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Chapter 4   
Elementary Applications of the Basic Equations 

 
4.1 Basic Equations in Isobaric Coordinates 
 (Ref: Holton Sec. 3.1) 
 
 The Horizontal Momentum Equation 
 

The approximate horizontal momentum equations (2.24) and (2.25) 
may be written in vectoral form as 
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 Inertial     Coriolis       PGF 
 Force 
 [1st term: Also called total rate of change following the motion; total derivative, material derivative] 
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where jiV vu += is the horizontal velocity vector. 
 

Substituting the following gradient force in isobaric coordinates,  
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into (3.1) leads to 
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where p∇  is the horizontal gradient operator applied with pressure 
held constant.  

  
Because p is the independent vertical coordinate, we must expand the 
total derivative as 
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 Here DtDp /=ω is called the omega vertical motion which is  

defined as the pressure change following the motion, equivalent to 
DtDzw /=  in height coordinates. 

 

 Note that for synoptic motions, gwρω −≈ . 
 

• From (3.2), the geostrophic relation in isobaric coordinates can be 
written as 
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 or in scalar form 
 

 y
fug ∂

∂
−=

φ
, (3.4a) 

 x
fvg ∂

∂
=

φ
.  (3.4b) 

 



 
 
 

 
 
 

3 

 Note there is no density present in (3.4).      
 
 In addition, on an f-plane (i.e., f is constant), we have 
 
  0=⋅∇ gVp  
 
 That is, there is no divergence for the geostrophic flow (non- 
 divergent). 
 
 
• The continuity equation in the isobaric coordinates can be derived 

directly from Eq. (2.31) 
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But it is easier to derive the isobaric form by considering a 
Lagrangian control volume δV = δxδyδz and δp = -ρgδz. The mass, 
δM = ρδV = - δxδyδp/g, is conserved following the motion, 
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Applying the chain rule, we obtain 
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which gives us 
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• The thermodynamic energy equation 
 
Taking the total derivative of the equation of state 
 

RTp =α  (a) 
 

 Gives 
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 Now consider the first law of thermodynamics 
 
  dqdwdu =+  
 or  
 dqpddTcv =+ α  (c) 
   
 Since Rcc vp += , (c) can be rewritten as 
 
 dqdpdTcp =−α  (d) 
  
 Taking total derivative of (d) gives 
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where J = Dq/Dt is the diabatic heating rate (J kg-1 s-1). 
Equation (2.42) may be rewritten as 
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where Dt
DqJ = is the diabatic heating rate and  
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is a “static stability parameter”. 
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