computational mode 

would be kept in the numerical solution which differs from the physical 

solution.   

 

 One can easily prove that the last two terms are related to each other 

since 

 2

2
2

2

2

x

u
c

t

u









. (12.3.30) 

 

 (Class:  Why?)  

 



 

 

 

 

 

 

29 

 Substituting the above equation into Eq. (12.3.29)  

 

 

 0
2

1

2

1
2

2

2

2




















xc

x

u
t

t

u

x

u
c

t

u
. (12.3.29) 

 

 leads to 

 

 2

2

x

u

x

u
c

t

u
c













 ,     

x

tc
Cxcc




 C       ,1  

2

1
  (12.3.31) 

 

Therefore, the computational mode tends to damp the physical wave 

and c is called the numerical or computational diffusion coefficient.   

 

 

The damping characteristics of the c term can be shown by solving Eq. 

(12.3.31) without the advection term by assuming a wave-like 

disturbance, i.e. 

 

 ( , ) ( , ) exp( )u x t u k t ikx     or 

  ( , ) ( , ) ( sin cos )u x t u k t A kx B kx         . 

 

 The forward-in-time and upstream-in-space scheme has been used 

extensively in mesoscale numerical models in earlier times of 

numerical model development due to its two-time-level advantage, 

which saves a significant amount of computer memory in simulations.  

However, its computational damping characteristics and failure to 

preserve the proper phase has generated serious criticisms.   
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 This technique is acceptable if the advection and wave propagation is 

not dominant in the conservation relations for a particular mesoscale 

phenomenon.   

 

In addition, if the subgrid mixing is important, c must be less than the 

corresponding physically relevant turbulent exchange coefficient to 

avoid excess damping.   

 

Due to the development of more accurate three-time-level schemes and 

the advancement of computing facility, this scheme becomes less 

attractive to mesoscale modelers.   

 

Further discussions and review of this scheme may be found in Brown 

and Pandolfo (1980).  Smolarkiewicz (1983) also presents a scheme to 

reduce the implicit diffusion of the upstream difference by adding a 

corrective step to the calculation.  

           

(c) Lax-Wendroff Scheme 

This scheme is originally proposed by Lax and Wendroff 

(1960).  The procedure for computation is based on the grid 

stencil shown in Fig. 12.5 and the following procedure.   
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Fig. 12.5: Grid stencil for Lax-Wendroff scheme. 

 

First, provisional values of u at provisional time step +1/2, and 

grid points i-1/2 and i+1/2 are calculated at points denoted by the 

cross symbol applying the forward in time and centered in space 

scheme. 
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uuu iiiii
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. (12.3.32) 

 

Then, applying the second-order centered difference scheme in 

both time and space to values at grid points 

iii uuu   and  ,, 2/1

2/1

2/1

2/1







  
gives, 
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uu iiii
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
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
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


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1 

. (12.3.33) 

 

Finally, substituting the above provisional values of 
2/1

2/1



iu and 

2/1
2/1




iu  

from (12.3.32) into (12.3.33) leads to 
 

 

    
11

2

11

1 2
22



  iiiiiii uuu
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uu
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uu . (12.3.34) 
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From computational point of view, 
2/1

2/1

2/1

2/1  and  








ii uu  are provisional 

since they do not show up in (12.3.34), thus there is no need to 

store them permanently.  This saves the computer memory, just 

like the two-time-level schemes discussed earlier. 
 

The Lax-Wendroff scheme has a truncation error of ][][ 22 tOxO 

.  In other words, it has second-order accuracy in space and time.  

This is an improvement of the accuracy in two-time-level 

schemes.          
 

 Stability of the Lax-Wendroff Scheme 

It can be derived that  

 
 

2/1

422

2
sin141 







 


xk
CC

.  (12.3.35) 

 

Thus, the Lax-Wendroff scheme is stable if 

 

 112 





x

tc
or      C . (12.3.36) 

 

That is, the CFL stability criterion.  It can be proved that the last 

term of (12.3.34) serves as a damping term.  In fact, the Lax-

Wendroff scheme can be viewed as the modification of the 

forward-in-time and centered-in-space scheme with damping.   

 

 Damping characteristics of the Lax-Wendroff Scheme 
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For the shortest resolvable wavelength x2 , we have 
xk  / .  Substituting k into (12.3.35) yields 

 

 
221 C .  (12.3.37) 

 

For x4  wave, we have 

 

   2/1421 CC  .   (12.3.38) 

 

Therefore, the amount of damping is seen to be quite large for 

shorter waves.   

