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13. Numerical modeling of geophysical fluid systems 

 

Chapter 13 Numerical modeling of geophysical fluid systems 

 In the previous chapter, we discussed various numerical approximations of the 

advection equation.  However, to simulate a geophysical fluid system, such as the 

atmosphere and ocean, within a finite region, we need to choose the domain size, grid 

size, time interval, total integration time, and consider other factors, such as the initial 

condition and boundary conditions.  In addition, when we deal with a real fluid system, 

the governing equations are much more complicated than the one-dimensional, linear 

advection equation, as considered in the previous chapter.  For example, we have to 

integrate three-dimensional nonlinear governing equations with several dependent 

variables, instead of a one-dimensional advection equation with only one variable.  When 

a nonlinear equation is being approximated by numerical methods, one may face new 

problems such as nonlinear computational instability and nonlinear aliasing.  Special 

numerical techniques are required to avoid these types of problems. Once optimal 

approximate forms of the equations are selected, it is still necessary to define the domain 

and grid structure over which the partial differential equations will be approximated.  In 

this chapter, we will also briefly describe on how to build a basic numerical model based 

on a set of partial differential equations governing a shallow water system, and a 

hydrostatic or nonhydrostatic continuously stratified fluid system.  
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13.1 Grid systems and vertical coordinates 

 The first step in developing a mesoscale numerical model is to determine appropriate 

domain size, grid intervals, time interval, and total integration time of the model.  

Selection of the domain size, grid interval, total integration time and time interval in a 

mesoscale model is usually based on both physical and numerical factors, such as: (1) 

spatial scales and dimensionality of the forcing and physical processes, (2) time scales of 

the forcing and the fluid responses to the forcing, (3) stability criterion of the adopted 

numerical scheme, (4) limitations of predictability of the atmospheric phenomena, and 

(5) availability of computer resources.  To represent mesoscale atmospheric systems 

properly, it is required that: (a) the meteorologically significant variations in the 

dependent variables caused by the mesoscale forcing and fluid responses be contained 

within the model domain, and that (b) the averaging volume used to define the model 

grid spacing be small enough for the mesoscale forcing and responses to be accurately 

represented. 

 In making mesoscale numerical weather prediction (NWP), one needs to accurately 

represent multiscale processes in a finite domain.  On the one hand, it is important to 

capture the smaller-scale weather systems, requiring the grid and time intervals to be fine 

enough to resolve small-scale processes.  On the other hand, it is equally important to 

capture the larger-scale environment, which is responsible for the formation and 

modification of the smaller-scale weather systems.  Therefore, the model domain should 

be large enough to contain the essential large-scale environment.  Problems arise if a 

domain is inappropriately selected.  For example, Fig. 13.1 shows two identical 

simulations for a hydrostatic flow over a bell-shaped mountain except with different 
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domain sizes.  With a smaller domain (Fig. 13.1b), the simulated horizontal wind field is 

more horizontally oriented and the wave weakens more rapidly with height.  The 

difference in the horizontal orientation is due to that the upstream flow conditions at the 

left boundary, such as the wind speed and Brunt-Vaisala frequency of the basic flow, 

have been affected by the upstream propagating waves generated by the mountain.  The 

flow field in the interior of the domain has thus been affected artificially by the wave 

reflection from the lateral boundaries, which means part of the waves cannot propagate 

upward, as the hydrostatic waves are supposed to do.   

 Once the domain interval is chosen, the next natural step is to choose an appropriate 

grid size (interval).  The choice of grid interval used in a numerical model depends on 

spatial scales of the dominative forcing and flow responses. The grid interval should 

represent the forcing and fluid responses well; otherwise the simulated results will not be 

accurate.  For example, in simulating a stratified fluid flow over a region with orographic 

or thermal forcing, the grid interval should be fine enough to properly represent the 

geometry of the forcing.  Normally, this can be done by inspecting the smoothness of the 

mountain shape, but it can also be carried out more rigorously by performing power 

spectrum analysis which gives a plot of the portion of a signal’s power (energy per unit 

time) falling within given frequency range.  Numerous examples can be found for the 

impacts of the grid interval on simulations of weather systems in the literature. 

 After choosing the domain size, grid interval and grid structure, the next step is to 

choose the time interval, which is normally determined by the time variation of the 

forcing and stability criterion.  The latter depends on the numerical method adopted.  The 

linear stability criterion, as discussed in the last chapter, can serve, as a first guess of the 
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time interval needed to guarantee the computational stability of the model.  As will be 

discussed later, nonlinear equations have a stricter criterion on computational stability, 

which is related to the time scale and the predictability of the weather phenomenon 

interested, as well as the computing resources available.   

 

13.1.1 Grid systems 

 Different types of grid meshes have been adopted in mesoscale NWP models, such as 

(a) uniform grid mesh, (b) stretched grid mesh, (c) nested grid mesh, (d) movable grid 

mesh, (e) adaptive grid mesh, and (f) staggered grid mesh.  Some of these grid meshes 

can be combined in a model.  

 For the uniform grid mesh, grid intervals are set to be equal in horizontal or in 

vertical.  The advantages of this type of grid mesh are that it is relatively easy to code 

onto the computer, and it is relatively simple to input geographic features into the model.  

The disadvantages of the constant grid mesh include that it is difficult to properly 

incorporate both large and small features within the same model domain.  For example, if 

one uses the same grid interval in vertical, it will be difficult to properly resolve the 

boundary layer circulation, while it is more than enough to resolve circulation in the free 

atmosphere, especially in the upper troposphere.   

  In order to improve the computing efficiency, stretched grid mesh is used, in which 

the grid intervals vary in space.  The advantage of the stretched grid mesh is that with the 

same computing time, a much larger domain than the uniform grid mesh with the same 

number of grid points can be adopted for numerical simulations.  Adopting a grid mesh 

stretched from a finer resolution near the surface to a relatively coarse resolution in the 
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upper layer allows a model to resolve some smaller-scale disturbances present in the 

planetary boundary layer.  If the grid intervals are stretched too abruptly, internal 

reflection may occur.  In many mesoscale numerical simulations, the grid mesh is often 

stretched.  The vertical turbulent mixing provides a measure of the needed grid 

resolution.  The vertical stretch of the grid intervals may be defined by a known function, 

such as a logarithmic function, or specified by particular heights or horizontal distances.   

A two-way stretching may also be used.  For example, in order to better represent the 

waves near a critical level, one may need to specify the grid mesh with very fine 

resolution near the critical level and stretches to coarser resolution both upward and 

downward.  

 An alternative approach to the stretched grid mesh is to insert a fine-mesh grid mesh, 

i.e. a nested grid mesh, within a coarse grid, which allows one to simulate smaller-scale 

features in the nested grid meshes. The smaller-scale features are not resolvable by the 

coarse grid mesh.  During the simulation, the coarse mesh provides the boundary 

conditions for the fine mesh.  There are two types of grid nesting techniques: (i) one-way 

nesting which only permits disturbances in the outer grid mesh to enter the finer nested 

grid mesh, but not the other way around, and (ii) two-way nesting in which the boundary 

values of the inner grid mesh are passed back to the outer grid mesh.  Note that under the 

nested grid mesh system there is a discontinuity across the boundaries of the fine and 

coarse grid meshes.  Nested-grid mesh techniques have been used in many research and 

operational models.  The above-mentioned nested grid mesh can also be designed to 

move with a weather system, such as a thunderstorm, mesoscale convective system, 

front, midlatitude cyclone or tropical cyclone.  The advantage of a moving grid mesh is 
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that it can follow the weather system and always provides a finer resolution needed in the 

vicinity of it.   

 To improve the nested and moving grid mesh techniques, adaptive grid mesh 

techniques have been developed.  Grid points can be added in a structured manner 

through the placement of multiple and perhaps overlapping finer-scale grids in the 

domain.  Figure 13.2 shows one example of using 4 adaptive grid meshes to simulate a 

cold pool collapse.  Regions of strong potential temperature gradients along the gust front 

and Kelvin-Helmholtz billows are well simulated by using the adaptive grid mesh.  In the 

adaptive grid mesh, a fixed number of grid points or collocation points may also be 

redistributed in a predetermined manner to provide locally increased resolution and thus 

an improved solution in certain regions of the domain.  Figure 13.3 shows a simulation of 

kinematic frontogenesis, which is similar to a smoothed Rankine vortex being advected 

by a steady, nondivergent field, using this type of structured continuous dynamic grid 

adaptation (CDGA).  With both 31x31 grid points, the simulated  kinematic 

frontogenesis being advected by a steady, nondivergent flow field with structure similar 

to that of a smoothed Rankine vortex (Fig. 13.3c) by using CDGA (Fig. 13.3d) is much 

better than that of uniform grid mesh (Fig. 13.3b), when comparing with the exact 

solution (Fig. 13.3a).  One limitation of this type of structured adaptive grid mesh is that 

it is not suitable for dynamic grid adaptation because the grid generation requires a high 

degree of user interaction and user expertise.  Thus, it is not an easy task to apply this 

type of method for real-case simulations.  In order to resolve the problem, the 

unstructured adaptive grid mesh has been proposed in dealing with both large- and 

small-scale features without having to use a nested grid mesh (e.g., Bacon et al. 2000).  
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 In order to preserve some conservation laws, a staggered grid mesh is used.  In a 

staggered grid mesh, variables of a system of differential equations are defined at 

different grid points which are staggered with respect to each other.  To elucidate the 

formulation of a staggered grid mesh, let us consider the two-dimensional incompressible 

continuity equation: 
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For an unstaggered grid mesh (Fig. 13.4a), a simple finite difference form can be written 

  z
x

uu
ww

kiki

kiki 








2

2/1,12/1,1

1,, , (13.1.2) 
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For a staggered grid mesh (Fig. 13.4b), a simple finite difference form can be written 
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where u is defined at half-way between the grid points at which w is defined.  Thus, 

staggering the dependent variables as given by (13.1.4) increases the effective resolution 

by a factor of two, since derivatives are defined over an increment x, for instance, 

rather than 2x, yet without requiring averaging as in (13.1.2). 

