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Chapter 4  Elementary Applications of the Basic Equations 
 
4.2 Balanced Flow (ref.: See Sec. 3.2, Holton 4th ed.) 
  

Based on the equation of motion [Eq. (3.2)] in natural coordinates,  
  
  𝐷𝐷𝑽𝑽

𝐷𝐷𝐷𝐷
= −𝑓𝑓 𝑘𝑘 𝑥𝑥 𝑽𝑽 − 𝛻𝛻𝑝𝑝𝜙𝜙 (3.2) 

   
 We may have the following flow balances: 
 

1. Geostrophic flow  
2. Inertial flow 
3. Cyclostrophic flow 
4. Gradient flow 

 
 

• Natural Coordinates 
 

The pressure (or geopotential) and velocity fields in meteorological 
disturbances are actually related by rather simple approximate 
balances in natural coordinates. 
 

Define the natural coordinates (t, n, k) as unit vectors: 
 
 t //  local flow 
 n ⊥ t  perpendicular to t but 

 pointing to the left 
 k  pointing upward 
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In this natural coordinate system,  
 

 tV V=   (V is the wind speed which is always positive)  
  

      and 
 

 DtDsV /=  
       where s is the distance in t direction. 
  

It can be derived  
 
  
 
  
  
 
 
 and  
  

  
  
 
 (3.8)

 
  
 
  
  
Note that centripetal acceleration is exerted by a real force -  centripetal 
force, while centrifugal force is an apparent (virtual) force as viewed in a 
rotating frame of reference. 

 
• In the natural coordinates, we have 
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Fig. 3.1: Rate of change of the 
unit tangent vector t following 
the motion    
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https://en.wikipedia.org/wiki/Centripetal_force#/media/File:Centripetal_force_diagram.svg
https://en.wikipedia.org/wiki/Centripetal_force#/media/File:Centripetal_force_diagram.svg
http://www.calctool.org/CALC/phys/newtonian/centrifugal
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Substituting Fco and Fp into (3.8) leads to 
 

      φpf
Dt
D

∇−−= VkV x   (3.2) 
 
leads to 
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, 

 
or decompose into t and n components, respectively 

 
  (3.9) 

 
 
 (3.10) 
 
 
  
Centrifugal force   Coriolis force     PGF      
 

• Geostrophic Flow 
 
 Equation (3.10) implies 
 

 n
fVg ∂

∂
−=

φ
 (3.11) 

 

where V is replaced by Vg to indicate the geostrophic wind. This 
implies 
 
 δφ∝gV   if  nδ   is fixed 

st
V

∂
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 and   

 n
Vg δ

1
∝   if δφ is fixed (show examples in WX map). 

 
Also, in deriving (3.11), we have assumed 

 

 0
2

≈
R

Vg
, 

Since gV is determined by n∂∂ /φ , we have ∞→R . This means that 
the local radius of curvature is extremely large.  
 
In other words, the geostrophic flow is straight.   

 
Also note that gV // height contours (or isobars). 

      (Because PGF ⊥ Vg => no pressure gradient along flow direction (t) =>Vg//height contours)  
 
• Inertial Flow 
 

If the geopotential (φ ≈ gz, based on dφ=gdz) is uniform on an 
isobaric surface (i.e. pressure gradient is zero or negligible), then 
there exists no PGF and (3.10)  
 

 
0

2

=
∂
∂

−−−
n

fV
R

V φ
 (3.10) 

 

becomes 
 

 0
2

=−− fV
R

V
 or   

  
       Centrifugal force   Coriolis force    

f
VR −=

http://weather.uwyo.edu/upperair/uamap.shtml
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Flow in this balance is called Inertial Flow. 
 
[Claim] Inertial flow is anticyclonic (clockwise) in northern 
hemisphere. 
 

Proof: Since V is always positive and f is positive in northern 
hemisphere, we have 
 
 0<R . 
 

That means the flow is clockwise or anticyclonic (R > 0 if the center 
of local curvature is located in n direction). 
 
[Claim] On an f-plane, inertial flow follows a circular path. 
 

Proof: Since φ is uniform, we have 
 

 0=
∂
∂

−=
∂
∂

st
V φ

 
  

Thus, V = constant. This implies 
 

 constant.=−=
f

VR  
 

As discussed above, in Northern Hemisphere, R < 0, which means the 
flow is anticyclonic.  The period of this anticyclonic oscillation (or 
inertial flow) can be calculated,  
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[click here for the definition of 1 pendulum day] 

https://en.wikipedia.org/wiki/Foucault_pendulum
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• Cyclostrophic Flow 
 

For a small-scale circulation, such as a tornado, we have very large 
Lagrangian Rossby number, such as for a tornado: 
 

 1105.1
)200)(10(

/30/ 3
14

2

>>=≈= −− x
ms

sm
fR
V

fV
RV

. 