 

 Phase characteristics of the Lax-Wendroff Scheme: 

 

The phase error can also be calculated, 

 
 

 
   

xkC

xkCxkC

c
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






  

cos11/sintan
~ 21

. (12.3.39) 

 

Thus, the Lax-Wendroff scheme is dispersive since pc~ is a 

function of wave number (k).   It has a predominantly lagging 

phase error except for large wave numbers with 15.0 C . 

         

 

Modifications of the Lax-Wendroff Scheme 
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(d) The Crowley scheme 
 

 The Lax-Wendroff scheme was modified by Crowley 

(1968) to the following formula 

 

      
2112
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1 221
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

  iiiiiiiiiii uuuu C
C

uuu
C

uu
C

uu

  (12.3.40) 

The above scheme is also known as Crowley scheme.  The 

last term in the above equation is the third-order space 

correction term.   

 

In order to keep the amount of damping small, Kasahara 

(1969) has combined the Lax-Wendroff scheme with the 

leapfrog scheme (which is neutral).  The Lax-Wendroff 

scheme is applied only once in every hundred-time step.  
 

Schlesinger (1985) also has modified the Lax-Wendroff 

scheme by adding the negative of the third-order derivative 

in the Taylor's series expansion of its first order term. 

 

The Lax-Wendroff scheme has been fairly widely used in 

earlier atmospheric models due to its two-time-level 

advantage, second-order accuracy, and explicit 

characteristics (Richmyer, 1963).   
 

More detailed review of this scheme can also be found in 

Richmyer and Morton (1967) and Mesinger and Arakawa 

(1976). 
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(e) Warming-Kutler-Lomax (WKL) scheme 

Warming, Kutler and Lomax (1973) proposed a modified 2-

time-level scheme with three 3-steps represented by 
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  iiiii uuuuu          
,(12.3.41) 

 

where  is a free parameter added to insure the 

computational stability.  Note that 
**

iu values are 

provisional, which do not need a permanent storage in 

computer memory.   
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The advantage of the WKL scheme is that it can save 

memory while increases the accuracy as a 2-time-level 

method.   
 

The last term of (12.3.41) (i.e., the term with ) is 

analogous to the five-point numerical smoothing or 

diffusion. This will be discussed in the next chapter.  It can 

be shown that this scheme is stable when 

 

 341 42  CC  and   C . (12.3.42) 

 

The scheme has a minimum dissipation when 

 

 42
1 4 CC  , (12.3.43) 

 

and a minimum dispersion when 

 

 
  

5

414 22

2

C C 
 . (12.3.44) 

 

The readers are referred to Andersen and Fattahi (1974) for 

more detailed review of this scheme. 

 

(e) Multi-stage schemes 

The advection equation can be viewed as a special case of 

the following equation,  

 

)(uF
t

u





. (12.3.45) 



 

 

 

 

 

 

37 

The advection term is considered to be the forcing term.  

To improve the accuracy of two-time-level schemes, such 

as forward time difference, Eq. (12.3.45) may be 

approximated by the multi-stage scheme, 

 

 ( ),u u t F u         

  1   ( ) 1 ( )u u t F u F u               . (12.3.46) 

The above method reduces to the 

(1) Second-order Runge-Kutta schemes when 2/1  

   (e.g, WRF model time differencing)  

(2) Heun scheme when ,1 2/1   

(3) Forward-backward or Matsuno scheme when 1   

    (Matsuno 1966).   
 

More detailed reviews can be found in Durran (1998).  Time 

integration scheme in WRF: 

http://cires.colorado.edu/science/groups/pielke/classes/at75

00/wrfarw.pdf.  
 

3.3.2 Three-Time-Level Schemes 
 

(a) Leapfrog in time and centered in space schemes 

The advection equation may also be approximated by the 

scheme of second-order centered (leapfrog) in time and 

second-order centered difference in space, 
 

http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
http://cires.colorado.edu/science/groups/pielke/classes/at7500/wrfarw.pdf
http://cires.colorado.edu/science/groups/pielke/classes/at7500/wrfarw.pdf
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. (12.3.48) 

 

Substituting the wave solution Eq. (12.3.8)  

)( ),(ˆ),(),( txkniekutxnutxu      (12.3.8) 

into Eq. (12.3.48) yields, 

 ;sin 2 
1

xkiC
e

e
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r
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







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




  (12.3.49) 

where 

x

tc
Ce

ti







    ;


. 