 To examine the computational stability and phase velocity associated with a 

staggered grid mesh, we can consider applying the leapfrog in time and second-order 

centered difference scheme to the two-dimensional, linear shallow water equations, 

(3.4.7) and (3.4.9), with U = 0 on a staggered grid mesh as shown in Fig. 13.5: 
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The numerical dispersion relationship for the above system is  
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where gHc   are the shallow-water phase speeds.  Since the solutions of the two-

dimensional shallow water wave system are neutral, a real   is required, which implies 

that a stable solution requires 2/1/  xtcC .  The stability criterion for an 

unstaggered grid mesh can be derived to be 1C .  Therefore, the maximum time 

interval for a staggered grid system is half of the corresponding unstaggered mesh 

system, which implies that the computational time is almost doubled.  The more stringent 

requirement on integration time interval may be compensated for by an improved 

computational phase speed in using a staggered grid mesh, as shown in Fig. 13.6.  Figure 

13.7 shows five grid meshes proposed by Arakawa and Lamb (1977).  For staggered grid 

meshes, grid meshes B and C, often referred to as Arakawa-B grid and Arakawa-C grid, 

respectively, can better preserve the phase speed and group velocity. 

 

13.1.2 Vertical coordinates 

 In simulating a mesoscale flow within a finite domain, the height vertical coordinate 

may propose problems.  For example, it may intercept the terrain in a mountainous area 

and thus create problems in dealing with the lower boundary condition.  Similar problems 
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happen to the pressure coordinate and isentropic coordinate when isobaric surfaces and 

isentropic surfaces intercept the lower boundary, respectively, which may occur when 

there is strong orographic blocking.   

 To avoid the problem, a vertical sigma coordinate, which matches the lowest 

coordinate surface with the bottom topography, has been proposed (Phillips 1957).  In 

this type of vertical p  coordinates, the pressure coordinate is normalized by the 

surface pressure, ps,   

  
Sp

p
 . (13.1.8) 

Thus, = 1 at the surface, and = 0 at the top of the atmosphere.  The  vertical 

velocity, DtD /  , is 0 at both the surface and top of the atmosphere.  In (13.1.8),  

can also be defined as )/()( TST pppp  , where 
Tp  is the pressure at the top of the 

numerical domain.  The same concept may also be applied to the isentropic coordinates, 

in which  can be defined as 
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The coordinate system in (13.1.9) is called    coordinates.   One of the advantages of 

the vertical isentropic coordinate is that it can better resolve the vertical structure of 

weather systems, such as tropopause folding and upper-level frontogenesis.  When the 

sigma coordinate is applied to the height coordinates, it is called z  or the terrain-

following coordinates in which the  can be defined as 
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where Sz is the height of the lower surface in the z  coordinates, which is 

independent of time, and Tz is the constant domain height or the constant height of the 

terrain-following part of the domain.  In the general  coordinates, the pressure, p, can be 

written as 

  ]),,,,(,,[),,,( ttzyxyxptzyxp  . (13.1.11) 

The pressure gradient in x direction in the z coordinates can be obtained by performing 

the chain-rule, 
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The pressure gradient ( xp  / ) in the  coordinates can be obtained by deriving 

 zx / from (13.1.10) and substituting it into (13.1.12): 
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The sigma coordinate transformation may also be applied to the mass (hydrostatic 

pressure) coordinates (Skamarock et al. 2005), in addition to the z coordinates.  If 

one replaces p by a general variable A, then the above transformation may be used to 

derive the gradient of A in x direction.   

 One problem of the sigma vertical coordinate systems is that errors in two terms of 

the pressure gradient force do not cancel out (Smagorinski et al. 1967).  To avoid this 

problem, the step-mountain or eta coordinates have been proposed (Mesinger et al. 

1988).  In that model, eta ( ) is defined as 
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with 
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In the above equations, p is pressure; the subscripts T and S denote the top and surface 

values of the model atmosphere; z is geometric height, and ( )rp z  is a suitably defined 

reference pressure as a function of z.   The boundary conditions assumed are p=constant 

at the top boundary (= 0), and 0 at = 0 and at the horizontal parts of the ground 

surface ( S  ).  The advantage of this approach is that it does not transform the 

governing equations into complicated forms. However, the disadvantage of this 

coordinate is that it is of the first order of accuracy in representing the terrain, which is 

less accurate compared with the terrain-following coordinates, which is of the second-

order of accuracy.  A third method is to adopt a finite-element scheme, which 

approximates the mountain surface by one side of the finite elements.  It has the same 

advantage as not having to transform the governing equations into complicated forms as 

well as having a higher-order accuracy compared to the step-mountain coordinates.   

 So far, we have discussed about how to set the domain size, vertical and horizontal 

grid intervals, grid mesh and vertical coordinate.  However, we still need to find (a) the 

temporal values of variables at the beginning of the integration, and (b) the boundary 

values of a finite domain.  These are required by the fact that we are solving the initial-

boundary value problems mathematically. 

 

13.2 Boundary conditions 
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 To make the mathematical problem well-posed, appropriate boundary conditions 

need to be specified in any limited-area models, such as mesoscale NWP models.  If the 

model domain represents only part of the atmosphere in every direction, then boundary 

conditions are needed at the top, lateral, and lower boundaries of the model domain.  The 

number of boundary conditions depends on the order of the differential equations in a 

particular direction involved.  

 

13.2.1 Lateral boundary conditions 

 Basically, there are five types of lateral boundary conditions adopted in mesoscale 

NWP models: (1) closed boundary condition, (2) periodic boundary condition, (3) time-

dependent boundary condition, (4) sponge boundary condition, and (5) open (radiation) 

boundary condition. 

 In a closed lateral boundary condition, variables at the lateral boundaries are 

specified as constant values.  Under such a situation, the waves or disturbances generated 

within the domain cannot propagate out of the domain; instead they are reflected back 

into the domain once they reach the lateral boundaries.  The reflection of waves and 

disturbances back into the domain gives the name “closed boundary condition”, since the 

model domain retains such disturbances.  The use of the closed lateral boundary 

conditions works if the actual physical condition is closed, such as a solid wall. In 

addition, the boundary conditions will also work if the lateral boundaries are located far 

away so that the generated disturbances or waves do not reach the lateral boundaries at 

the desired integration time.   
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 A periodic boundary condition assumes all the variables at the right boundary are 

equal to the left boundary, i.e. 
0( ) ( )Nx x  , where   is a field variable, or vice versa.  

Period boundary condition is an appropriate choice for a fluid flow system which does 

repeat itself at the lateral boundaries, such as sinusoidal waves propagating around a 

latitudinal circle of the Earth.  A time-dependent lateral boundary condition is often 

adopted when numerical integration are performed concurrently at both the inner and 

outer domains, the lateral boundary values of the inner domain need to be specified by 

the updated values predicted by the outer domain.  In this way, the weather systems, 

waves, or disturbances are able to propagate into the inner domain and produce the 

desired weather systems or fluid motion.  Otherwise, the simulations of the inner domain 

cannot reflect the larger-scale environmental changes with time, which is called one-way 

nesting.  If the lateral boundary values of the inner domain are passed back to the outer 

domain, then it is called two-way nesting.   

 The sponge or wave-absorbing layer boundary condition uses an enhanced filtering 

near the lateral boundaries to damp the waves or disturbances generated within the 

domain out of the lateral boundaries.  For example, a sponge region can be formulated 

the as follows (Perkey and Kreitzberg 1976): 
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where m  denotes the model calculated tendency of variable  , ls denotes the larger scale 

specified tendency and Wi is a weighting factor which is given as follows:  

 Wi = 0.0 for the boundaries for i = 0 or N 

  = 0.4 for the boundaries for i = 1 or N - 1 
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  = 0.7 for the boundaries for i = 2 or N - 2 

  = 0.9 for the boundaries for i = 3 or N - 3 

  = 1.0 for all the interior points of 4 4i N   . (13.2.2) 

Even though the wave-absorbing layer oversimplifies the boundary conditions, it has 

considerable practical applications (Davies 1983). 

 For pure gravity waves, the horizontal phase velocity is directed in the same sense as 

the horizontal group velocity, such as those shown in (3.5.14) and (3.5.15): thus it is 

possible to use the advection equation to advect the wave energy out of the lateral 

boundaries.  Based on this concept, an open (radiation) boundary condition for a 

hyperbolic flow in a numerical model was proposed (Orlanski 1976).  For the outflow 

boundary, the radiation boundary condition may be written 
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where *

ocU   is the propagation speed at the outflow boundary (x = L), which is yet to be 

determined.  The leapfrog finite difference representation for time step - 1 of the above 

equation may be written 
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Based on the above approximation, the phase speed can be estimated by 
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where subscript b denotes the boundary point and R.H.S. means the right-hand side.  For 

a hydrostatic and incompressible fluid system, since w is coupled with u, one can use the 

estimated phase speed of u for w.  The phase speed estimation can also be applied to the 

coupled variables of potential temperature and pressure.  Once the phase speed is 

estimated, then the boundary value at time step 1 can be determined 

     1
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where *

ocU  is estimated by (13.2.5).  A similar formula can be formed for the inflow 

boundary: 
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Note that the specification of   at both boundaries will lead to an overdetermined 

problem for the first-order advection equation.  In fact, this renders the problem ill-posed 

(Oliger and moSundstr   1978).  Nevertheless, wave-absorbing layers have considerable 

practical utility even when they require overspecification of the boundary conditions 

(Davies 1983). 

 In practice, the constant gradient lateral boundary condition has also been adopted in 

mesoscale NWP models, which specifies a constant gradient, such as zero gradients (e.g., 

0/  x ,   is the variable concerned), at the lateral boundaries. The effectiveness of 

the constant gradient lateral boundary condition to propagate the waves out of the domain 

depends on how close the specified constant gradients are to the advection speed of the 

physical waves.  The constant gradient lateral boundary conditions can be viewed as a 

special case of the radiation boundary condition.  For example, a zero gradient lateral 
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boundary condition, such as   1

1



  NN , assumes the wave propagating out of the right 

boundary at a speed of txc  / .  If the real physical wave speed is very different from 

this numerical phase speed, then a large reflection from the boundary may occur. 

