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Chapter 5 Circulation and Vorticity 

 
5.0 Introduction 
(Equation editor: xutDtD ∂∂+∂∂= /// ) 
 
• Linear motion   Circular motion  

     

 TTdu // αω ==  
(linear velocity)   (angular velocity) 
 
There are alternative ways to measure circular motion than the angular 
velocity. 
 

• Two primary measures of rotation in a fluid are: 
 

 Circulation – macroscopic measure for a fluid area, which is a 
scalar integral quantity. 

 Vorticity – microscopic measure at a point of the fluid, which 
is a vector. 

 

These quantities also allow us to apply the conservation of angular 
momentum to the fluid motion in an easier fashion. 

 
5.1 The Circulation Theorem 

 
 Definition of circulation 

 
The circulation, C, about a closed contour in a fluid is defined 
as the line integral evaluated counterclockwise along the 
contour of the component of the velocity vector that is locally 
tangent to the contour: 
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 ∫∫ =⋅≡ αcosdlVC dlV . 

 
Since 
  ∫∫ =⋅= αcosdlVC dlV , 
 

C > 0  for cyclonic flow. 
 

 Claim: Circulation is twice of the angular velocity timing area (2Ω x 
Area) for a disc of fluid in a solid body rotation.   
 

Proof: Consider a solid-body rotation. 
 

V and dl are in the same direction all the time => α = 0, i.e. cos α = 
1.  This gives 
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2))(( rdrdrrdrVdlC Ω=Ω=Ω=Ω==⋅= ∫∫∫∫∫ πααα

πππ
dlV . 

 

 Thus,   Ω= 22r
C

π .   

 

That is:  velocityangulartheofTwice
Area

nCirculatio
=  

 Taking the line integral of Newton’s second law for a closed chain of 
fluid particles, with the help of Stokes’ theorem, leads to the circulation 
theorem.           
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• Circulation Theorem 
 
Recall Eq. (2.8) in Ch. 2 of Holton (2004), 
 

 kV gp
Dt
DV

−∇−Ω−=
ρ
1x2 . (2.8) 

 

 The above equation can be rewritten as 
 

 φ
ρ

∇−∇−= p
Dt

Da 1aV
, (2.8)’ 
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Taking ld⋅ on both sides of (2.8)’ and a close line integral 
lead to  
 

 ∫∫∫ ⋅∇−⋅∇−=⋅ lllVa ddpd
Dt

Da φ
ρ
1

. (4.1) 
 

The integrand of the left-hand side can be rewritten as 
 

( ) l)VlVlV
aa

a d
Dt
Dd

Dt
Dd

Dt
D aa (⋅−⋅=⋅ . 

 
Since l is a position vector, we have 
 

 aVl
=

Dt
Da

, 
 

 ( ) aaa
a VVlVlV dd

Dt
Dd

Dt
Da ⋅−⋅=⋅  (4.2) 

 
Substituting (4.2) into (2.8)’’ leads to 
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 llVVlV aaa ddpdd

Dt
D

⋅∇−⋅∇−=⋅−⋅ φ
ρ
1)( . 

 
 Taking a close line integral of the above equation gives 
 

 ∫∫∫∫ ⋅∇−
⋅∇

−=⋅−⋅ llVVlV aaa ddpdd
Dt
D φ

ρ
)(  

(1)               (2)                       (3)               (4) 
 

   Term (1):  Dt
DCd

Dt
Dd

Dt
D a=⋅=⋅ ∫∫ )()( lVlV aa  

 

 Term (2):  0)(
2
1

=⋅−=⋅− ∫∫ aaaa VVVV dd  
    (Because closed line integral of an exact differential is 0.) 
 

 Term (3):  ∫∫ −=
⋅∇

−
ρρ
dpdp l

 

 

 Term (4):   ∫∫ =−=⋅∇− 0φφ ddl . 

    (Again, closed line integral of an exact differential is 0.) 
 
 
 Thus, we obtain the circulation theorem: 
 

  ∫−=
ρ
dp

Dt
DCa

 (4.3) 

 
The term on the right-hand side is called “solenoidal term”. The 
physical meaning of the solenoidal term will be explained later. 

 
 



5 
 

[Kelvin’s Circulation Theorem] 
 

For a barotropic fluid, )(),( pTp ρρρ == , there is no temperature 
difference on an isobaric (pressure) surface. This lead to 
 

  0=−= ∫ ρ
dp

Dt
DCa

. 

 
e.g., suppose app == )(ρρ , where a is a constant, then 

 

 0ln1)(ln11
===== ∫∫∫∫ o

o

p

p
p

a
pd

ap
dp

aap
dpdp

ρ . 

 (Note that the closed line integral of an exact differential is always 0.) 
 