 

The above equation may be rearranged to obtain 
 

 
22 1 0r ri t i te i e            . (12.3.50) 

Here  is just a temporary parameter defined as xkC sin2 .  

Regarding 
ti re    as the unknown in the above equation, 

we obtain 

      
2

4 2
  

 i
e ti r . (12.3.51) 

There exist two possible cases, namely, (1) 42  and (2) 

42  .   
 

Case 1: 42   
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Separating the real and imaginary parts of (12.3.51) gives

24
2

1
cos  tr , (12.3.52a) 

             
2

sin


 tr .  (12.3.52b) 

Summing the squares of the above two equations yields 

 1 . 

 

Therefore, the amplitude of the wave or disturbance is 

preserved for all wavelengths when 42  .  In other words, 

the scheme is neutral when 42  .  ( xkC  sin2 ) 
 

Case 2: 42   

  

 0cos tr , (12.3.53a)

 4
2

1

2
sin 2  


 tr . (12.3.53b) 

Now, summing the squares of the above two equations 

 

 4                4
2

1

2

22  


 if . (12.3.54) 

 

Claim: This scheme is unstable when 42  .   
 

To prove this, we only need to find a counter example of 1 .   
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For example, we may assume   2 , where  is a small 

positive number.  Substituting  into the positive root of 

Eq. (12.3.54) gives 

 

 
24

2

1

2
1 


   . (12.3.55) 

 

Since either root is possible, we may look at the solution 

with positive root, 

 

 
24

2

1

2
1 


  . (12.3.56) 

This gives 1 .  Therefore, the scheme of leapfrog in time 

and centered in space is linearly unstable when 42  .  

Note that xkC  sin2 . 

 

Thus, the stability is retained only when 42  .  Based on 

the definition of for Eq. (12.3.50), it requires 

 

 1sin22 xkC . (12.3.57) 

 

Since the maximum value of the sine square function is 1, 

the above equation is satisfied when 

 1C .        (12.3.58) 
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In fact, the CFL criterion is not only a necessary condition, 

but also a sufficient condition, for the linear stability for the 

scheme of leapfrog in time and second-order centered in 

space.   

 

 Phase characteristics of the leapfrog in time and second-

order centered in space scheme 
 

Divide (12.3.52b) by (12.3.52a), 

 {
24

2

1
cos  tr  (12.3.52a)} {

2
sin


 tr   (12.3.52b)} 

 

 
















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2

1

4
tan




 tr . (12.3.59) 

 
This gives the computational phase speeds, 

 

 
















 

2

1

4
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tkk
c r

p . (12.3.60) 

 

The phase error can then be obtained, 

 

  







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






 

2

1

4
tan

1
~





tkcc

cp

. (12.3.61) 

 

For c>0, Eq. (12.3.60) has two solutions, one propagating 

to the right ( 0~ pc ) and the other propagating to the left (

0~ pc ).   
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The first solution represents the physical mode, while the 

second solution represents the computational mode, which 

is purely generated by the numerical scheme. This causes 

the so-called time-splitting problem.   

 

This scheme also induces computational dispersion since 

the computational phase speed is a function of wave 

number (k).  In summary, the scheme of leapfrog in time 

and second-order centered in space is able to preserve the 

amplitude when 42  , but can generate errors due to the 

computational wave dispersion.    

 

Figure 12.6 shows examples of the amplitude and phase 

errors produced by applying this scheme and the forward in 

time and upstream in space scheme to the advection 

equation and comparing the numerical solutions with the 

analytical solution.         
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Fig. 12.6: An example of computational damping and dispersion. Comparison of the 

analytical solution (thin sold curve) and numerical solutions of applying the leapfrog in 

time and second-order centered in space scheme (dashed curve) and the forward in time 

and upstream in space scheme (heavy solid curve) to the advection equation with an 

initial rectangular wave.  Three nondimensional times are shown.  (Adapted after 

Wurtele, 1961) 

 

The scheme of leapfrog in time and second-order centered in 

space is able to preserve the amplitude of the initial rectangular 

wave much better than the scheme of forward in time and 

upstream in space.   

 

However, it produces a severe computational dispersion than the 

scheme of forward in time and upstream in space.  

