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Chapter 5 Circulation and Vorticity 

 
5.0 Introduction 
(Equation editor: xutDtD ∂∂+∂∂= /// ) 
 
• Linear motion   Circular motion  

     

 TTdu // αω ==  
(linear velocity)   (angular velocity) 
 
There are alternative ways to measure circular motion than the angular 
velocity. 
 

• Two primary measures of rotation in a fluid are: 
 

 Circulation – macroscopic measure for a fluid area, which is a 
scalar integral quantity. 

 Vorticity – microscopic measure at a point of the fluid, which 
is a vector. 

 

These quantities also allow us to apply the conservation of angular 
momentum to the fluid motion in an easier fashion. 

 
5.1 The Circulation Theorem 

 
 Definition of circulation 

 
The circulation, C, about a closed contour in a fluid is defined 
as the line integral evaluated counterclockwise along the 
contour of the component of the velocity vector that is locally 
tangent to the contour: 
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 ∫∫ =⋅≡ αcosdlVC dlV . 

 
Since 
  ∫∫ =⋅= αcosdlVC dlV , 
 

C > 0  for cyclonic flow. 
 

 Claim: Circulation is twice of the angular velocity timing area (2Ω x 
Area) for a disc of fluid in a solid body rotation.   
 

Proof: Consider a solid-body rotation. 
 

V and dl are in the same direction all the time => α = 0, i.e. cos α = 
1.  This gives 
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2))(( rdrdrrdrVdlC Ω=Ω=Ω=Ω==⋅= ∫∫∫∫∫ πααα

πππ
dlV . 

 

 Thus,   Ω= 22r
C

π .   

 

That is:  velocityangulartheofTwice
Area

nCirculatio
=  

 Taking the line integral of Newton’s second law for a closed chain of 
fluid particles, with the help of Stokes’ theorem, leads to the circulation 
theorem.           
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• Circulation Theorem 
 
Recall Eq. (2.8) in Ch. 2 of Holton (2004), 
 

 kV gp
Dt
DV

−∇−Ω−=
ρ
1x2 . (2.8) 

 

 The above equation can be rewritten as 
 

 φ
ρ

∇−∇−= p
Dt

Da 1aV
, (2.8)’ 
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Taking ld⋅ on both sides of (2.8)’ and a close line integral 
lead to  
 

 ∫∫∫ ⋅∇−⋅∇−=⋅ lllVa ddpd
Dt

Da φ
ρ
1

. (4.1) 
 

The integrand of the left-hand side can be rewritten as 
 

( ) l)VlVlV
aa

a d
Dt
Dd

Dt
Dd

Dt
D aa (⋅−⋅=⋅ . 

 
Since l is a position vector, we have 
 

 aVl
=

Dt
Da

, 
 

 ( ) aaa
a VVlVlV dd

Dt
Dd

Dt
Da ⋅−⋅=⋅  (4.2) 

 
Substituting (4.2) into (2.8)’’ leads to 
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 llVVlV aaa ddpdd

Dt
D

⋅∇−⋅∇−=⋅−⋅ φ
ρ
1)( . 

 
 Taking a close line integral of the above equation gives 
 

 ∫∫∫∫ ⋅∇−
⋅∇

−=⋅−⋅ llVVlV aaa ddpdd
Dt
D φ

ρ
)(  

(1)               (2)                       (3)               (4) 
 

   Term (1):  Dt
DCd

Dt
Dd

Dt
D a=⋅=⋅ ∫∫ )()( lVlV aa  

 

 Term (2):  0)(
2
1

=⋅−=⋅− ∫∫ aaaa VVVV dd  
    (Because closed line integral of an exact differential is 0.) 
 

 Term (3):  ∫∫ −=
⋅∇

−
ρρ
dpdp l

 

 

 Term (4):   ∫∫ =−=⋅∇− 0φφ ddl . 

    (Again, closed line integral of an exact differential is 0.) 
 
 
 Thus, we obtain the circulation theorem: 
 

  ∫−=
ρ
dp

Dt
DCa

 (4.3) 

 
The term on the right-hand side is called “solenoidal term”. The 
physical meaning of the solenoidal term will be explained later. 
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[Kelvin’s Circulation Theorem] 
 

For a barotropic fluid, )(),( pTp ρρρ == , there is no temperature 
difference on an isobaric (pressure) surface. This lead to 
 

  0=−= ∫ ρ
dp

Dt
DCa

. 

 
e.g., suppose app == )(ρρ , where a is a constant, then 

 

 0ln1)(ln11
===== ∫∫∫∫ o

o

p

p
p

a
pd

ap
dp

aap
dpdp

ρ . 

 (Note that the closed line integral of an exact differential is always 0.) 
 
