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1.4 Alternate Vertical Coordinates 
 

Any single-valued monotonic function, such as height or pressure, may 

be used as an independent vertical coordinate.   
 

Traditionally, pressure has been used in synoptic observations, analysis, 

and NWP models as an alternate vertical coordinate (isobaric 

coordinate) due to the following reasons: 

 (1) Soundings give pressure directly. 

 (2) Continuity equation is in linear and time-independent form. 

 (3) Thermal wind and geostrophic wind relations are simpler.  

 (4) Density does not appear in the pressure gradient forces. 
 

Isentropic coordinate ( constant ) has also been adopted for synoptic 

analysis, which is able to show more details of some weather systems, 

such as upper-level fronts.        
 

(a) Derive a general formula for coordinate transformation 
 

In the coordinate transformation, we need to express the horizontal pressure 

gradient force in the x-direction 
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in isobaric (pressure) coordinate.  

When height (z) is used as a vertical 

coordinate, this horizontal derivative 

is evaluated by holding z constant. 

When we use pressure as a vertical 

coordinate, we now need to evaluate 

this derivative along a constant 

pressure surface. 
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In general, the pressure gradient on an s-surface can be derived as, 
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which gives 
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 The above equation gives 
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 Therefore, 
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where   is the geopotential, defined as 
z

gdz
0

 , which is the 

work needed to lift an air parcel from surface to a height z.   
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(b) Vertical coordinates commonly adopted in meteorology 
 

(1) Pressure (isobaric) coordinates (s = p) 
 

 As derived above, 
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(2) Normalized pressure coordinates (s = p/ps) 

 
“In simulating a mesoscale flow within a finite domain, the height vertical coordinate may propose 

problems.  For example, it may intercept the terrain in a mountainous area and thus create problems 

in dealing with the lower boundary condition.  Similar problems happen to the pressure coordinate and 

isentropic coordinate when isobaric surfaces and isentropic surfaces intercept the lower boundary, 

respectively, which may occur when there is strong orographic blocking.  To avoid the problem, a 

vertical sigma coordinate, which matches the lowest coordinate surface with the bottom topography, 

has been proposed (Phillips 1957).”   

                               [Quoted from Lin (2007) - Mesoscale Dynamics)] 
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 It may be derived,   
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(3) Isentropic coordinates (s = ) 

   

  Let  
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 The pressure gradient force may be derived, 

http://www.cambridge.org/us/academic/subjects/earth-and-environmental-science/atmospheric-science-and-meteorology/mesoscale-dynamics
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  where cpT+ is called the Montgomery function. 

 

Advantages of using isentropic coordinate against p coordinate are:  

(1) Showing some details of some weather systems, such as 

upper-level fronts. 

(2) Making it easier to follow isentropic (adiabatic) motions.  

 

 

 

  

 

 

 

 

 

                           Isobaric coordinates           Isentropic coordinates 
 

(4) Terrain-following (-z) coordinates  

 

Let                   
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where zs and zT are the terrain elevation and the top of model domain, respectively. 

 
“When the sigma coordinate is applied to the height coordinates, it is called z  or the terrain-

following coordinates in which the  can be defined as 
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where Sz is the height of the lower surface in the z  coordinates, which is independent of time, 

and Tz is the constant domain height or the constant height of the terrain-following part of the 

domain.  In the general  coordinates, the pressure, p, can be written as 

 

  ]),,,,(,,[),,,( ttzyxyxptzyxp  . (13.1.11) 

The pressure gradient in x direction in the z coordinates can be obtained by performing the chain-

rule, 

 

  
zz x

p

x

p

x

p









































 



. (13.1.12) 

The pressure gradient ( xp  / ) in the  coordinates can be obtained by deriving  zx / from 

(13.1.10) and substituting it into (13.1.12): 

  . (13.1.13) 

The sigma coordinate transformation may also be applied to the mass (hydrostatic pressure) 

coordinates (Skamarock et al. 2005), in addition to the z coordinates.  If one replaces p by a 

general variable A, then the above transformation may be used to derive the gradient of A in x 

direction. One problem of the sigma vertical coordinate systems is that errors in two terms of the 

pressure gradient force do not cancel out (Smagorinski et al. 1967).  To avoid this problem, the 

step-mountain or eta coordinates have been proposed (Mesinger et al. 1988).”   [Quoted from Lin 

(2007) - Mesoscale Dynamics)] 

 

(5) Terrain-following pressure (-p) coordinates  

  (Used in the ETA Model; Mesinger et al. 1988 MWR, Janjic’ 1994 MWR) 
 

In ETA coordinates, eta ( ) is defined as 

 

  s = S

TS

T

pp

pp





  (13.1.14) 

with 

  
( )

(0)

r S T
S

r T

p z p

p p






. (13.1.15) 

In the above equations, p is pressure; the subscripts T and S denote the top and surface values of 

the model atmosphere; z is geometric height, and ( )rp z  is a suitably defined reference pressure as 

a function of z.   The boundary conditions assumed are p=constant at the top boundary (= 0), 

and 0 at = 0 and at the horizontal parts of the ground surface ( S  ).  The advantage of 
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this approach is that it does not transform the governing equations into complicated forms. 

However, the disadvantage of this coordinate is that it is of the first order of accuracy in 

representing the terrain, which is less accurate compared with the terrain-following coordinates, 

which is of the second-order of accuracy.  A third method is to adopt a finite-element scheme, 

which approximates the mountain surface by one side of the finite elements.  It has the same 

advantage as not having to transform the governing equations into complicated forms as well as 

having a higher-order accuracy compared to the step-mountain coordinates.   

 