            

In addition to the second-order centered in space, a higher-order 

accuracy scheme in the space difference may be derived. 
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For example, consider the following Taylor series expansions 

for )(  and  )( xxfxxf  , 
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 ....
!3

)('''
!2

)('')(')()(
32








x

xf
x

xfxxfxfxxf (12.3.63) 

 

Subtracting (12.3.63) from (12.3.62) leads to 
 

 ....)('''
3

1
)('2)()( 3  xxfxxfxxfxxf   (12.3.64) 

 

Now, consider the following Taylor series expansions for 
)2(  and  )2( xxfxxf  , 
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              (12.3.65) 
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Subtracting (12.3.66) from (12.3.65) leads to 

 

 ....)('''
3

8
)('4)2()2( 3  xxfxxfxxfxxf  (12.3.67) 

 

Eliminating f'''(x) terms from Eqs. (12.3.64) to (12.3.67) yields  
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
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          (12.3.68) 

This scheme has a fourth-order centered difference for the 

approximation of f’(x).   

 

Notice that the boundary points may be approximated by 

adjacent interior points.  For example, )(' xf at the left 

boundary can be approximated by ),2(),( xxfxxf 

)4(  and  ),3( xxfxxf  .  It can be shown that Eq. 

(12.3.68) can be obtained by extrapolation for the value 

2 / 3x  of the quotients of )(' xf from (12.3.66) and 

(12.3.67). 
  

Now apply the fourth-order-centered difference to the 

advective equation with the leapfrog in time, 
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. (12.3.69) 

The above equation may be rearranged to be 

 

     
2211

11  8  
6



  iiiiii uuuu
C

uu , (12.3.70) 

 

where C is the Courant number, as defined earlier.   

 

It can be shown that 
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for the fourth-order centered difference.  Compared with that 

of the second-order centered in space scheme 
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, (12.3.72) 

 

we have 

   





 ...
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4
1 ~ 2

xkccp    for 4th-order scheme, (12.3.73) 
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1
1 ~ 2

xkccp    for 2nd-order scheme. (12.3.74) 

Thus, both schemes are dispersive.  However, the phase 

speed error has been much reduced for longer waves 

(smaller k) by using the 4th-order scheme.   

The computational phase speeds associated with the 2nd-

order and 4th-oder centered difference schemes are shown 

in Fig. 12.7.   

 

Fig. 12.7: The computational phase speeds associated with the 2nd-order and 4th-

order centered difference schemes. (Adapted after Mesinger and Arakawa, 1976) 
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This figure indicates that  

(a) Very significant increase in accuracy of the phase speed 

for large-scale and mesoscale waves, and  

(b) More computational dispersion for shorter waves is 

associated with the 4th-order scheme since the slope of c4 is 

larger than c2.   

 

Because of the decrease in the phase speed error of the 

longer waves, the use of 4th-order centered difference in 

space scheme for the advection equation has brought 

significant improvements in operational numerical 

forecasting in both barotropic and baroclinic models. 
 

(b) Adams-Bashforth Scheme  

Eq. (12.3.45) is approximated by  

 

 
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 11  uFuFtuu . (12.3.47) 

 

Advantages: It does not generate time splitting as that 

produced by the leapfrog scheme, or the numerical 

diffusion produced by the upstream difference.   
 

Lilly (1965) reviewed eight schemes adopted in 

atmospheric models then and found that the Adams-

Bashforth scheme is the best in considering the simplicity, 

efficiency, and accuracy together.   
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Baer and Simons (1970) found that the nonlinear advection 

terms and energy components might have large errors.   
             

3.4  Implicit schemes   

 With the finite difference schemes proposed as above, the 

advection term is evaluated at time step .  In this way, the 

variable at time step +1 can be predicted explicitly by 

those at time step .   Thus, these schemes are called 

explicit schemes.   

However, the CFL stability criterion imposes a severe 

restriction on the time interval with a resultant increase 

in computational time.   

 

 This restriction may be relaxed by evaluating the 

advection term at time step 1 .  For example, let us 

consider the Euler implicit method (e.g. see Tannehill et 

al., 1997) 
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In the above approximation, the forward difference is 

applied to the time derivative, while the 2nd-order-

centered difference is applied to the spatial derivative at 
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time step 1 .   In order to solve u at time step  + 1, we 

move all of them to the left-hand side 
 

 .1...,3,2,1     ,
22
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uu
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  (12.4.2) 

 

Thus, one cannot solve the equation for a general point, 
1

iu , alone.  Instead, we have to solve the system of 

algebraic equations, as shown in Fig. 12.8, 

simultaneously.   