 

13.2.2 Upper boundary conditions 

 The upper boundary of a mesoscale NWP model should be placed high enough above 

the region with active mesoscale waves and disturbances.  Ideally, it should be placed at 

the top of the atmosphere, i.e. p = 0. However, practically, this is impossible due to the 

restriction of computing resources.  Depending on the weather phenomena simulated by 

the model, it may require the top boundary of a numerical model domain be placed at 

deep within the stratosphere, at the tropopause, or within the stable layer of the 

troposphere.  For example, a sea breeze circulation in a stable boundary layer normally 

does not penetrate to a high altitude, thus allowing a top boundary of a mesoscale model 

to be placed at the mid-troposphere.  On the other hand, in simulating a flow over a 

mesoscale mountain, the mountain waves often can propagate to a very high altitude, 

therefore a much higher vertical domain is required.  No matter how high the model 

domain extends in vertical, an appropriate upper boundary condition is still needed.  For 

example, the disturbances or waves generated by a mesoscale mountain in the lower 

stratosphere may look like very weak, but the energy per unit area associated with them 

could be very large because it is proportional to N  (e.g. see (13.2.31)) and N is much 

larger in the stratosphere compared to that in the troposphere.    

 Upper boundary conditions that have been adopted in mesoscale NWP models can be 

categorized as (1) rigid lid, (2) sponge layer (Klemp and Lilly 1978; Anthes and Warner 
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1978; Mahrer and Pielke 1978), and (3) radiation condition (Klemp and Durran 1983; 

Bougeault 1983).  A rigid lid upper boundary condition can be implemented by simply 

setting the desired variables to be constants.   The sponge layer and radiation conditions 

are found to be effective in radiating the wave energy out from the interior of the 

numerical domain.  Basically, these two approaches are taken to numerically approximate 

the Sommerfeld (1949) radiation boundary condition, which allows the energy associated 

with disturbances generated in the interior of a physical system to propagate out of the 

domain. 

 The addition of a sponge (wave-absorbing) layer to the top of the physical domain is 

a simple way to mimic the Sommerfeld (1949) radiation boundary condition in a 

numerical model.   The sponge layer is designed to damp out disturbances generated in 

the physical layer out of the upper boundary.  To elucidate the formulation of a sponge 

layer, we consider the following two-dimensional, steady-state, linear, hydrostatic, 

nonrotating, Boussinesq flow with Rayleigh friction and Newtonian cooling added to the 

momentum and thermodynamic equations, respectively: 
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The above equations may be obtained from (3.5.1)-(3.5.4).  To minimize reflections 

caused by rapid increases in viscosity, one may consider the following function, which 

gradually increase  from 0 at 1z to T  at Tz ,  
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To investigate the properties of wave reflection from the wave-absorbing layer, we 

assume a wave-like solution in x  direction, 

ˆˆ ˆ ˆ( ', ', ', ') [ , , , ] ikxu w p u w p e  . (13.2.13)  

Substituting the above equation into (13.2.8) - (13.2.11) yields  
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The general solutions of the above equations may be written 
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  (13.2.16) 

are the Scorer parameters for uniform basic flow (U ) in the physical and sponge layers, 

respectively.  The four coefficients in (13.2.15) are determined by the upper boundary 

condition, lower boundary condition, and two interface conditions at 1z .  According to 
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Eliassen and Palm theorem (Section 4.4), the term 
1c  ( 2c ) represents the upward 

(downward) propagation of the wave energy.  Thus, the ratio 

 
1

2

c

c
r  , (13.2.17) 

represents the reflectivity produced by the upper viscous layer.  Note that r can be 

obtained by applying the interface conditions at 
1zz   and the boundary condition 

Tzzatw      0ˆ .  To minimize the reflection from the upper boundary, it is suggested 

that the depth of the sponge layer should be greater than the hydrostatic vertical 

wavelength (U) of the mesoscale disturbance (Klemp and Lilly 1978).  Figure 

13.8 shows the reflectivity from the sponge layer as a function of the nondimensional 

inverse Reynolds number, Uk T /Re/1  , where k is the horizontal wave number.  In 

practice, 6/ 1 T
 is a better choice to avoid the reflection due to the rapid increase of 

the coefficient of viscosity (Klemp and Lilly 1978).  If the physical layer is assumed to be 

inviscid ( 01  ), one may choose 5/2  kUT , where k is the horizontal wave 

number.  For example, we may choose 
1002.0  s T for a basic flow with 110  ms U  

over a bell-shaped mountain with km a 20 .  Figure 13.9 shows the results from a 

hydrostatic numerical model (panels a and b) using a sponge layer for flow over a bell-

shaped mountain and compared with those calculated from Long’s (1953) nonlinear 

theory.  A vertical domain of 3.4 is used, in which the upper half is the sponge layer, 

and thus, the vertically propagating hydrostatic waves are effectively absorbed by the 

sponge layer. 
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 Since the addition of a sponge layer increases the computational time significantly, a 

direct application of the Sommerfeld (1949) radiation condition has been proposed.  To 

elucidate the numerical radiation boundary condition, we may consider the two-

dimensional, linear, hydrostatic, Boussinesq equations for a uniform basic state in the 

absence of Coriolis force: 
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We assume a wave-like solution, 

 )(),,,()',',','( tmzkxi
oooo e  pwupwu   , (13.2.22) 

and substitute it into (13.2.18) - (13.2.21) to yield the dispersion relation,  

 2222 )( kNkUm  . (13.2.23) 

From the above equation, the horizontal phase speed and the horizontal group velocity 

characterize the horizontal propagation of hydrostatic gravity waves: 
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Thus, for each wavenumber pair (k, m), the horizontal propagation speeds of the phase 

lines and energy are identical.  Consequently, the outward propagating wave energy can 

be transmitted through a lateral boundary by numerically advecting disturbances out of 

the boundary based on their horizontal phase speed, as discussed in Section 13.2.2.  For 

nonhydrostatic waves, pxc and gxc are not identical: however, they are propagating in the 

same direction.  Thus, the radiation or open lateral boundary condition is still able to 

advect the energy out by a simple advection equation.   

 In the vertical direction, the situation is completely different.  For simplicity, we may 

assume 0U .  The phase speed and group velocity can be derived, 
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Note that cpz and cgz have opposite signs, which implies that a positive cpz corresponds to 

downward energy propagation.  Thus, the advection equation is unable to advect wave 

energy generated within the domain out of the upper boundary, as adopted for the 

radiation (open) lateral boundary condition.   

 To identify wave modes with upward energy propagation, we consider a wave-like 

solution of the form 

 
)(),,(ˆ),,( tkxiezktzx   , (13.2.28) 

where  may represent any dependent variables, ',',' pwu , or ' .   Substituting the above 

equation into the governing equation, (13.2.18)-(13.2.21), yields 
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By assuming a positive k, the above equation has the following general solution: 
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A similar argument may also be made easily for a negative k.  The horizontally-averaged 

vertical energy flux can then be obtained, 
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where terms of A and B represent the upward and downward propagation of wave energy, 

respectively.  Thus, to avoid the wave reflection from the top boundary, we require B = 0.  

For upward propagating waves, we choose 
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which implies 
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From the continuity equation and momentum equation, we have 
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If both positive and negative k are taken into account, then the above two equations lead 

to 
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Since the above equation has no frequency dependence, we can write the above upper 

radiation condition in the wave number or Fourier space, 



 
 
 

 
 
 

23 

 ),(~),(~ tzw
k

N
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where wp ~ and ~ are defined as 

 )()ˆ,ˆ()~,~(),( tkxiikx ewpewpwp  . (13.2.37) 

 The numerical implementation of the upper radiation boundary condition to the 

geophysical fluid system of (13.2.18) - (13.2.21) is sketched in Fig. 13.10: 

(1) Integrate 
1w upward to 

Tz based on the continuity equation, (13.2.20). 

(2) Make the Fourier transform of )(1

Tzw  to obtain )(~ 1

Tzw  .  A Fast Fourier 

Transform (FFT) numerical software may accelerate the computation. 

(3) Apply (13.2.36) to obtain )(~ 1

Tzp  . 

(4) Make the inverse Fourier transform of )(~ 1

Tzp   to obtain )(1

Tzp  . 

(5) Integrate hydrostatic equation downward based on the upper boundary condition of 

)(1

Tzp  to obtain )(1 zp 
at every height level in the domain. 

Although the numerical radiation boundary condition is based more solidly on gravity 

wave theory, other factors, such as nonlinearity, can play roles in a more complicated 

fluid flow system (Klemp and Durran 1983).  In addition, the flow response is sensitive 

to the domain height when an upper radiation boundary condition is implemented.   

 

13.2.3 Lower boundary conditions 

 The lower boundary condition for an inviscid flow over a flat surface is that the flow 

near the surface is allowed to flow over it freely, which is often referred to as the free-slip 

lower boundary condition.  Since the normal velocity is required to be 0 at a rigid 
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surface, the inviscid flow is always tangential to the surface.  For an inviscid flow over a 

mountainous terrain, the free-slip lower boundary condition requires that the flow be 

parallel to the surface.  For a two-dimensional flow, this requires 

 
dx
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u

w
    at ( )z h x , (13.2.38) 

where ( )h x  is the mountain profile.  Thus, the linear lower boundary condition can be 

derived by making a linear approximation of the above equation, 
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The above condition is often adopted in mountain wave theories.  In deriving the above 

equation, two nonlinearities have been neglected by assuming: (1) Uu ' , and (2) the 

lower boundary condition is applied at 0z  , instead of ( )z h x .  Similarly, the linear 

lower boundary condition for a three-dimensional flow can be derived, 
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Equations (13.2.39) and (13.2.40) are only valid for linear flows over small-amplitude 

mountains.  In mesoscale NWP models, the inviscid lower boundary condition for flow 

over mountains is implicitly incorporated in the terrain-following (sigma) coordinates.   

 With the planetary boundary layer considered, the frictional effects have to be taken 

into account.  Therefore, the free-slip lower boundary condition is no longer valid.  

Instead, the no-slip lower boundary condition is applied,  

 0)()()(  ooo zwzvzu , (13.2.41) 

where oz is the roughness length, which is defined as 



 
 
 

 
 
 

25 

  ozzkuu /ln)/( * . (13.2.42) 

In the above equation, k is a universal constant called the von Karman constant, which 

has a value of about 0.4 based on measurements, and *u is the friction velocity, which can 

be obtained from the vertical momentum fluxes at surface, 

    222
* '''' wvwuu  ,    (13.2.43) 

where ''wu and ''wv are the turbulent momentum fluxes.  Measurements indicate that the 

magnitude of the surface momentum flux is on the order of 0.1 m2s-2.  Thus, the friction 

velocity is typically on the order of 0.3 ms-1.  In addition to the specifications of the 

velocities, we also have to specify pressure and potential temperature.  The surface 

pressure can be specified based on hydrostatic balance, while the potential temperature 

can be prescribed as a periodic heating function, 

 )24/2sin()()( max htzz ooo   , (13.2.44) 

where t  is the time in hours after sunrise, )( oo z is the potential temperature at oz at 

sunrise, and max the maximum temperature attained during the day.  To permit 

interactions between ground and the atmosphere, calculations of surface heat energy 

budget are needed.   

