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Ch.2 Scale Analysis and Application of the Basic Equations 
 

2.1 Scale Analysis 
Objectives of the scale analysis:   
 (1) To simplify the mathematics by eliminating   

 insignificant terms in the equations, and 
 (2) To filter out the unwanted disturbances, such as sound 

 waves and gravity waves in numerical weather prediction 
  (NWP) simulations. 
 
Definitions of atmospheric scales (Lin 2007 – Mesoscale Dynamics, Cambridge U. 

Press): 
 
“Based on radar observations of storms, atmospheric motions can be 
categorized into the following three scales (Ligda 1951):  
 (a) Synoptic (large) scale: 1000 km < L  
 (b) Mesoscale: 20 km < L < 1000 km 
 (c) Microscale: L < 20 km 
 
The atmospheric motions have also been categorized into 8 separate 
scales (Orlanski 1975; Table 1.1): 

(a) Macroscale: 2000 km < L < 10,000 km 
 macro- (10,000 km < L)  [planetary scale] 
 macro- (2000 km < L < 10,000 km)  
      [synoptic scale to planetary scale] 
(b) Mesoscale: 2 km < L < 2000 km 
 meso- (200 km < L < 2000 km) 
 meso- (20 km < L < 200 km) 
 meso- (2 km < L < 20 km)  
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(c) Microscale: 2 m < L < 2 km 
 micro- (200 m < L < 2 km) 
 micro- (20 m < L < 200 m) 
 micro- (2 m < L < 20 m) scales   

 
Based on theoretical considerations, the following different scales for 
atmospheric motions can be defined (Emanuel and Raymond 1984):  
 

(a) synoptic (large or macro) scale: for motions which are quasi-
geostrophic and hydrostatic,  

(b) mesoscale: for motions which are non-quasi-geostrophic and 
hydrostatic, and 

(c) microscale: for motions which are non-geostrophic, 
nonhydrostatic, and turbulent 
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Table 1.1 Atmospheric scale definitions. (Adapted after Thunis and Borstein 1996) 

(Summarized in Y.-L. Lin 2007 – Mesoscale Dynamics, Cambridge U. Press) 
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(a) Horizontal momentum equation 
The vector form of the momentum equation in the rotating frame of 
reference  
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can be transformed into scalar components in spherical coordinates (Sec. 
2.3, Holton) 
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In this course, we will focus on midlatitude synoptic systems which have 
the following characteristic scales: 
            
 U ~ 10 ms-1    horizontal velocity scale 
 W ~ 1 cm s-1 or 10-2 ms-1  vertical velocity scale 
 L ~ 1000 km or 106 m  horizontal length scale 
 Lz ~ 10 km or 104 m  vertical length scale 
 (p)x,y ~ 10 mb or 103 Pa  horizontal pressure perturbation scale 
 T ~ L/U = 105 s   time scale 
 o ~ 1 kg m-3    density scale 
 fo ~ 10-4 s-1    Coriolis parameter (~2 sin 45o) 
 a ~ 107 m (~6400 km)  Earth radius 
  ~ 10-5 m2s-1    coefficient of molecular friction 
Scale analysis of the horizontal momentum equations: 
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(1) Geostrophic approximation  
 

Keeping the terms with highest order of magnitude (10-3) gives the 
geostrophic wind 
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where sin2f is called the “Coriolis parameter” and vg is called the 
geostrophic wind.  
 
Similarly, the geostrophic wind in y direction can be derived 
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Equations (2.22a) and (2.22b) can be written in vector form 
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where jiV ggg vu  is the geostrophic wind velocity. 
 
Characteristics of the geostrophic wind: 

(a) gV approximates the actual wind to within 10 – 15% 
(b) gV // isobars leaving the low to the left in Northern 

Hemisphere. 
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(c) gV is larger at smaller spacing of the isobars. 
(d) gV is time independent. 

 
  Examples of geostrophic adjustment problem 

 
(a) How does the fluid response to a large-  (b) How does the air adjust to a  

scale near-surface disturbance?             large-scale cold dome? 
           

 
 
 
 
 
                     H/L?                   H/L? 
 
