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Chapter 5 Circulation and Vorticity 
 

5.2 Vorticity 

 Vorticity is a microscopic measure of rotation in a fluid. 

 Based on the following flow patterns,  

 

 

 

 

 

 

 
 

The vertical relative vorticity () can be defined: 
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and the vertical absolute vorticity (a) can be derived:  
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 The above relative and absolute vorticities can be extended to 

3D vorticity and absolute vorticity 
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e.g.  

 

 

 

 

 

 

 Relation between   and C: 

Applying the Stokes’ theorem to the definition of circulation, 

we may obtain the relation between vorticity and circulation: 
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The above relation can also be obtained by evaluating the circulation along each 

side of a small rectangle: 
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Stokes’ Theorem: Stokes’ theorem (e.g. see Adv. Calculus for appl. by Hildebrand) links 

contour integration to area integration, 
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where A is the surface area enclosed by the contour for contour integration and  

n is a unit vector perpendicular to the surface in counterclockwise sense. 
 

http://tutorial.math.lamar.edu/Classes/CalcIII/StokesTheorem.aspx
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 Thus, we have 
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This implies that  

AC   dlV . (4.8)” 

 

In words, circulation is roughly equal to the mean vorticity 

times the area enclosed by the integration contour. 
 

The above equation may also be rewritten as 
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 Vorticity in Natural Coordinates 
 

Definition of natural coordinates, (t, n):  t is a unit vector tangential to the local 

velocity vector, n is a unit vector perpendicular to t pointing to the left.   
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where Rs is the radius of local curvature.  
 

In the natural coordinate, the vertical vorticity is composed by 

the curvature vorticity ( RV / ) and shear vorticity ( nV  / ), 
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where R is the radius of local curvature. 
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Fig. 4.6 Two types of 2-D flow with: (a) shear vorticity, and (b) 

curvature vorticity. 