 For flow over water surfaces, the air-sea interaction processes need to be considered.  

Basically, the water affects the atmospheric circulation through sensible and latent heat 

fluxes directly related to its sea surface temperature (SST), including its time and space 

variability, while the atmosphere feeds back to the water or ocean through the wind stress 

to produce a deepening of the ocean mixed layer, induces water or ocean currents, and 

alters the upwelling-downwelling pattern. 
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13.3 Initial conditions and data assimilation 

 Mathematically, NWP can be viewed as solving an initial-boundary value problem in 

which the governing equations of geophysical fluid system are integrated forward in time 

in a finite region.  Therefore, in addition to the boundary conditions as discussed in 

Section 13.2, we must provide suitable initial conditions for the model.  For idealized 

numerical simulations, the initial conditions can be prescribed by known functions or 

values.  If the Coriolis force is included in the model, then the initial basic state should be 

in geostrophic balance.  If shear is included in a rotating atmosphere, then the initial basic 

state should be in thermal wind balance.  Otherwise, the initial state will be adjusted to 

reach a new balanced state by the model, which may not be desirable. For real data 

mesoscale NWP, the observational data must be modified to be dynamically consistent 

with the governing equations of the model.  The process in producing initial conditions 

includes the following four components: (i) quality control, (ii) objective analysis, (iii) 

initialization, and (iv) initial guess from a short-range forecast by an NWP model.  These 

components have been taken to form a continuous cycle of data assimilation, often called 

four-dimensional data assimilation (4DDA).  Many of the methods described below are 

still current topics of research, thus only a brief review is appropriate.  Although some of 

the techniques might be rarely used in today’s NWP models, they still provide useful 

information in helping understand NWP technique development.  

 The necessity of performing quality control on meteorological data was recognized 

long ago, which is especially important when the data are used to initialize a NWP model 

because the errors associated with the data may be misrepresented (nonlinear aliasing) 
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and amplified by the model.  To reduce the errors in the sounding data, the following 

steps of quality control have been taken in NWP: (a) plausibility check, (b) contradiction 

check, (c) gross check, and (d) buddy check (Gandin 1988).  In plausibility check, data 

values that cannot possibly occur in the real atmosphere or extremely exceed 

climatological mean are rejected.  For example, positive temperatures in Celsius at 300 

hPa are rejected.  In contradiction check, data values of two or more parameters at the 

same location contradicting each other are removed. For example, the occurrence of rain 

in the absence of clouds is removed.  In gross check, observations with large deviations 

from the first guess field forecast by an operational model are removed. In buddy check, 

observations not agreeing with neighboring observations are removed. 

 Observational data are often not regularly spaced, and thus are not ready for use as 

initial fields for a mesoscale NWP model because they do not match the model grid 

mesh.  In some areas, such as over ocean, observational data are sparse.  Therefore, in 

order to use the observational data as initial fields for a mesoscale NWP model, one 

needs to interpolate or extrapolate the data to fit into the grid mesh of the model.  This 

procedure is called objective analysis, and one example is the Barnes objective analysis 

(Barnes 1964).  In an objective analysis, it is desirable to do the following: (1) filter out 

scales of motion that cannot be resolved by the mesoscale model, (2) use a first guess 

field or background field provided by an earlier forecast from the same model, which will 

help avoid the extrapolation of observation data in data sparse areas and introduce 

dynamically consistency, and (3) make use of our knowledge of the probable errors 

associated with each observation, which can be weighted based on past records of 

accuracy.  When the maximum information from data sources, including the 
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observations, climatological records, space correlation among the meteorological 

variables, etc., are extracted statistically, the approach is called optimal interpolation 

(e.g., Kalnay 2003).  The optimal interpolation often requires knowledge of the statistical 

structure of the fields of the variables.  The variables may be analyzed separately or 

simultaneously, which is referred to as univariate analysis or multivariate analysis, 

respectively. 

 The objective analysis procedure generally does not provide fields of mass and 

motion that are consistent with model dynamics to initiate a forecast.  Thus, the use of 

such objectively analyzed data to initialize an NWP model may generate large, spurious 

inertial-gravity wave modes.  Theoretically, these inertial-gravity wave modes will be 

dispersed, dissipated or propagate out of the domain, after sufficient time due to 

redistribution of mass and wind fields.  The inertia gravity-wave modes or noise, as often 

referred to by NWP modelers, however, cannot be dissipated locally because of the 

relatively low resolution in NWP models.  Therefore, an additional procedure, called 

initialization, is required to force the data after objective analysis to be dynamically 

consistent with the model dynamics, and to allow the model to integrate forward in time 

with a minimum of noise and the maximum accuracy of the forecasts.  To improve the 

NWP, a number of initialization techniques have been developed in the past, such as: (a) 

damping method, (b) static initialization, (c) variational method, (d) normal mode 

initialization, and (e) dynamic initialization. 

 A simple and straightforward way to reducing the gravity wave mode is to dampen or 

filter the inertial-gravity wave ‘noise’ by adding a divergence damping term to the 
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horizontal momentum equation (Talagrand 1972).  In this approach, the local rate of 

change of the divergence is diffused according to  
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 (13.3.1) 

The approach identified in (13.3.1) in initializing the data is called damping method.  

Another way to adjust the data at a single time level, usually to conform to some 

dynamical constraints in order to reduce or eliminate the generation of inertial-gravity 

wave ‘noise’, is the static initialization.  For example, in an isobaric model, one may (i) 

estimate the geopotential field ( from the pressure-height data and the geostrophic wind 

relations; (ii) calculate the streamfunction ( ) from analyzed  fields on the isobaric 

surfaces; and then (iii) compute the rotational wind component from the following 

relationship, 

   x  kV . (13.3.2) 

The above equation can be written as an elliptic function of , which may become 

hyperbolic in some areas.  In order to ensure ellipticity in these areas so that the 

numerical method for the elliptic equations will apply, the geopotential fields must be 

altered (Haltiner and Williams 1980).  In addition to this difficulty, the gravitational 

modes still exist even using the balance equation to determine a rotational wind for 

initialization.  Another approach to initializing the data is to adopt the variational 

method, in which one or more of the conservation relations are applied to minimize the 
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variance of the difference between the observations and the objectively analyzed fields.  

In performing the variational method, the principles of variational calculus is applied 

(Sasaki 1970).  For example, the difference can be minimized in a least-square sense 

subjected to one or more dynamical constraints, such as the balance equation, hydrostatic 

relation, and steady state momentum equation. 

 The static initialization described above is based on the distinction between gravity 

wave modes with relatively high divergence and other meteorological modes of the 

quasi-geostrophic type with small divergence and relatively high vorticity.  However, in 

reality the separation is far less clear cut in some instances.  Thus, it has been proposed to 

keep some normal modes, if they can be represented by the model grid resolution.  

Retaining these gravity wave modes are important since some severe weather has been 

found to be induced by gravity waves.  Unlike applying the balance equation constraint, 

the normal mode initialization produces a divergent component as well.  The normal 

mode initialization makes an optimal use of the observed data by adjusting both mass and 

motion fields while achieving dynamical consistency through appropriate constraints.  In 

the linear normal mode initialization the original objectively analyzed fields are adjusted 

to the linearized versions of the model equations, and the undesirable gravity wave 

modes are removed.  However, the disadvantage of this type of method is that nonlinear 

terms tend to regenerate the high-frequency wave modes, and also the curvature in the 

flow is neglected so that the fit with the original data may suffer, which is overcome by 

taking the nonlinear normal mode initialization technique.  In the nonlinear normal mode 

initialization, the tendency of the undesirable wave modes, instead of the amplitude, is set 

to zero.  The nonlinear normal mode initialization may also be applied to the vertical 
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direction, too.  Figure 13.11 shows the time evolution of a height field after applying two 

iterations of the implicit normal mode initialization scheme. In comparison with the time 

evolution of the same height field with no initialization, the implicit nonlinear normal 

mode initialization appears to be able to remove high-frequency oscillations.   

 Since the normal mode initialization is performed separately right after the objective 

analysis, the initialized fields may no longer fit the observations as closely as possible.  

Therefore, the dynamic initialization was proposed (Miyakoda and Moyer 1968). The 

basic idea of dynamic initialization is to let the NWP model do the job by itself because 

any primitive equation models are supposed to inherently possess the mechanism for the 

geostrophic adjustment process.  Indeed, the mass and velocity fields do mutually adjust 

to one another toward a quasi-geostrophic state when they are executed in an NWP 

model.  In this way, observations are inserted intermittently or continuously over a period 

of time.  In this type of initialization, the model is integrated forward and backward 

around the initial time, and this lets the model adjust itself before starting the forecast.  

During this process, it is desirable to use an integration scheme with selective damping 

technique.  For example, the following iterative scheme consists of a forward step, then a 

backward step and finally an averaging: 
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Figure 13.12 shows an example of gravity wave activity after normal mode initialization 

and dynamic initialization for five vertical modes of a baroclinic model, as compared to 
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that with no initialization.  Gravity wave activity is dramatically reduced by the dynamic 

initialization.  The disadvantages of dynamic initialization scheme are that:  (i) each 

iteration requires the equivalent of two prognostic steps, thus taking considerable 

computer time, (ii) it is unable to distinguish between large-scale gravity wave modes 

and small-scale Rossby modes, and (iii) backward integration may not be applicable to 

some irreversible physical processes. 

 In order to incorporate the invaluable asynoptic data, such as Next Generation 

Weather Radar Doppler radar (NEXRAD), wind profilers, acoustic sounders, high-

resolution dropsondes, satellite and aircraft, observed at nonstandard time (i.e., not at 

0000 and 1200 UTC) into an NWP model system, the quality control, objective analysis, 

initialization, and initial guess forecast from the same model are combined into a 4DDA 

cycle.  This 4DDA cycle can be carried out in an intermittent or continuous fashion.  In 

the intermittent 4DDA, the data are assimilated intermittently at specified time intervals. 

