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Chapter 4
Elementary Applications of the Basic Equations

4.1 Basic Equations in Isobaric Coordinates
(Ref: Holton Sec. 3.1)
» The Horizontal Momentum Equation

The approximate horizontal momentum equations (2.24) and (2.25)
may be written in vectoral form as
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Force
[1% term: Also called total rate of change following the motion; total derivative, material derivative]
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where V =ui+v jis the horizontal velocity vector.

Substituting the following gradient force in isobaric coordinates,
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into (3.1) leads to

DV
— 4 fkxV ==V
D Shkx P (3.2)

where V, is the horizontal gradient operator applied with pressure
held constant.

Because p is the independent vertical coordinate, we must expand the
total derivative as
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Here @ = Dp/ Dt is called the omega vertical motion which is
defined as the pressure change following the motion, equivalent to
w= Dz/ Dt in height coordinates.

Note that for synoptic motions, @ = —p0gw .

From (3.2), the geostrophic relation in isobaric coordinates can be
written as
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or in scalar form
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Note there is no density present in (3.4).

In addition, on an f-plane (i.e., fis constant), we have
\% » -Vg =0

That 1s, there is no divergence for the geostrophic flow (non-
divergent).

The continuity equation in the isobaric coordinates can be derived
directly from Eq. (2.31)
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But it is easier to derive the isobaric form by considering a

Lagrangian control volume 6V = doxdydz and dp = -pgdz. The mass,
oM = poV = - dxdydp/g, is conserved following the motion,

+V'V=O, (231)
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Applying the chain rule, we obtain
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which gives us
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e The thermodynamic energy equation

Taking the total derivative of the equation of state
po=RT (a)

Gives
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Now consider the first law of thermodynamics

du +dw=dq

or
c,dI’' + pda = dq (c)

Since Cp =Cy TR (¢) can be rewritten as
c,dT —adp = dg (d)

Taking total derivative of (d) gives
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where J = Dg/Dt is the diabatic heating rate (J kg'! s71).
Equation (2.42) may be rewritten as
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where J = Fi[ls the diabatic heating rate and
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or

is a “static stability parameter”.

(3.6)

(3.7)
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