 

 

 

 

 

 

 

 

 

Fig. 12.8: The system of algebraic equations of (12.4.2) for 

Euler implicit method with boundary conditions, 

0),0( 1
1  utu  and 

1(( 1) , ) 0Nu N x t u     .   

 

 In general, one can introduce a weighing factor  and 

replace (12.4.2) by 
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  (12.4.3) 

If 0 , the above formula reduces to the complete 

explicit scheme, i.e. the forward in time and centered in 

space scheme, Eq. (12.3.6).   

 If 1 , the Euler implicit scheme, (12.4.2) is recovered.   
 

 To find out the computational stability, we substitute Eq. 

(12.3.8) into Eq. (12.4.2) to obtain 

 

  
xkC 


22 sin1

1
 . (12.4.4) 

 

 The above equation indicates that the implicit Euler 

scheme is unconditionally stable since the right-hand 

side is always less than 1.   
 

 In general, the use of an implicit scheme permits larger 

time steps than the explicit form without causing linear 

instability.   
 

 To invert the matrix, either direct or iterative methods 

can be applied.  The direct methods include the 

Gaussian elimination method, LU decomposition, etc.  

The iterative methods include the Jacobi method, Gauss-

Seidel method, relaxation method, etc.  
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Discussions on the direct and iterative methods of 

inverting a matrix can be found in numerical analysis 

textbooks. 
 

 Sometimes, a semi-implicit scheme is adopted, in which 

those terms in the equations of motion that are primarily 

responsible for the propagation of gravity waves are 

treated fully implicitly, while other terms are treated 

explicitly (e.g., Kwizak and Robert, 1971).   
 

 One simple semi-implicit scheme has been adopted in 

modeling the geophysical fluid flow is the trapezoidal 

semi-implicit scheme.  For example, the linear horizontal 

shallow water momentum equation in x-direction, i.e. 

Eq. (4.4.21),  
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may be discretized by the trapezoidal semi-implicit scheme as 
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The primes have been ignored in the above equation.   
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Notice that the advection term is treated in explicit manner 

and the spatial derivative is centered at 2/1  time step by 

averaging values at time steps and +1.  It also can be 

shown that the trapezoidal implicit scheme is unconditionally 

stable (Mesinger and Arakawa, 1976).   

 

 The disadvantage of this scheme is that it has a serious 

phase error not only for short waves as in the leapfrog 

time difference scheme, but also for relatively large 

Courant number (Haltiner and Williams, 1980).  

 

3.5  Semi-Lagrangian Methods  

 Ideally, the advection equation may be integrated by 

following the fluid particles in a Lagrangian manner 

)/( DtDu , so that one does not have to discretize the local 

rate of change )/( tu  and advection terms )/e.g.,( xuu 

separately.   

 

In fact, Fjortoft (1952) has proposed a graphical method 

for solving the barotropic vorticity equation using a 

single time step of 24h by following a set of fluid 

particles, or say by taking a Lagrangian approach.   

 

Welander (1955) pointed out that in general a set of fluid 

particles, which are initially distributed regularly at the 
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initial time will soon become greatly deformed, and are 

thus rendered unsuitable for numerical integration.   

 

To avoid the above difficulty, Wiin-Nielson (1959) then 

introduced a semi-Lagrangian (occasionally referred to 

as quasi-Lagrangian) approach. 

 

In a semi-Lagrangian approach, a set of particles which 

arrive at a regular set of grid points are traced backward 

over a single time interval to their departure points.  The 

values of the dynamical quantities at the departure points 

are obtained by interpolation from neighboring grid points 

where their values are known.   

 

Notice that in this semi-Lagragian method, the set of fluid 

particles in question changes at each time step, which is 

different from the Lagrangian method, such as that used 

by Fjortoft (1952).   
 

Robert (1981) showed that the use of the semi-Lagrangian 

semi-implicit scheme offers significant advantages over 

the purely Eulerian approach for NWP.  For detailed 

reviews, the readers are referred to Bates and McDonald 

(1982) and Staniforth and etôC  (1991).  
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[Reading Assignment] To demonstrate the semi-

Lagrangian method, we may consider the one-dimensional 

nonlinear advection equation in the form of total derivative, 
 

 
0

Dt

D

,       x
u

tDt

D











, (12.5.1) 

 

 where  is any variable under consideration.   

 

Fig. 12.9: A schematic of semi-Lagrangian method. 

 

Integrating over the trajectory of a fluid particle that 

arrives at a grid point xi  and at time t )1( , denoted as P 

in Fig. 12.9, we have 

    *
1 

i , (12.5.2) 
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where 
 *  is the value of  at the departure point of the 

particle at time t .   