The background or first guess fields forecast by the model plays a very important role, 

especially in data sparse regions.  In data rich regions, usually the analysis is dominated 

by the information contained in the observations. The boundary conditions of regional 

NWP are provided by global model forecast.  The intermittent 4DDA technique, such as 

three-dimensional variational data assimilation (3DVAR), is used in many global and 

regional operational NWP systems due to its computational efficiency.  Figure 13.13 

illustrates a 32-km data assimilation cycle adopted by NCEP’s ETA model by using 

3DVAR technique.  Data types used in the 3DVAR of ETA model are rawinsonde mass 

and wind, pibal winds, dropwindsondes, wind profilers, surface land temperature and 

moisture, oceanic surface data (ships and buoys), aircraft winds, satellite cloud-drift 
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winds, oceanic TOVS thickness retrievals, GOES and SSM/I precipitable water 

retrievals, ACARS temperature data, surface winds over land, VAD winds from 

NEXRAD, SSM/I oceanic surface winds, and tropical cyclone bogus data (see Roger et 

al. 1998 for detailed information).  Note that more advanced techniques have been 

developed, including the use of the adjoint model in intermittent data assimilation 

systems (e.g. Huang 1999). 

 The intermittent updating process is appropriate as long as most available data are 

taken at a fixed time period, which may vary from 3 to 12 h in practice.  However, in 

order to take advantage of the asynoptic data, which comes in much more frequently than 

the synoptic data, methods of continuous or dynamic 4DDA are desired.  In these 

methods, the observational data are essentially introduced into the assimilation system at 

each time step of the model integration during the assimilation time period.  Examples of 

this type of continuous 4DDA are: (1) nudging or Newtonian relaxation (Hoke and 

Anthes 1976), (2) variational assimilation (also called 4DVAR; Stephens 1970), and (3) 

Kalman-Bucy filtering (Kalman and Bucy 1961).   

 In the nudging or Newtonian relaxation method, there is pre-forecast integration 

period during which the model variables are driven toward the observations by adding 

extra forcing terms in the equations.  When the actual initial time is reached, the extra 

terms are dropped from the model equations, and the forecast proceeds without any 

forcing.  For example, a forcing term is added to the x-momentum equation, 
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The time scale for the relaxation,  depends on the variable and is chosen to slowly 

increase (decrease) prior to (after) the time of the observation to prevent any shocks to 

the model during the assimilation time period.  Nudging has been tested for use with the 

new generation of observing systems, such as dropsondes, wind profilers, and surface 

data.  Compared to the variational assimilation and Kalman-Bucy filtering techniques, to 

be discussed below, the nudging or Newtonian relaxation technique is less elegant 

mathematically but very practical.  In the four-dimensional variational data assimilation 

(4DVAR), one tries to create the best possible fit between the model and the observational 

data such that the adjusted initial conditions are optimal for use in subsequent model 

forecasts.  For example, Fig. 13.14 shows that the value produced by the first analysis is 

A.  Although it fits the data well at T-3h, it leads to a forecast that does not match the 

observations well by T = 0 h. Note that even data collected at the same time do not 

necessarily agree with each other.  One way to resolve the problem is to take the adjoint 

method, in which an iterative approach is used to adjust the initial analysis so that it is 

optimal for prediction, as one type of the 4DVAR.  In other words, the adjusted analysis, 

Aadj, leads to a model trajectory (heavy curve) that produces a better 3-h forecast for T = 

0 h, even though it may not be the best fit at T-3h.  In the Kalman-Bucy filtering 

technique, the data sequentially adjusts the assimilated fields as the model is integrated 

forward in time.  The Kalman-Bucy filter minimizes the analysis error variance not only 

at every time step, but also over the entire assimilation period in which data are provided.  

In addition, the filter is able to extract all useful information from the observational 

increment or residual at each time step, thus allowing observations to be discarded as 

soon as they are assimilated. 
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 In order to involve the standard or nonstandard data to reduce or eliminate the spin-up 

error caused by the lack, at the initial time, of the fully developed vertical circulation 

required to support regions of large rainfall rates, one may adopt the diabatic or physical 

normal mode initialization, which may improve quantitative precipitation forecasts, 

especially early in the forecast.  Two key issues can be raised here: (1) choice of 

technique and (2) sources of hydrologic/hydrometeor data.  Diabatic heating information 

in nonlinear normal mode initialization can be either from the model estimates or from 

observed rainfall data.  Various methods have been developed to infer three-dimensional 

fields of latent heating, moisture and divergence from two-dimensional rainfall data, such 

as static methods, dynamic methods, adjusting the convective parameterization scheme to 

match the observed rainfall, and latent heat nudging.  A major problem in all of the 

techniques presented is the need for accurate vertical distribution of the heating and 

moistening rates.  For example, (i) surface rain gauge data are not available on hourly 

basis, (ii) rawinsonde data are sparse horizontally (may be overcome by combining 

infrared and microwave satellite estimates), or (iii) cloud and hydrometeor data to be 

deduced from the network of Doppler radars are not complete (retrieval techniques are 

critical). To utilize the radar reflectivity measurements and satellite cloud observations, 

as well as surface-based cloud observations, complex cloud analysis packages have been 

developed that define the three dimensional cloud and hydrometeor fields as well as the 

associated temperature perturbations, and such analyses have been successfully applied 

to the initialization of storm-scale NWP models (e.g., Hu et al. 2006).  With the 4DVAR 

method, observed measurements of rainfall rates can be incorporated into a NWP model 

in a more dynamically and physically consistent manner to derive improved initial 
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conditions (Zou and Kuo 1996). Through the model precipitation calculation and adjoint 

model, information from the space of the model variables, such as wind, temperature, and 

humidity, can be projected to that of the measured variables (i.e. rainfall rates), and back, 

in a consistent manner. 

 A numerical forecast model and a mesoscale or local analysis system can be 

combined as an operational atmospheric prediction system to initialize the model, such as 

the Rapid Update Cycle (RUC; Benjamin et al. 2004).  The Mesoscale Analysis and 

Prediction System (MAPS) is the research counterpart to the RUC.  The RUC has been 

developed to serve users needing short-range weather forecasts, including those in the US 

aviation community.  In MAPS, a mesoscale model is employed to make a 3h data 

assimilation in coordinates.  Advances in remote sensing from earth- and space-

borne systems, expanded in situ observation network, and increased low-cost computer 

capability allow an initialization for meso- and convective scale models.  Local Analysis 

and Prediction System (LAPS; Shaw et al. 2004) uses data from local mesonetwork 

(mesonet) of surface observing systems, Doppler radars, satellites, wind and temperature 

profilers, as well as aircraft, which are incorporated every hour into a three-dimensional 

grid covering a 1000km x 1240km area.  The prediction component of the LAPS is 

configured using a model chosen from a suite of mesoscale NWP models.  Any or all of 

these models, usually being initialized with LAPS analyses, is run to provide 0-18 h 

forecasts.  Another example of this type of operational atmospheric prediction system is 

the ARPS Data Analysis System (ADAS) and its 3DVAR system which are often used in 

the intermittent assimilation cycle mode, at up to 5 minute assimilation intervals (e.g., 
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Xue and Martin 2006). Surface mesonet data available as frequently as every 5 minutes 

are also routinely assimilated into the model system. 

 Many of the data assimilation methods developed for larger-scale models cannot be 

applied to the storm-scale models.  For example, storm-scale phenomena are highly 

ageostrophic and divergent, so that the constraints between the mass and momentum field 

applied at larger scale (geostrophic and thermal wind balances) cannot be applied to the 

storm scale.  Furthermore, the mass field typically has to be inferred from the reflectivity 

and radial velocity measured by Doppler radars, instead of being measured directly.  

Thus, the retrieval techniques become very critical.  The adjoint-based 4DVAR method 

can improve the accuracy in retrieving the thermodynamic fields, compared to more 

conventional method that retrieves the thermodynamic fields from the retrieved wind 

fields (Sun and Crook 1996).  Fig. 13.15 shows an example of a vertical velocity field 

retrieved by an adjoint method. 

 Ensemble-based data assimilation, a collection of flexible state-estimation techniques 

that use short-term ensemble forecasts to estimate the flow-dependent background error 

covariance, has recently been implemented in various atmospheric models. These 

experimental studies demonstrated the feasibility and effectiveness of the ensemble-based 

techniques for different scales and flows of interest (e.g., Houtekamer et al. 2005; Zhang 

et al. 2006a,b) and for parameter estimation, which offers hope to the treatment of 

different sources of parametric model error (e.g., Anderson 2001; Aksoy et al. 2006).  

The best-known form of ensemble-based assimilation is the ensemble Kalman filter 

(EnKF) (e.g., Evensen 2003; Snyder and Zhang 2003; Hamill 2006; Xue et al. 2006).  

Major advantages of using the EnKF over existing data assimilation schemes include its 
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use of flow-dependent error covariance, its simplicity in implementation and 

maintenance, and its automatic generation of ensembles consistent with the analysis error 

covariance for the subsequent ensemble forecasts. The EnKF method is also capable of 

better handling nonlinear physical processes and/or nonlinear observational operators, 

such as that for the radar reflectivity (Tong and Xue 2005). 

 

13.4 Nonlinear aliasing and nonlinear instability 

 In discussing numerical instabilities in Chapter 12, we have neglected the nonlinear 

effects.  However, in the real atmosphere, kinetic energy generated at large scale or 

mesoscale tends to transfer to smaller scales.  When it is transferred to the inertial 

subrange, the kinetic energy is neither produced nor dissipated, but handed down to 

smaller and smaller scales.  The inertial subrange is an intermediate range of turbulent 

scales or wavelengths such that the kinetic energy is independent of original forcing of 

the motion and molecular dissipation.  When the kinetic energy is transferred to an even 

smaller scale on the order of O(cm), which is called the dissipation range, the kinetic 

energy is converted into internal energy by molecular interaction.  

