ASME 434 Atmospheric Dynamics

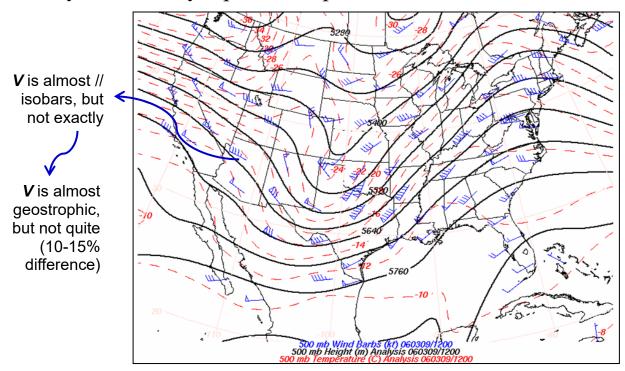
Department of Physics NC A&T State University

Dr. Yuh-Lang Lin https://mesolab.org ylin@ncat.edu

Chapter 7 Quasi-Geostrophic (QG) Approximation and QG Vorticity Equation

7.1 Quasi-Geostrophic Approximation

Purpose: The primitive equations contain several terms of secondary significance, thus can be simplified by making the quasi-geostrophic (QG) approximation to help understand the basic dynamics of synoptic atmospheric motions in midlatitude.



The QG approximation will lead to two major equations:

- Geopotential height tendency equation for predicting the height tendency
- Omega equation for diagnosing the vertical motion

➤ QG Approximation of the momentum equations

Consider the primitive equations in isobaric coordinates

$$\frac{Du}{Dt} = fv - \frac{\partial \phi}{\partial x}$$

$$x-momentum equation$$

$$\frac{Dv}{Dt} = -fu - \frac{\partial \phi}{\partial y}$$

$$y-momentum equation$$

$$\frac{\partial \phi}{\partial p} = -\frac{RT}{p}$$
Hydrostatic equation
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial \omega}{\partial p} = 0$$
Continuity equation
$$\frac{DT}{Dt} = \left(\frac{RT}{c_p p}\right)\omega + \left(\frac{1}{c_p}\right)\frac{DQ}{Dt}$$
Thermodynamic equation

- ➤ We have already made the following assumptions or approximations:
 - (1) Inviscid
 - (2) Hydrostatic
 - (3) No Earth curvature effect
- ➤ Next, the total horizontal velocity is decomposed into geostrophic and ageostrophic components

2

$$u = u_g + u_a$$
 and $v = v_g + v_a$, or in vector form

$$V = V_g + V_a$$

(4) Assume $u_a \ll u_g$ and $v_a \ll v_g$, which gives

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \omega \frac{\partial u}{\partial p} \approx \frac{\partial u_g}{\partial t} + u_g \frac{\partial u_g}{\partial x} + v_g \frac{\partial u_g}{\partial y} = \frac{D_g u_g}{Dt},$$

$$\frac{Dv}{Dt} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \omega \frac{\partial v}{\partial p} \approx \frac{\partial v_g}{\partial t} + u_g \frac{\partial v_g}{\partial x} + v_g \frac{\partial v_g}{\partial y} = \frac{D_g v_g}{Dt},$$

where
$$\frac{D_g}{Dt} = \frac{\partial}{\partial t} + u_g \frac{\partial}{\partial x} + v_g \frac{\partial}{\partial y}$$

It is valid only when $R_o <<1$, where is the $R_o = U/fL$ is the Rossby number.

(5) Make midlatitude β -plane approximation:

$$f = f_o + \frac{\partial f}{\partial y}y + \frac{1}{2!}\frac{\partial^2 f}{\partial y^2}y^2 + \dots \approx f_o + \frac{\partial f}{\partial y}y = f_o + \beta y$$

where $\beta (=\partial f/\partial y)$ is a constant and y is the meridional distance from the latitude for f_o .

(6) Further assume $f = f_o$ in the geostrophic wind balance equations,

$$u_g \equiv -\frac{1}{f_o} \frac{\partial \phi}{\partial y}$$
, $v_g \equiv \frac{1}{f_o} \frac{\partial \phi}{\partial x}$

With the above assumptions and approximations, the x-momentum equation becomes

$$\frac{\partial u_g}{\partial t} + u_g \frac{\partial u_g}{\partial x} + v_g \frac{\partial u_g}{\partial y} = -\frac{\partial \phi}{\partial x} + (f_0 + \beta y)(v_g + v_a) \approx f_0 v_a + \beta y v_g$$

$$\frac{\partial v_g}{\partial t} + u_g \frac{\partial v_g}{\partial x} + v_g \frac{\partial v_g}{\partial y} = -\frac{\partial \phi}{\partial y} - (f_0 + \beta y)(u_g + u_a) \approx -f_0 u_a - \beta y u_g$$

In summary, the QG approximation neglects the following effects:

- Friction
- Horizontal advection of momentum by the ageostrophic wind, e.g. $\left(u_a \frac{\partial u_g}{\partial x}, v_a \frac{\partial u_g}{\partial y}\right)$, & on ageostrophic wind, e.g. $\left(u_a \frac{\partial u_a}{\partial x}, v_a \frac{\partial u_a}{\partial y}\right)$
- Vertical advection of momentum, e.g. $\left(\omega \frac{\partial u_g}{\partial p}, \omega \frac{\partial u_a}{\partial p}\right)$
- Local changes in the ageostrophic wind, e.g. $\frac{\partial u_a}{\partial t}$
- Advection of the ageostrophic momentum by the geostrophic wind, e.g. $\left(u_g \frac{\partial u_a}{\partial x}, v_g \frac{\partial u_a}{\partial y}\right)$

QG Continuity Equation

Substituting $u = u_g + u_a$ and $v = v_g + v_a$ into

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial \omega}{\partial p} = 0$$

as earlier, assuming u_a , v_a , and ω are one order smaller than that of u_g and v_g , and using

$$u_g = -\frac{1}{f_0} \frac{\partial \phi}{\partial y}$$
, $v_g = \frac{1}{f_0} \frac{\partial \phi}{\partial x}$, and $\frac{\partial u_g}{\partial x} + \frac{\partial v_g}{\partial y} = 0$, lead to

$$\frac{\partial u_a}{\partial x} + \frac{\partial v_a}{\partial y} + \frac{\partial \omega}{\partial p} = 0$$

➤ QG Thermodynamic Equation

The thermodynamic energy equation in the primitive set of equations [see ASME 433 note Eq. (3.6)]

$$\frac{DT}{Dt} = \left(\frac{RT}{c_p p}\right)\omega + \left(\frac{1}{c_p}\right)\frac{DQ}{Dt}$$

can be rewritten as

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} - \left(\frac{\sigma p}{R}\right) \omega = \frac{1}{c_p} \frac{DQ}{Dt} \quad \text{where} \quad \sigma = -\frac{RT}{\theta p} \frac{\partial \theta}{\partial p}.$$
Applying the primary QG approximation $(u \approx u_g \text{ and } v \approx v_g)$ leads

to

$$\frac{\partial T}{\partial t} = -u_g \frac{\partial T}{\partial x} - v_g \frac{\partial T}{\partial y} + \left(\frac{\sigma p}{R}\right)\omega + \frac{J}{c_p}$$

In summary, the QG equations can be written as

$$\frac{\partial u_g}{\partial t} + u_g \frac{\partial u_g}{\partial x} + v_g \frac{\partial u_g}{\partial y} = f_0 v_a + \beta y v_g$$
(6.10)

$$\frac{\partial v_g}{\partial t} + u_g \frac{\partial v_g}{\partial x} + v_g \frac{\partial v_g}{\partial y} = -f_0 u_a - \beta y u_g$$
(6.11)

$$\frac{\partial \phi}{\partial p} = -\frac{RT}{p} \tag{6.2}$$

$$\frac{\partial u_a}{\partial x} + \frac{\partial v_a}{\partial y} + \frac{\partial \omega}{\partial p} = 0 \tag{6.12}$$

$$\frac{\partial T}{\partial t} = -u_g \frac{\partial T}{\partial x} - v_g \frac{\partial T}{\partial y} + \left(\frac{\sigma p}{R}\right) \omega + \frac{J}{c_p}$$

$$(6.13)$$

$$u_{g} = -\frac{1}{f_{0}} \frac{\partial \phi}{\partial y}$$

$$u_{g} = -\frac{1}{f_{0}} \frac{\partial \phi}{\partial y}$$

$$(6.7)$$

Geostrophic Vorticity Equation

> Start with QG equations of motion

$$\frac{\partial u_g}{\partial t} + u_g \frac{\partial u_g}{\partial x} + v_g \frac{\partial u_g}{\partial y} = f_0 v_a + \beta y v_g$$
(6.10)

$$\frac{\partial v_g}{\partial t} + u_g \frac{\partial v_g}{\partial x} + v_g \frac{\partial v_g}{\partial y} = -f_0 u_a - \beta y u_g$$
(6.11)

Taking cross differentiation of the above equations leads to the QG vorticity equation

$$\frac{\partial \zeta_g}{\partial t} + u_g \frac{\partial \zeta_g}{\partial x} + v_g \frac{\partial \zeta_g}{\partial y} = f_0 \frac{\partial \omega}{\partial p} - \beta v_g$$
(6.18)

where

$$\zeta_g = \frac{\partial v_g}{\partial x} - \frac{\partial u_g}{\partial y} = \frac{1}{f_o} \nabla^2 \phi$$
 (6.15)

Equation (6.18) can be rewritten as

$$\frac{\partial \zeta_g}{\partial t} = -V_g \cdot \nabla(\zeta_g + f) + f_0 \frac{\partial \omega}{\partial p}$$
(6.18)

Physical meaning of (6.18)'.

LHS: local rate of change of geostrophic relative vorticity

RHS: (1) advection of absolute vorticity by geostrophic wind

(2) vorticity stretching by planetary vorticity

Substituting (6.12) into the equation leads to an alternative form of the QG vorticity equation

$$\frac{\partial \zeta_g}{\partial t} = -u_g \frac{\partial \zeta_g}{\partial x} - v_g \frac{\partial \zeta_g}{\partial y} - f_0 \left(\frac{\partial u_a}{\partial x} + \frac{\partial v_a}{\partial y} \right) - \beta v_g$$

(6.18)

Thus, ζ_g can be predicted if ϕ and the right-hand side of is known.