In other words, in a barotropic atmosphere or fluid in general, the absolute 
circulation is conserved following the motion, i.e. 
 

 0=
Dt

DCa
.  

 
This is called the Kelvin’s circulation theorem.   
 
It can be shown that Kelvin’s circulation theorem is analogous to the 
conservation of angular momentum. 
 
Recall that  
 Linear momentum: mvPlinear =  

 Angular momentum: Ω= IL  where I is the moment of  
Inertia, which depends on the shape of the object, and Ω is the angular 
velocity.  
e.g., I = (1/2) MR2 for a disk, where M is the mass and R is the radius of the 

disk rotating about an axis perpendicular to its plane passing through 
its center. 

 I = MR2 for a ring, where M is the mass and R is the radius of the 
ring. 
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• For meteorological applications, it is more convenient to use relative 
circulation, instead of absolute circulation as adopted in Kelvin’s 
circulation theorem. 
 

• Bjerknes extends Kelvin circulation theorem to the “Bjerknes 
circulation theorem”. 

 

Recall from Holton’s Eq. (2.5) 
    

 rΩVV x+=a  H(2.5)   
 

where r is the position vector from the earth’s center. The physical 
meaning of H(2.5) can be illustrated by considering a person standing on the rim 
of a Mary-go-around throws a ball into the center.  
 

Taking ld⋅  of the above equation and integrate along a closed contour 
on earth’s surface gives 
 
 ∫∫∫ ⋅+⋅=⋅ lr)ΩlVlV ddda x(  
  Absolute  Relative  
  Circulation Circulation 
 

After some manipulation of the second term on the right-hand side, the 
above equation can be rewritten as 
 

 ea ACACC Ω+=Ω+= 2sin2 φ , (4.4)
   

Here Ae = φsinAAe = is the projection of A on equatorial plane as 
shown below: 
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Taking integration of the above equation involving Ca yields 
 

 Dt
AD

Dt
DC

Dt
DCa )sin(2 φ

Ω+= , or 

 

 Dt
AD

Dt
DC

Dt
DC a )sin(2 φ

Ω−= . 

 
Inserting the circulation theorem into the above equation gives the 
Bjerknes circulation theorem: 
 

 )sin(2 φ
ρ

A
Dt
Ddp

Dt
DC

Ω−−= ∫   (4.5) 
 
For a barotropic atmosphere (no temperature variation on an isobaric 
surface), Eq. (4.5) reduces to  
 

 )sin(2 φA
Dt
D

Dt
DC

Ω−= .    
 

Integrating the above equation from time 1 to 2 leads to 
 

 ∫∫ Ω−=
2

1

2

1
)sin(2 dtA

Dt
Ddt

Dt
DC φ , or 

 
 )sinsin(2 112212 φφ AACC −Ω−=− . (4.6) 
 

That is, circulation changes if the area of the fluid chain or the latitude 
changes. 
 

• Applications of Bjerknes circulation theorem 
 

Example 1: Consider a circular region of area A, originally located at 
equator with no circulation, which is moved to North Pole with area 
conserved (i.e. A = constant). Estimate the final circulation C. 
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Then, )sinsin(2 112212 φφ AACC −Ω−=−  becomes 
 

Ω−=Ω−=−Ω−= 2
2 22))0sin()2/sin((2 rAAAC ππ  

 

r
r

CV Ω−==
π22  

 

For r = 100 km, .3.7)10)(10292.7( 1515
2

−−− −≈−=Ω−= msmsxrV  
 
Example 2: Sea-breeze circulation [Reading Assignment] 
 

  

 
Note that the constant density surfaces are tilted in opposite way of the 
density surface (i.e., from low to high values). 
 

 ∫∫∫ −=−=−= )(ln pdRT
p

dpRTdp
Dt

DCa

ρ  

 

 ∫∫∫∫ −−−−=
a

d

d

c

c

b

b

a
pdRTpdRTpdRTpdRT )(ln)(ln)(ln)(ln  

 
Where a, b, c, and d denote the lower left, lower right, upper right corner, and upper left 
corners, respectively. 
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Assuming the isobaric (pressure) surface is nearly horizontal, then the 
1st and 3rd terms are approximately 0.  
  

∫∫∫∫ −−=−−=
a

d

c

b

a

d

c

b
a pdTRpdTRpdRTpdRT

Dt
DC )(ln)(ln)(ln)(ln 12  

 

1
1212 ln)(lnln

p
pTTR

p
pTR

p
pTR

Dt
DC o

d

a

b

ca −=−−= . 

 
• Physical meaning of the solenoidal term in Holton’s Eq. (4.3) and its 

application to sea-breeze circulation. 
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