 In a numerical mesoscale model, this cascade of energy to smaller scales cannot 

occur because the smallest feature that can be resolved has a wavelength of 2x.  For 

example, let us consider  

 xko  11 cos ,  and (13.4.1) 

 2 2coso k x   ,  
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which represent 2 waves with the same amplitude o  and different wave numbers, 
1k  and 

2k .  A nonlinear interaction between these two waves produces 

     xkkxkko  2121

2

21 coscos)2/( . (13.4.2) 

From the above equation, one can determine that two waves with wave numbers, 

21 kk  and 21 kk  have resulted from this wave-wave interaction.  Assume 
1k  and 

2k  

represent the following x2  and x4 waves: 

 )2/(21 xk   , and 2 2 /(4 )k x  , (13.4.3) 

then we have 
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The second cosine term of the above equation is a x4  wave, which can be appropriately 

represented by the grid mesh.  However, the first term is a x33.1  wave, which cannot be 

resolved by the grid mesh.  The wave will be fictitiously represented by a x4  wave 

because the first integer multiple of 3/4 x  is x4 .  This phenomenon is called 

nonlinear aliasing.  Figure 13.16 shows a schematic that illustrates of how a physical 

solution with a wavelength of 3/4 x , caused by the nonlinear interaction of x2  and 

x4  waves, is seen as a computational x4  wave in the numerical grid mesh.  In the real 

world, we have the large-scale disturbance generated by forcing, which then cascades to 

a mesoscale disturbance, small-scale disturbance, and then dissipates at an even smaller 

scale.  However, it does not seem to happen in the same way in the numerical model, in 

which waves with wavelength shorter than x2 will be represented as larger scale waves.  

Therefore, even if a numerical method is linearly stable, the results can degrade into 
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computational noise.  The erroneous accumulation of energy can cause the model 

dependent variables to increase in magnitude abruptly without bound, which is called 

nonlinear instability. 

 Two methods can be applied to avoid the nonlinear instability: (1) proper 

parameterization of the subgrid-scale correction terms, such as ''wu , ''wv , and ''w , so 

that energy is extracted from the averaged equations, or (2) the use of a spatial numerical 

smoother or filter to remove the shorter waves, which leaves the longer waves relatively 

unaffected.  The first approach is better than the second one because it is based on 

physical principle.  However, it requires a good knowledge about the subgrid-scale 

correlation terms.  The second approach can be accomplished in a relatively easier 

manner (e.g, Shapiro 1975).  To understand numerical smoothing, we may consider a 

simple one-dimensional, three-point operator, 

 1 1(1 ) ( / 2)( )j j j js s        , (13.4.5) 

where xjx   and s  is a constant that can be negative.  If this operator is applied to the 

harmonic form of a wave 

 ikxeA  , (13.4.6) 

where Lk /2  is the wave number, and A is a constant that may be a complex, then 

the result may be written as 

   R ,   LxsxksR /sin21)cos1(1 2   . (13.4.7) 

In the above equation, R is referred to as the response function.  If 0R , then the wave 

number and phase are not affected but only the wave amplitude. If 1R , then the wave 

is amplified by the operator.  On the other hand, if 1R , then the wave is damped by 
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the operator.  If 0R , then the phase of the wave is shifted by 180o, which is 

undesirable.  With 2/1s , we obtain the second-order smoother: 
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 , (13.4.8) 

and 

 21 cos
(1/ 2) 1 cos ( / )

2

k x
R x L

 
    . (13.4.9) 

From above, if xL  2 , then 0R .  Hence, for a x2 wave, the smoother will eliminate 

it immediately.   

 Since a three-point smoother, (13.4.8), damps the shorter waves too strongly, it is less 

desirable.  A five-point smoother can be obtained by applying 2 successive three-point 

smoother with 2/1s and 2/1 : 
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The above smoother will also remove the x2 wave immediately but will preserve more 

of the longer waves.  In fact, the above five-point smoother is analogous to the finite 

difference form of the fourth-order diffusion equation, 
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, (13.4.11) 

which has a finite difference form, 

 
1

1 1 1 2 2[6 4( ) ( )]j j j j j j j

             

         , (13.4.12) 

where 
4

1 /c t x    .   If we choose 1 1/16  , then the above equation is analogous to 

(13.4.10).  Thus, in applying the five-point smoother, it has a similar effect as the fourth-
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order diffusion, which is why numerical smoothing has also been referred to as numerical 

diffusion.   In order to retain the amplitude of longer waves, the coefficient 1/16 in 

(13.4.10) or  is often reduced.  Testing is needed to find out the most appropriate 

coefficient of the numerical smoothing or diffusion.  In practice, smoothing is not applied 

to the boundary points.  For the grid points adjacent to the boundaries, we may need to 

apply the three-point smoother or second-order diffusion 

 
2 1 1[2 ( )]j j j j j          . (13.4.13) 

In order to make (13.4.13) consistent with (13.4.12), we require  

 12 4  . (13.4.14) 

Notice that the leapfrog scheme also produces a computational mode with 2t wave.  To 

suppress this, we may apply the time smoother (Asselin, 1972) 

   )/(2
11 tt 
 , (13.4.15) 

where 

 
1 1 1 2( 2 )

         
       . (13.4.16) 

Based on numerical testing, a choice of  γ < 0.25 has been recommended. 

 In general, high-order filters or smoothers are more scale selective, i.e., they filter 

shorter waves at or close to two-grid interval wavelength most effectively while leaving 

longer waves less affected. High-order filters can have the effect of generating 

undesirable overshooting and undershooting in the filtered field, however. The erroneous 

effects in the filtered field can be avoided by a simple treatment that ensures that the 

diffusion flux is always down-gradient (Xue 2000). 
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13.5 Modeling a stratified fluid system 

 To elucidate how to model a stratified fluid flow system, we consider the nonlinear, 

hydrostatic, incompressible fluid system similar to that governed by (2.2.14) - (2.2.18) 

with 0V , 
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where 'q  is the diabatic heating rate in J kg-1s-1, which may represent surface sensible 

and/or elevated heating,   the eddy viscosity,  eddy thermal diffusivity, and the Brunt-

Vaisala frequency N is defined as )/)(/(2 dzdgN  .  Other symbols are defined in 

Chapter 2.  The basic state is assumed to be in geostrophic and hydrostatic balances.  The 

basic and perturbation quantities have been separated in the above system, which allows 

one to examine the nonlinear effects by comparing with the corresponding linear 

simulation.   

 To elucidate how to model the nonlinear system of (13.5.1)-(13.5.5), we consider 

relatively simple and straightforward schemes, i.e. the leapfrog in time and second-order 

centered in space to the prognostic equations.  The variables 
1u , 1v  and 

1 at time 
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step 1   are obtained from other variables at time steps   and 1 , based on (13.5.1), 

(13.5.2) and (13.5.5), respectively.  The vertical velocity 
1w can then be obtained by 

integrating the continuity equation, (13.5.4), upward.  The upper boundary condition can 

be approximated by a sponge layer with  increasing from the top of the physical domain 

to the top of the model domain, or following the flow chart of Fig. 13.10 to apply the 

upper radiation boundary condition numerically.  Following Fig. 13.10, we can obtain 

1p  by integrating the hydrostatic equation (13.5.3) downward.  In this approach, all 

variables at time step 1   are then obtained numerically.   

 In some mesoscale models, the hydrostatic assumption is relaxed to more properly 

simulating deep convection and effects of steep topography.  A set of fully compressible 

fluid system can be written as, 
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 )61.01( vv qTT  , (13.5.14) 

where vT  is called virtual temperature:   is the virtual potential temperature: op is the 

basic state pressure at the ground, usually taken as 1000 hPa: S is any source or sink of 

 , such as surface long-wave radiation and elevated latent heating: S  is any source or 

sink of the hydrometeor  , such as mixing ratios of water vapor ( vq ), cloud water ( cq ) , 

rain (
rq ), cloud ice ( iq ), snow ( sq ), and graupel/hail ( gq ).  The virtual (potential) 

temperature is the (potential) temperature that a dry air parcel would have if its pressure 

and density were equal to those of a given sample of moist air.  The virtual temperature is 

a fictitious temperature of a moist air parcel that satisfies the equation of state for dry air.  

More realistic and sophisticated parameterizations of planetary boundary layer processes 

can be adopted.   

 The above equations may also be represented in terms of the Exner funtion, to be 

defined below.  Including the moisture, the equation of state can be written in the form, 

 vdTRp  . (13.5.15) 

In order to avoid an explicit treatment of the density, an Exner function has been adopted 

in some mesoscale and cloud-scale models, 
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The pressure gradient force terms can then be approximately represented by 
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where v is the initial undisturbed state v  and a function of z only, defined as 

v v v     .  The Exner function can be partitioned into '    , where   is the 

initial basic state, and '  is the perturbation from the initial state  .  The initial basic 

state is assumed to be in geostrophic balance in horizontal and hydrostatic balance in 

vertical, 
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The advantages of using  instead of p are that: (a)  is not treated explicitly in the 

governing equations, (b)  does not present in the buoyancy term even if the vertical 

scale of the motion zL  is equivalent to the scale height H; (c) there is no need to compute 

the density perturbation; and (d) less truncation error is introduced since / z   is much 

less than /p z   (Pielke 2002).  One disadvantage of using the Exner function is that the 

anelastic continuity equation for  is much more complicated and need a Poisson 

equation solver, which is very tedious in the terrain-following coordinates (Huang 2000).   

 Using the Exner function and approximating v  by v in pressure gradient forces, the 

momentum equations become 
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where zwyvxutDtD  ///// .  The pressure equation can be written as 
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 where DtD /   is the diabatic heating rate (J s-1).  The thermodynamic equation and 

the equations governing hydrometeors can be written as 

 
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 The advantage of using the fully-compressible fluid system of (13.5.20) - (13.5.25) is 

that every equation can be integrated alone, numerically, to obtain its own value at the 

next time step without having to couple with other equations, such as the hydrostatic, 

incompressible fluid system of (13.5.1) - (13.5.5).  However, this set of equations 

contains sound waves, which propagate at much higher speeds than the gravity waves 

and require a very small time step to insure the numerical stability.  In practice, it is 

almost impossible to adopt such a small time step, even at the research mode of 

numerical simulations.  In order to improve numerical efficiency of the above 

compressible atmospheric system, a time-splitting scheme was proposed (Klemp and 

Wilhelmson 1978).  In the time-splitting scheme, equations with no sound wave modes, 
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i.e. (13.5.24) and (13.5.25), embedded are marched with a large time step, t , while 

equations with sound waves embedded, i.e. (13.5.20) - (13.5.23), are integrated with a 

small time step t  from time t- t  to t+ t .  