       Q: Initial flow?  Final flow?       Q: Initial flow?  Final flow? 
 
(c) Surface flow adjust to upper air   (d) Tropical system development 

disturbance   
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(2) Approximate prognostic equations 
 
If we keep all terms of O(10-4) and higher, then we have 
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   Accele-    Coriolis  PGF 
     ration     Force 
             

Equations (2.24) and (2.25) reduce to (2.22a) and (2.22b), respectively, 
whenever the first terms on the left hand side are very small compared to 
other terms, e.g. 

 
 

 

/ / 1 

 

where T is the time scale. 
  
In an Eulerian frame of reference, the time scale can be calculated by T 
= L/U.  Substituting it into the above equation leads to 
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Ro is called the Rossby number.      
 
Considering an air parcel following the motion, a Lagrangian Rossby 
number may be defined as  
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where R is the radius of a circular motion or radius of local curvature.  
Sometimes the Lagrangian Rossby number is defined as  
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where that is defined as 2/T and referred to as the angular frequency, 
i.e. the frequency is measured by angle, instead of by cycle, which is 
different from what you’ve learned from General Physics (Lin 2007).  
 

Note that when you compare the inertial force term to the viscous force 
term of the equation of motion, Eq. (2.19), it leads to the definition of the 
Reynolds number /Re LU .  
 
Phenomenon  Time scale Lagrangian Ro  
      ( fTf /2/   ) 

Tropical cyclone 2 / TR V  fRVT /  

Inertia-gravity waves N/2  to f/2  fN /  to 1 
Sea/land breezes f/2  1 

Cumulus clouds wN/2  fNw /  

Kelvin-Helmholtz waves N/2  fN /  
PBL turbulence */2 Uh  fhU /*  

Tornadoes  TVR /2  fRVT /  
 
where 
 
 R   =  radius of maximum wind scale 
   =  frequency 
 T =  time scale 
 VT =  maximum tangential wind scale 
 f =  Coriolis parameter 
 N =  buoyancy (Brunt-Vaisala) frequency 
 Nw =  moist buoyancy (Brunt-Vaisala) frequency 
 U* =  scale for friction velocity 
 h =  scale for the depth of planetary boundary layer. 
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(b) Vertical momentum equation (see additional note) 
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       From basic atmospheric structure 

 

Keeping the terms of largest order of magnitude leads to:  
 
(1) Hydrostatic equation 
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Under this approximation, the gravitational force is balanced by the 
vertical PGF approximately.  The approximation is called “hydrostatic 
approximation”.  
 
Note that it is misleading to merely show the vertical acceleration 
(Dw/Dt) term is much smaller than the vertical PGF term.  It is 
necessary to compare it to the perturbation PGF.   
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[Reading assignment] See Holton and Hakim’s section 2.4.3 for details.   
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(2) Important terminologies and concepts  
 Geopotential 
 Geopotential height 
 Hypsometric equation 
 Scale height 

 
(a) Geopotential 

 
As discussed earlier, geopotential is defined as the work done 
when an air parcel of unit mass (1 kg) is lifted from sea level to 
a certain height z  
(AMS Glossary of Meteorology: 

http://amsglossary.allenpress.com/glossary/search?id=geopotential-height1)  
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(b) Geopotential height 

 
Geopotential height Z is defined as the height of a given point in 
the atmosphere in units proportional to the potential energy of 
unit mass (geopotential) at this height relative to sea level. 
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 The actual height of an air parcel and the geopotential height 
are numerically interchangeable for most meteorological 
purposes.  

 Higher (Lower) Z  higher (lower) pressure (give example 
here) 
 
 

(c) Hypsometric equation 



 
 
 

 
 
 

11 

 
Integrating the equation of geopotential definition from z1 to z2 
and substituting the hydrostatic equation into it leads to (reading 
assignment) 
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Equation (1.21) can be approximated by 
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Thus, the physical meaning of the hypsometric equation is that 
the depth of an atmospheric layer is proportional to the mean 
layer temperature. 

 

(d) Scale height 
The height where the sea-level density (o) is reduced to its e-
folding value (oe-1).  Note that approximately the air density is 
reduced exponentially  
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Thus, z = H is the scale height.    

   