In other words, in a barotropic atmosphere or fluid in general, the absolute 
circulation is conserved following the motion, i.e. 
 

 0=
Dt

DCa
.  

 
This is called the Kelvin’s circulation theorem.   
 
It can be shown that Kelvin’s circulation theorem is analogous to the 
conservation of angular momentum. 
 
Recall that  
 Linear momentum: mvPlinear =  

 Angular momentum: Ω= IL  where I is the moment of  
Inertia, which depends on the shape of the object, and Ω is the angular 
velocity.  
e.g., I = (1/2) MR2 for a disk, where M is the mass and R is the radius of the 

disk rotating about an axis perpendicular to its plane passing through 
its center. 

 I = MR2 for a ring, where M is the mass and R is the radius of the 
ring. 
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• For meteorological applications, it is more convenient to use relative 
circulation, instead of absolute circulation as adopted in Kelvin’s 
circulation theorem. 
 

• Bjerknes extends Kelvin circulation theorem to the “Bjerknes 
circulation theorem”. 

 

Recall from Holton’s Eq. (2.5) 
    

 rΩVV x+=a  H(2.5)   
 

where r is the position vector from the earth’s center. The physical 
meaning of H(2.5) can be illustrated by considering a person standing on the rim 
of a Mary-go-around throws a ball into the center.  
 

Taking ld⋅  of the above equation and integrate along a closed contour 
on earth’s surface gives 
 
 ∫∫∫ ⋅+⋅=⋅ lr)ΩlVlV ddda x(  
  Absolute  Relative  
  Circulation Circulation 
 

After some manipulation of the second term on the right-hand side, the 
above equation can be rewritten as 
 

 ea ACACC Ω+=Ω+= 2sin2 φ , (4.4)
   

Here Ae = φsinAAe = is the projection of A on equatorial plane as 
shown below: 
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Taking integration of the above equation involving Ca yields 
 

 Dt
AD

Dt
DC

Dt
DCa )sin(2 φ

Ω+= , or 

 

 Dt
AD

Dt
DC

Dt
DC a )sin(2 φ

Ω−= . 

 
Inserting the circulation theorem into the above equation gives the 
Bjerknes circulation theorem: 
 

 )sin(2 φ
ρ

A
Dt
Ddp

Dt
DC

Ω−−= ∫   (4.5) 
 
For a barotropic atmosphere (no temperature variation on an isobaric 
surface), Eq. (4.5) reduces to  
 

 )sin(2 φA
Dt
D

Dt
DC

Ω−= .    
 

Integrating the above equation from time 1 to 2 leads to 
 

 ∫∫ Ω−=
2

1

2

1
)sin(2 dtA

Dt
Ddt

Dt
DC φ , or 

 
 )sinsin(2 112212 φφ AACC −Ω−=− . (4.6) 
 

That is, circulation changes if the area of the fluid chain or the latitude 
changes. 
 

• Applications of Bjerknes circulation theorem 
 

Example 1: Consider a circular region of area A, originally located at 
equator with no circulation, which is moved to North Pole with area 
conserved (i.e. A = constant). Estimate the final circulation C. 
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Then, )sinsin(2 112212 φφ AACC −Ω−=−  becomes 
 

Ω−=Ω−=−Ω−= 2
2 22))0sin()2/sin((2 rAAAC ππ  

 

r
r

CV Ω−==
π22  

 

For r = 100 km, .3.7)10)(10292.7( 1515
2

−−− −≈−=Ω−= msmsxrV  
 
Example 2: Sea-breeze circulation [Reading Assignment] 
 

  

 
Note that the constant density surfaces are tilted in opposite way of the 
density surface (i.e., from low to high values). 
 

 ∫∫∫ −=−=−= )(ln pdRT
p

dpRTdp
Dt

DCa

ρ  

 

 ∫∫∫∫ −−−−=
a

d

d

c

c

b

b

a
pdRTpdRTpdRTpdRT )(ln)(ln)(ln)(ln  

 
Where a, b, c, and d denote the lower left, lower right, upper right corner, and upper left 
corners, respectively. 
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Assuming the isobaric (pressure) surface is nearly horizontal, then the 
1st and 3rd terms are approximately 0.  
  

∫∫∫∫ −−=−−=
a

d

c

b

a

d

c

b
a pdTRpdTRpdRTpdRT

Dt
DC )(ln)(ln)(ln)(ln 12  

 

1
1212 ln)(lnln

p
pTTR

p
pTR

p
pTR

Dt
DC o

d

a

b

ca −=−−= . 

 
• Physical meaning of the solenoidal term in Holton’s Eq. (4.3) and its 

application to sea-breeze circulation. 
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