 Scale analysis indicates that the only important term in (13.5.23) for representing 

convection is the second term on the right hand side, which leads to the anelastic 

continuity equation (Ogura and Philips 1962) 

   0  V . (13.5.26) 

Taking the time derivative of the above equation and using the momentum equations 

yield an elliptic equation 
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where the source terms include acceleration terms.  One of the disadvantages in adopting 

the anelastic approximation is that (13.5.27) becomes very complicated and 

computationally expensive when it is transformed into terrain-following coordinates. 

   

13.6 Predictability and ensemble forecasting 

 One major challenge in NWP is whether the weather phenomena of concern are 

predictable or not.  If they are intrinsically unpredictable, then the improvements in more 

accurate initial and boundary conditions, numerical methods, and subgrid-scale 

parameterizations of a NWP model will be useless.  If they are predictable, it is important 

to know how long we can make numerical prediction with a “perfect” NWP model, if 

there were one.  As discussed briefly in Chapter 1, in reality, most of the weather systems 

more or less have limited predictability.  Thus, it leaves us some room to make 
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improvements in the accuracy of NWP models, which is still a topic of current research, 

especially for mesoscale NWP. Thus we will only make a very brief summary of the 

predictability problem and the ensemble forecasting.   

 In the early 1950s, some meteorologists started to apply statistical methods to 

weather prediction to cope with the uncertainties encountered in forecasting (Gleeson 

1961).  The weather forecasting problem has been viewed as evolving probabilities.  

Even with improved model techniques, the weather prediction has its own inherent 

limitations due to the inevitable model deficiencies and errors in the initial conditions, or 

the predictability problem.  The atmosphere, like any other dynamical systems with 

instabilities, has an inherit time limit of predictability (Lorenz 1963).  Based on the 

Saltzman's (1962) convective equations, Lorenz found that two complete different 

solutions were predicted by the same model with slightly different initial conditions.  He 

later found that errors of different spatial scales grow at different rates (Lorenz 1969).  

On average, the fastest error growth occurs at smallest scales, which would have 

significant impacts on the mesoscale NWP. 

 Predictability can have two fundamentally different meanings.  Intrinsic predictability 

can be defined as “the extent to which prediction is possible if an optimum procedure is 

used” in the presence of infinitesimal initial errors (Lorenz 1969). Practical predictability, 

on the other hand, can be specified as the ability to predict based on the procedures that 

are currently available. Practical predictability is limited by realistic uncertainties in both 

the initial states and the forecast models, which in general are not infinitesimally small 

(Lorenz 1996). Compared to typical synoptic-scale flows, recent studies showed that 

predictability of mesoscale weather systems, particularly the associated quantitative 



 
 
 

 
 
 

50 

precipitation, which are of most concern to the public, can be very limited (e.g., 

Ehrendorfer 1997).  The predictability of quantitative precipitation is different from 

earlier results which indicated that the mesoscale enjoyed enhanced predictability. 

Through high-resolution mesoscale simulations, recent studies demonstrated that 

mesoscale predictability depends strongly on the background flow regime and dynamics.  

The simulations also show that moist convection is a primary mechanism for forecast-

error growth at sufficiently small scales, and that convective-scale errors contaminate the 

mesoscale within lead times of interest to NWP, thus effectively limiting the 

predictability of the mesoscale (e.g., Zhang et al. 2006).  Understanding of the limit of 

mesoscale predictability and the associated error growth dynamics is essential for setting 

up expectations and priorities for advancing deterministic mesoscale forecasting, and for 

providing guidance on the design, implementation and application of short-range 

ensemble prediction systems (e.g., Tracton and Kalnay 1993; Stensrud et al. 1999). 

 Over the past decade, ensemble forecasting has emerged as a powerful tool for 

operational numerical weather prediction (Molteni et al. 1996).  Ensemble forecast is a 

collection of different forecasts all valid at the same forecast time.  Ensemble forecasts 

start from different initial conditions, boundary conditions, parameter settings, or entirely 

independent NWP models.  The various forecasts all represent possibilities given the 

uncertainties associated with forecasting.  From these possibilities, one can estimate 

probabilities of various events as well as an averaged or consensus forecast.  An 

ensemble of forecasts can be used to: (a) composite into a single forecast by means of a 

weighted average, (b) provides an excellent probabilistic alternative to explore the 

dynamics, predictability and background error covariance for mesoscale weather systems, 
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(c) estimate the reliability of the composite forecast, (d) suggest where additional special 

observations might be targeted to improve forecast accuracy (Kalnay 2003), and (e) 

determine the sensitivity of forecasts to the model input parameters, including the initial 

and boundary conditions (Martin and Xue 2006). 

 In order to take advantage of forecasts from different models and analyses, the multi-

analysis-multimodel forecasts along with the aforementioned statistics are used to 

provide the superensemble forecasts.  The superensemble has a higher accuracy 

compared to that of the ensemble mean because the superensemble is selective in 

assigning weights and the past history of performance of models from the past statistics.  

A real-time multianalysis-multimodel superensemble forecasts can make a significant 

improvement in precipitation forecasts (Krishnamurti et al. 2001).  As indicated in Fig. 

13.17, during the training period, the observed fields provide statistics that are then 

passed on to the area on the right, where 0t .  Compared to medium-range ensemble 

forecasting with global models, limited-area short-range ensemble prediction is less 

widely used, which is at least partially due to our limited knowledge of mesoscale 

predictability (Stensrud et al. 1999). Still, limited studies on even high-resolution storm-

scale ensemble predictions have been undertaken (Kong et al. 2006) and such research is 

expected to expand significantly in the future.  
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Problems 

13.1 From (13.1.5) and (13.1.6) derive the computational dispersion relationship of the 

two-dimensional shallow water system with U = 0, (13.1.7). 

13.2 Derive the computational dispersion relationship corresponding to (13.1.7) but for 

an unstaggered grid mesh.   

http://twister.ou.edu/papers/XTD_JTech2006.pdf
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13.3 Substituting )](exp[),(ˆ),( tkxikutxu    into a particular finite difference form 

of the advection equation gives  

 012   titi eie   . 

 Find the stability criterion for this scheme if 20   .  

13.4 Derive (13.1.13) from (13.1.12) 

13.5 Applying the forward-in-time and backward-in-space scheme to the advection 

equation, (12.3.1), at the right boundary to show that the zero gradient boundary 

condition assumes the waves propagate out of the right boundary at a speed of 

tx  / . 

13.6 Derive a numerical radiation boundary condition at the inflow boundary, (13.2.7), 

and *

icU  . 

13.7 Derive (13.2.23) from (13.2.18) - (13.2.21) by assuming a wave-like solution. 

13.8 Derive the complete equation of (13.3.1). 

13.9 Prove the response function ( R ) in (13.4.7) by applying the three-point smoother 

(13.4.5) to a sinusoidal wave (13.4.6).   

13.10 Derive (13.4.10). 

13.11 Prove 2 14  by considering a x2 wave, 
1)1(  i

i .  

13.12 Derive the pressure gradient forces, (13.5.17), by using the Exner function. 
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Modeling Project 

13.A1 Set smoothing coefficient as 0 and different values in the advection model.  

Discuss the results. 

13.A2 Replace the 5-point smoother of the shallow water model by a three-point 

smoother in the shallow water model and discuss the smoothing effects. 

13.A3 Modify your 2D Tank Model to simulate a two-layer fluid system with H = 1 km 

and o = 0.1.  Rerun the model for a flow over a bell-shaped mountain with U 

= 20, 30, and 40 ms-1.  Describe and explain the results. 

13.A4  (i) Extend the 2D Tank Model to a 3D Tank Model. 

 (ii) Now run this 3D Tank Model with U = 0 m s-1 and hm = 0 m by giving a three-

dimensional initial field in h'. 

  (iii) Simulate a basic flow with U=20 ms-1 over a 3D bell-shaped mountain,  

  
2 2 3/ 2/[1 ( / ) ( / ) ]s mh h x a y a   . 

 Use the same H and o as in project 13.A3 for (ii) and (iii).  You may use surface, 

contour and vector plotting subroutines to plot u' and h' fields.  Explain your results.  The 

governing equations are expressed as (3.4.4)-(3.4.6).   

13.A5 Change the current finite difference scheme (leapfrog, fourth-order central 

difference) to (i)  forward-in-time and upstream-in-space scheme, and (ii) 

leapfrog-in-time and second-order-central-difference-in-space scheme. 

 Using the above schemes to rerun project 13.A4 (ii) and compare the results. 

13.A6 Model the three-dimensional, hydrostatic, Boussinesq system of (13.5.1) -(13.5.4). 
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Figure captions 
 
Fig. 13.1: Sensitivity of flow responses to the numerical domain size for a hydrostatic 
flow over a bell-shaped mountain.  Displayed are the horizontal wind fields for different 
domain sizes: (a) 22.4a  and (b) 12a, where a is the half-width of the mountain. The 

abscissa and ordinate are non-dimensionalized by a and 2 /U N  (vertical wavelength), 

respectively.  The Froude number is 1.2 for both cases.  

 
Fig. 13.2: Potential temperature fields at (a) 450 s and (b) 900 s in a cold pool collapse 
simulation using adaptive grid meshes. (After Skamarock 1989) 
 
Fig. 13.3: (a) Exact solution of a passive scalar Q at t = 4 s for a kinematic frontogenesis 
being advected by a steady, nondivergent flow field with structure similar to that of a 
smoothed Rankine vortex (Doswell 1984). (b) Numerical solution for Q at t = 4 s on a 
fixed 31x31 uniform grid mesh. (c) Numerical solution for Q at t = 4 s using a continuous 
dynamic grid adaptation (CDGA). (d) Gridpoint distribution at t = 4 s with default 
parameters. (Adapted after Dietachmayer and Droegemeier 1992) 

 
Fig. 13.4: A schematic of (a) an unstaggered grid mesh and (b) a staggered grid mesh for 
the computation of u and w with the two-dimensional incompressible continuity equation. 
 

Fig. 13.5:  A schematic of a staggered grid mesh for the shallow water system. 
 
Fig. 13.6: Phase speed as a function of spatial resolution for the exact solution (E), for 
second- (2U) and fourth-order (4U) spatial derivative on an unstaggered grid mesh, and 

for second-order spatial derivatives on a staggered grid mesh (2S). Symbol  denotes 
one grid interval.  (After Durran 1998, with kind permission of Springer Sciences and 
Media.) 
 
