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Chapter 5 Circulation and Vorticity

5.2 Vorticity
e Vorticity is a microscopic measure of rotation in a fluid.
e Based on the following flow patterns,
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The vertical relative vorticity (¢) can be defined: ¢ =— -2
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and the vertical absolute vorticity () can be derived:
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e The above relative and absolute vorticities can be extended to
3D vorticity and absolute vorticity
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C=K-w=K-(VXV),
L=k, =k-(VXV)+k-(VXV,) =k-(VXV)+ f |

e.g.

e Relation between ¢ and C:
Applying the Stokes’ theorem to the definition of circulation,
we may obtain the relation between vorticity and circulation:

C=§V-di=[[(VxV)-ndA=[[¢dA=Z A (4.8)

Stokes’ Theorem: Stokes’ theorem (e.g. see Adv. Calculus for appl. by Hildebrand) link
contour integration to area integration,
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fV -di = [[ (vxV)-ndA i
] ,

where 4 is the surface area enclosed by the contour for contour integration and
n is a unit vector perpendicular to the surface in counterclockwise sense.

The above relation can also be obtained by evaluating the circulation along each
side of a small rectangle:
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Thus, we have
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This implies that

In words, circulation is roughly equal to the mean vorticity
times the area enclosed by the integration contour.

The above equation may also be rewritten as

DC
a - (4.8)
e Vorticity in Natural Coordinates

Definition of natural coordinates, (¢, n): f is a unit vector tangential to the local
velocity vector, u is a unit vector perpendicular to ¢ pointing to the left.



Fig 4.5 Circulation for an infinitesimal loop in
the natural coordinate system.

However, from Fig. 4.5, d(6s) = §86n, where 8 is the angular change in the wind
direction in the distance és. Hence,
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where R, 1s the radius of local curvature.

In the natural coordinate, the vertical vorticity is composed by
the curvature vorticity (V/R) and shear vorticity (-av/én),
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where R 1s the radius of local curvature.
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Fig. 4.6 Two types of 2-D flow with: (a) shear vorticity, and (b)
curvature vorticity.



