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Chapter 5 Circulation and Vorticity

5.0 Introduction
(Equation editor: D/ Dt =0/0t +ud/ox)

e Linear motion Circular motion
u=d/T wo=a/T
(linear velocity) (angular velocity)

There are alternative ways to measure circular motion than the angular
velocity.

e Two primary measures of rotation in a fluid are:

» Circulation — macroscopic measure for a fluid area, which is a
scalar integral quantity.

» Vorticity — microscopic measure at a point of the fluid, which
is a vector.

These quantities also allow us to apply the conservation of angular
momentum to the fluid motion in an easier fashion.

5.1 The Circulation Theorem

> Definition of circulation

The circulation, C, about a closed contour in a fluid is defined
as the line integral evaluated counterclockwise along the
contour of the component of the velocity vector that is locally
tangent to the contour:


mailto:ylin@ncat.edu
http://mesolab.org/

CE§V-dl:§>V‘dl‘cosa_

Fig. 4.1 Circulation about a eloged contour,

dl

Since
CzifV-dl =§V‘dl‘cosa,

C>0 for cyclonic flow.

» Claim: Circulation is twice of the angular velocity timing area (2£2x
Area) for a disc of fluid in a solid body rotation.

Proof: Consider a solid-body rotation.

V and dl are in the same direction all the time => o =0, 1.e. cos a =
1. This gives

C=§v-di =il = joz”(Qr)(rda) _ joz”grzda — O joz”da =270

C
Thus, JE 20,
. Circulation . i
That 1s: e = Twice of the angular velocity
rea

» Taking the line integral of Newton’s second law for a closed chain of
fluid particles, with the help of Stokes’ theorem, leads to the circulation

theorem.



e Circulation Theorem

Recall Eq. (2.8) in Ch. 2 of Holton (2004),

DV 1
=L 20XV ——Vp—gk
Dt PR 2.8)

The above equation can be rewritten as

DV, 1
Zala o _yp-V :
e p 7t ¢ (2.8)

o(gz), O(gz), O(gz), 0(gz)
Vo= + + k= k=gk
because V9 o l oy J o o 8k

Taking -dl on both sides of (2.8)’ and a close line integral
lead to

§) DV,

1

The integrand of the left-hand side can be rewritten as

D

DV, D
a a a dl
oW

e dl=—V, -dl)-V,
Dt Dt

Since / is a position vector, we have

DV D
“l.dl=—\V -dl)-V -dV
Dt Dt( a ) a a (42)

Substituting (4.2) into (2.8) " leads to

3



Dw .ay-v,.av,=—Lvp.ai-vg.ar.
Dt yo,

Taking a close line integral of the above equation gives

§3D%(Va dl) -V, -dv, =-§ Vp[;‘” ~§vg-dr

(1) ) 3) (4)

Term (1): foo(V,d) =20V, -dly =

1
Term (2): _f’;Va dV, = _Eﬁsd(V“ V=0

(Because closed line integral of an exact differential is 0.)

Term (3): _f’; 0 -

Vp-di _§d_p
J,

Term (4): —§V¢'dl = _§d¢ =0

(Again, closed line integral of an exact differential is 0.)

Thus, we obtain the circulation theorem:

Dt

DC,  ¢dp
’ 43)

The term on the right-hand side is called “solenoidal term”. The
physical meaning of the solenoidal term will be explained later.




[Kelvin’s Circulation Theorem]

For a barotropic fluid, o = p(p,T) = p(p), there is no temperature
difference on an isobaric (pressure) surface. This lead to

DC, :_§d_p20‘
Dt Yo,

e.g., suppose P = p(p)=ap , where a is a constant, then

T I

(Note that the closed line integral of an exact differential is always 0.)

In other words, in a barotropic atmosphere or fluid in general, the absolute
circulation 1s conserved following the motion, i.e.

DC,
Dt

:().

This is called the Kelvin’s circulation theorem.

It can be shown that Kelvin’s circulation theorem is analogous to the
conservation of angular momentum.

Recall that
Linear momentum: £, =mv

Angular momentum: L = [€) where I is the moment of

Inertia, which depends on the shape of the object, and € is the angular

velocity.

e.g., [ =(1/2) MR? for a disk, where M is the mass and R is the radius of the
disk rotating about an axis perpendicular to its plane passing through
its center.

I = MR? for a ring, where M is the mass and R is the radius of the
ring.



o For meteorological applications, it is more convenient to use relative
circulation, instead of absolute circulation as adopted in Kelvin’s
circulation theorem.

e Bjerknes extends Kelvin circulation theorem to the ‘“Bjerknes
circulation theorem”.

Recall from Holton’s Eq. (2.5)
V =V +Qxr H(2.5)

where r is the position vector from the earth’s center. The physical
meaning of H(2.5) can be illustrated by considering a person standing on the rim
of a Mary-go-around throws a ball into the center.

Taking -dl of the above equation and integrate along a closed contour
on earth’s surface gives

§Va -d1=§>V-dl+§(gxr)-dl

Absolute Relative
Circulation Circulation

After some manipulation of the second term on the right-hand side, the
above equation can be rewritten as

C,=C+2Q4sing =C+2Q4A, . (4.4)

Here A, = A, = Asing is the projection of A on equatorial plane as
shown below:




Taking integration of the above equation involving C, yields

DCa:D_C+2QD(As1n¢) or
Dt Dt Dt~

DC _DC, _ZQD(Asin;Z)
Dt Dt Dt

Inserting the circulation theorem into the above equation gives the
Bjerknes circulation theorem:

DC _

D .
=20 (4sing) (4.5)

o,

For a barotropic atmosphere (no temperature variation on an isobaric
surface), Eq. (4.5) reduces to

DC D -
—=-20—(Asin
D Dt( P).

Integrating the above equation from time 1 to 2 leads to

2 DC 2 D .=
LEdt=—2QJ; —(dsing)dt or

C,—C, =—-2Q(A,sing, — A4, sing,). (4.6)

That is, circulation changes if the area of the fluid chain or the latitude
changes.

Applications of Bjerknes circulation theorem

Example 1: Consider a circular region of area A4, originally located at
equator with no circulation, which is moved to North Pole with area
conserved (i.e. 4 = constant). Estimate the final circulation C.



Then, C, —C, = —2Q(A4, sing, — A, sing) becomes

C, = —2Q(Asin(rr/2) — Asin(0)) = —2Q4 = —27°Q

For =100 km, V, = —Qr=—(7.292x10"s"")(10°m) ~ —7.3ms"".

Example 2: Sea-breeze circulation [Reading Assignment]
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Fig. 4.3 Application of the circulation theorem to the sea breeze problem. The closed heavy solid
line is the loop about which the circulation is to be evaluated. Dashed lines indicate surfaces
of constant density.
Note that the constant density surfaces are tilted in opposite way of the

density surface (i.e., from low to high values).

DC d, d,
e _%9 _ _§RT?P - _§RTd(1np)

- j” RTd(In p)— | RT d(In p)- f RTd(In p)— [ RT d(In p)

Where a, b, ¢, and d denote the lower left, lower right, upper right corner, and upper left
corners, respectively.



Assuming the isobaric (pressure) surface is nearly horizontal, then the
15t and 3" terms are approximately 0.

DC, “ e[ 7 [
== [ RTd(In p)~ [ RT d(In p)=—RT, [ d(in p)—RT, | d(In p)

DC,
Dt

=—RT,In2e - RT InLe = R(T, - T In £

b Py b

Physical meaning of the solenoidal term in Holton’s Eq. (4.3) and its
application to sea-breeze circulation.
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