Fig. 13.7: (a) Five grid meshes proposed by Arakawa and Lamb (1977). The 

computational phase velocity ( kcp / ) and the group velocity ( k / ) analyzed as 

functions of /kd for the four grids as shown in panels (b) and (c), respectively 

(Schoenstadt 1978).  The differential equation solution is also included.  These results 

use the following values: 
1210  msgH , f=10-4 s-1, and d=500 m, where d is the grid 

interval depicted in panel (a).   (Adapted after Arakawa and Lamb 1977) 
 

Fig. 13.8: Reflectivity, from the sponge layer as a function of a nondimensional inverse 

Reynolds number, 1/Re for several nondimensional sponge layer depths (d=0.5, 1.0, 1.5, 

and 2.0).  A value of r=1.0 corresponds to complete reflection from the top boundary of 

the computational domain. The nondimensional numbers are defined as TkU /Re   

and /)( 1zzd T  , where =2U/N.  The viscosity coefficient is defined 
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as )]/ln(2/)/ln([sin 11

2  TT , where 
T  and 

1  are the potential temperatures at 

the top and bottom of the sponge layer, respectively. (Adapted after Klemp and Lilly 

1978) 

 

Fig. 13.9: Potential temperature ((a) and (c)) and total horizontal velocity fields ((b) and 

(d)) for a two-dimensional, continuously stratified, uniform flow over a bell-shaped 

mountain predicted at the nondimensional time / 100Ut a   by a hydrostatic numerical 

model [(a) and (b)] and calculated by Long’s steady state hydrostatic solution [(c) and 

(d)].  The Froude number ( /F U Nh ) and hydrostatic parameter (Na/U) associated with 

the basic flow are 1.3 and 7.7, respectively.  The dimensional flow and orographic 

parameters are U = 13 ms-1, N = 0.01 s-1, h = 1 km, and a = 10 km.  The vertical 

coordinate is nondimensionalized by the hydrostatic wavelength NU /2  . (After Lin 

and Wang 1996) 

 
Fig. 13.10: A flow chart for modeling the fluid flow system of (13.2.18) - (13.2.21) and 
implementing the numerical upper radiation boundary condition at the top of 
computational domain. 
 

Fig. 13.11: Time evolution of height field after two iterations of the implicit nonlinear 

normal mode initialization scheme (thin curve) and with no initialization (bold curve). 

(After Temperton 1988)  

 

Fig. 13.12: Gravity wave activity after normal mode initialization, dynamic initialization 

for five vertical modes of a baroclinic model, and compared to that with no initialization.  

Note that the gravity wave modes of large equivalent depths (small j) are dramatically 

reduced by dynamic initialization.  (After Sugi 1986) 

 

Fig. 13.13: An example of data assimilation cycle adopted by NCEP’s ETA model by 

using 3DVAR technique.  (Adapted after Rogers et al. 1998) 
 

Fig. 13.14: A sketch of four-dimensional variational data assimilation (4DVAR).  (a) The 

value produced by the first analysis is A, which fits the data well at T-3h, but leads to a 

forecast that does not match the observations well by T = 0 h. The shaded band is the 

observations.  Note that even data collected at the same time do not necessarily agree 
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with each other. (b) An iterative approach, i.e. the adjoint method, is taken to adjust the 

initial analysis so that it is optimal for prediction.  (Courtesy of F. H. Carr) 
 

Fig. 13.15: Vertical velocity field from (a) control run, (b) vertical integration of the 

continuity equation, and (c) adjoint retrieval. (After Sun and Crook 1996) 
 

Fig. 13.16: Schematic illustration of nonlinear aliasing.  A physical solution with a 

wavelength of x33.1 , caused by the nonlinear interaction of waves of x2  and x4 , is 

seen as a x4 wave in a numerical grid mesh. (After Pielke 2002, reproduced with 

permission from Elsvier.) 
 

Fig. 13.17: A flow chart of multianalysis-multimodel superensemble forecasting.  The 

vertical line in the center denotes the initial time ( 0t ), and the area to the left denotes 

the training period where a large number of forecast experiments are carried out by the 

multianalysis-multimodel system.  During the training period, the observed fields provide 

statistics that are then passed on to the period on the right, where 0t .  Here the 

multianalysis-mulimodel forecasts along with the statistics provide the superensemble 

forecasts. (Adapted after Krishnamurti et al. 2001)  
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Fig. 13.1: Sensitivity of flow responses to the numerical domain size for a hydrostatic 
flow over a bell-shaped mountain.  Displayed are the horizontal wind fields for different 
domain sizes: (a) 22.4a and (b) 12a, where a is the half-width of the mountain. The 

abscissa and ordinate are non-dimensionalized by a and 2 /U N  (vertical wavelength), 

respectively.  The Froude number is 1.2 for both cases.  
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Fig. 13.2: Potential temperature fields at (a) 450 s and (b) 900 s in a cold pool collapse 
simulation using adaptive grid meshes. (After Skamarock 1989) 
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Fig. 13.3: (a) Exact solution of a passive scalar Q at t = 4 s for a kinematic frontogenesis 
being advected by a steady, nondivergent flow field with structure similar to that of a 
smoothed Rankine vortex (Doswell 1984). (b) Numerical solution for Q at t = 4 s on a 
fixed 31x31 uniform grid mesh. (c) Numerical solution for Q at t = 4 s using a continuous 
dynamic grid adaptation (CDGA). (d) Gridpoint distribution at t = 4 s with default 
parameters. (Adapted after Dietachmayer and Droegemeier 1992) 
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Fig. 13.4: A schematic of (a) an unstaggered grid mesh and (b) a staggered grid mesh for 
the computation of u and w with the two-dimensional incompressible continuity equation. 
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Fig. 13.5:  A schematic of a staggered grid mesh for the shallow water system. 
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Fig. 13.6: Phase speed as a function of spatial resolution for the exact solution (E), for 
second- (2U) and fourth-order (4U) spatial derivative on an unstaggered grid mesh, and 

for second-order spatial derivatives on a staggered grid mesh (2S). Symbol  denotes 
one grid interval.  (After Durran 1998, with kind permission of Springer Sciences and 
Media.) 
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Fig. 13.7: (a) Five grid meshes proposed by Arakawa and Lamb (1977). The 

computational phase velocity ( kcp / ) and the group velocity ( /gc k   ) analyzed 

as functions of /kd for the four grids as shown in panels (b) and (c), respectively 

(Schoenstadt 1978).  The differential equation solution is also included.  These results 

use the following values: 
1210  msgH , f=10-4 s-1, and d=500 m, where d is the grid 

interval depicted in panel (a).   (Adapted after Arakawa and Lamb 1977) 
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Fig. 13.8: Reflectivity, from the sponge layer as a function of a nondimensional inverse 

Reynolds number, 1/Re for several nondimensional sponge layer depths (d = 0.5, 1.0, 1.5, 

and 2.0).  A value of r=1.0 corresponds to complete reflection from the top boundary of 

the computational domain. The nondimensional numbers are defined as / TRe U k  and 

/)( 1zzd T  , where =2U/N. The viscosity coefficient is defined as 

)]/ln(2/)/ln([sin 11

2  TT , where 
T  and 

1  are the potential temperatures at 

the top and bottom of the sponge layer, respectively. (Adapted after Klemp and Lilly 

1978) 
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Fig. 13.9: Potential temperature ((a) and (c)) and total horizontal velocity fields ((b) and 

(d)) for a two-dimensional, continuously stratified, uniform flow over a bell-shaped 

mountain predicted at the nondimensional time / 100Ut a   by a hydrostatic numerical 

model [(a) and (b)] and calculated by Long’s steady state hydrostatic solution [(c) and 

(d)].  The Froude number ( /F U Nh ) and hydrostatic parameter (Na/U) associated with 

the basic flow are 1.3 and 7.7, respectively.  The dimensional flow and orographic 

parameters are U = 13 ms-1, N = 0.01 s-1, h = 1 km, and a = 10 km.  The vertical 

coordinate is nondimensionalized by the hydrostatic wavelength NU /2  . (After Lin 

and Wang 1996) 
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Fig. 13.10: A flow chart for modeling the fluid flow system of (13.2.18) - (13.2.21) and 
implementing the numerical upper radiation boundary condition at the top of 
computational domain.  FFT and FFT-1 denote the Fast Fourier Transform and the inverse 
Fast Fourier Transform.   
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Fig. 13.11: Time evolution of height field after two iterations of the implicit nonlinear 

normal mode initialization scheme (thin curve) and with no initialization (bold curve). 

(After Temperton 1988)  
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Fig. 13.12: Gravity wave activity after normal mode initialization, dynamic initialization 

for five vertical modes of a baroclinic model, and compared to that with no initialization.  

Note that the gravity wave activity is dramatically reduced by dynamic initialization.  

(Adapted after Sugi 1986) 
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Fig. 13.13: An example of data assimilation cycle adopted by NCEP’s ETA model by 

using 3DVAR technique.  (Adapted after Rogers et al. 1998) 
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Fig. 13.14: A sketch of four-dimensional variational data assimilation (4DVAR).  (a) The 

value produced by the first analysis is A, which fits the data well at T-3h, but leads to a 

forecast that does not match the observations well by T = 0 h. The shaded band is the 

observations.  Note that even data collected at the same time do not necessarily agree 

with each other. (b) An iterative approach, i.e. the adjoint method, is taken to adjust the 

initial analysis so that it is optimal for prediction.  (Courtesy of F. H. Carr) 
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Fig. 13.15: Vertical velocity field from (a) control run, (b) vertical integration of the 

continuity equation, and (c) adjoint retrieval. (After Sun and Crook 1996) 
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Fig. 13.16: Schematic illustration of nonlinear aliasing.  A physical solution with a 

wavelength of x33.1 , caused by the nonlinear interaction of waves of x2  and x4 , is 

seen as a x4 wave in a numerical grid mesh. (After Pielke 2002, reproduced with 

permission from Elsvier.) 
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Fig. 13.17: A flow chart of multianalysis-multimodel superensemble forecasting.  The 

vertical line in the center denotes the initial time ( 0t ), and the area to the left denotes 

the training period where a large number of forecast experiments are carried out by the 

multianalysis-multimodel system.  During the training period, the observed fields provide 

statistics that are then passed on to the period on the right, where 0t .  Here the 

multianalysis-mulimodel forecasts along with the statistics provide the superensemble 

forecasts. (Adapted after Krishnamurti et al. 2001)  

 

 

 

 

 

 
 