 

Note that  *  is obtained by polynomial interpolation from 

the neighboring grid points.   

 

The stability and accuracy of the scheme depends on the 

interpolation method used.   

 

For example, we may consider the linear interpolation 

from the surrounding grid points (i-p) and (i-p-1) for  * , 

 

  
xxptu

pipipi
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

 

  1*

, (12.5.3) 

 

where u is the advection velocity as represented in Eq. 

(12.5.1).  The above equation may be rearranged to be 

 

     1*  
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 pipipi p

x

tu
. (12.5.4) 

 or 
 

    1*  ˆ   pipipi , (12.5.5) 

 

 where 
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  xtup  /       ,ˆ  . (12.5.6) 

 

 Therefore, from (12.5.2) we have 

 

    1

1  ˆ 

  pipipii . (12.5.7) 

 

According to Eq. (12.5.6) and Fig. (12.9), ̂  is the 

fractional part and p is the integral part after advection of 

a non-dimensional distance xtu  / .  

 

 To examine whether the semi-Lagrangian method is 

computationally stable or not, we may again assume a 

wave-like solution, 

 

    
  xiknti

i ee r 
 ˆ . (12.5.8) 

   

  Substituting it into Eq. (12.5.7) yields 

 

   
tiexk




      ),cos1)(ˆ1(ˆ212 . (12.5.9) 

 

  Thus, in order to have a computationally stable solution  

( 1 ), we require  
 

 1ˆ0  . (12.5.10) 

 

 {Note that xtup  /       ,ˆ  . (12.5.6) and Fig. 12.9.} 
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 That is, the departure points must lie within the 

interpolation interval (i-p-1, i-p).  However, the choice of 

departure is just based on this.  Therefore, the semi-

Lagrangian scheme is unconditionally stable. 

 

 The semi-implicit method may be incorporated into the 

integration by considering the other terms (Robert 1982), 

such as the pressure gradient force term in the momentum 

equation, as time averages along the trajectory, while the 

total time derivative is evaluated by either leapfrog, 

forward or other time difference schemes.   

 

 To elucidate this, let us consider the following 

Boussinesq, horizontal momentum equation, 

 

  0
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



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x
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fv
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. (12.5.11) 

 

The total derivative of the above equation may be 

approximated by the scheme of forward in time, 
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 where 
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  ttaxua  ),( . (12.5.13) 

 

 The above equation can be solved by using an iterative 

method to obtain the upstream displacement or the 

departure point, a.   

 

 We may apply the semi-implicit approximation to the 

other terms on the left hand side of Eq. (12.5.11) 
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  (12.5.12) 

 

 

 where the subscript av denotes the time average.   

 

Then, the horizontal momentum equation can be 

approximated by the semi-implicit semi-Lagrangian 

scheme, 
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 The above equation may also be rewritten as 
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   (12.5.16) 
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Moving all terms at time tt  to the left-hand side gives 

the following form of the semi-implicit semi-Lagrangian 

method,  
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          (12.5.17) 
 

 

This will form a set of linear algebraic equations, which 

can be written in a matrix form.  Thus, a method for 

inverting the matrix, such as the Gaussian elimination 

method or the Gauss-Seidel method, is needed to obtain 

the solution for time step tt  .   

 

Notice that the advantage of the semi-implicit semi-

Lagrangian scheme is that it is unconditionally stable, so 

that a relatively large time step can be used.  The 

disadvantage of this scheme is that the iterative method 

for finding the departure points and the method for 

inverting the matrix is time consuming. 
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Appendices 

Appendix 12.1: Formulas for Finite Difference Approximations of Derivatives 

(Modified from Gerald and Wheatley 1984) 

 

Formulas for the first derivatives: 
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Formulas for the second derivatives: 

),(
)()(2)2(

)("
2

xO
x

xfxxfxxf
xf 




  (forward difference) 

),(
)()(2)(

)(" 2

2
xO

x

xxfxfxxf
xf 




  (2nd-order centered difference) 

),(
)(2)(5)2(4)3(

)(" 2

2
xO

x

xfxxfxxfxxf
xf 




  

).(
12

)2()(16)(30)(16)2(
)(" 4

2
xO

x

xxfxxfxfxxfxxf
xf 




  

 (4th-order centered difference) 

Formulas for the third derivatives: 
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Formulas for the fourth derivatives: 
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