 
That is, the Lagrangian Rossby number (V/fR) is much greater than 1.  
Thus, the Coriolis force is negligible and (3.10) can be approximated 
by the cyclostrophic flow, 
 

 0
2

=
∂
∂

−−
nR

V φ
, 

 
 
    Centrifugal force   PGF 

 
which leads to 
 

 n
RV

∂
∂

−=
φ

. 

 
Since V has to be positive and, of course, real, we require 
 

  R and n∂
∂φ

  in opposite signs.   
 
Thus, there are 2 possibilities for the flow circulation. 
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Fig. 3.4: Force balance in cyclostrophic flow: P designates the pressure gradient and Ce the 
centrifugal force. (Holton and Hakim 2013) 

• Source of rotation (vorticity) for tornadic supercell thunderstorms (which tend to produce 
tornadoes) 

 

 
 
  
• The Gradient Wind Approximation 
 

If we assume the flow is inviscid and parallel to height contours (i.e., 
0/ =∂∂ sφ ), then  
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 0=
Dt
DV

. 

 
This type of flow is called gradient flow.  From Eq. (3.10), we have 

 
 
  
 (3.15) 
 

• Requirement for physically possible solutions: V real and positive.  
Let us consider all possibilities of flow configuration 
 

          [Possible solutions]               [Root]   [Sign of V] [Physical]  [Real Situation]  
  R 

n∂
∂φ    ±     (if real)   Yes/No      

 1a + + + V<0 No (Co, PGF, Ce in the same 
         direction) 
 1b + + - V<0 No Same as 1a 
  
 2a + - + V>0 Yes Regular Low (Fig.3.5a) 
       (baric flow) 
 2b + - - V<0 No  
 
 3a - + + V>0 Yes Anomalous Low (antibaric) 
       V very large (Fig.3.5c) 
 3b  - + - V<0 No 
  
 4a - - + V>0 Yes Anomalous High  
       V very large (Fig.3.5b) 
 4b - - - V>0 Yes Regular High (baric flow)  

 
• How to sketch a gradient flow and its force balance. 

 
1. Draw a circle. 
2. Determine the flow to be cyclonic or anticyclonic, based on R > 0 or R < 

0, respectively, and then draw an arrow tangential to the circle to 
represent the velocity of the flow (V). 

3. Determine the direction of n, which is always to the left of V. 

n
RfRfRV

∂
∂

−





±−=

φ2

22
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4. Based on the sign of n∂∂ /φ  determine the pressure inside the circle to 
be either a high or a low. 

5. Now sketch the PGF (an arrow from High to Low), Ce (centrifugal force, 
always pointing away from the center of local curvature), and Co 
(Coriolis force; always to the right of the flow (V) in Northern 
Hemisphere. 

6. Now determine the gradient flow is possible to exist in the real 
atmosphere or not. If it is possible, is it a regular high or low? Is it a baric 
flow (PGF and Co in opposite directions) or not? 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that flow circulation surrounding 
hurricanes is approximately in gradient 
wind balance.  Thus, in hurricane 
prediction models, the hurricanes are 
often initialized by a bogus vortex 
which is in gradient wind balance.  

 
• Claim: Near the center of a high is always flat (smaller pressure 

gradient) and the wind is gentle compared to the region near the 
center of a low. 
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Proof: 
In order to have a real value of V, for regular and anomalous highs 
(both R & n∂∂ /φ  are negative), we require 
 

2

2






<

∂
∂ fR

n
R φ

, 

 
since  

 0
22

2

>
∂
∂

−





±−=

n
RfRfRV φ

 (3.15) 
 
This implies   

  

 4

22 Rf
n

R <
∂
∂φ

   or   4

2 Rf
n

<
∂
∂φ

. (3.16) 

 
Therefore n∂∂ /φ  should be 
limited and approaches 0 as R 
approaches 0.   
 
Thus, near the center of a high is 
always flat and the wind is gentle 
compared to the region near the 
center of a low. Equation (3.15) also implies that an intense low is 
possible. 

 
• Subgeostrophic flow and supergeostrophic flow 

 
For geostrophic flow, we have  
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 0=
∂
∂

−−
n

fVg
φ

 or gfV
n

−=
∂
∂φ  

 
 Substitute it into (3.10) leads to 
 

 0
2

=+−− gfVfV
R

V
 or fR

V
V
Vg += 1 . 

For regular lows: 0>fR and V > 0 (always) => gVV < .  Flow speed 
is smaller than the corresponding geostrophic flow. Thus, for 
regular lows, flow is subgeostrophic flow.  
 
On the other hand, for regular highs, flow is supergeostrophic. 
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