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Chapter 3 Vorticity 
(Holton Sec. 4.2 - Vorticity; Equation editor: xutDtD  /// ) 

 

 

 Vorticity is a microscopic measure of rotation in a fluid. 
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 Definitions of 3D vorticity and absolute vorticity 
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 Definitions of vertical relative vorticity ( ) and vertical 

absolute vorticity: 
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 Relation between   and C: 

Applying the Stokes’ theorem to the definition of circulation, 

we may obtain the relation between vorticity and circulation: 

 

AdAdAC
AA

    nVdlV )x(
 (4.8)’ 

 

 

 

 

 

 

 

Stokes’ Theorem: Stokes’ theorem (e.g. see Adv. Calculus for appl. by 

Hildebrand) links contour integration to area integration, 

  
A

dAnVdlV )x(
,  

where A is the surface area enclosed by the contour for contour integration and  

n is a unit vector perpendicular to the surface in counterclockwise sense. 

http://tutorial.math.lamar.edu/Classes/CalcIII/StokesTheorem.aspx
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The above relation can also be obtained by evaluating the circulation along each 

side of a small rectangle: 
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 Thus, we have 
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This implies that  

 

AC   dlV . (4.8)” 

 

In words, circulation is roughly equal to the mean vorticity 

times the area enclosed by the integration contour. 

 

The above equation may also be rewritten as 
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 
DA

DC
 (4.8)  

                   
 

 Vorticity in Natural Coordinates 
 

Definition of natural coordinates, (t, n):  t is a unit vector 

tangential to the local velocity vector, n is a unit vector 

perpendicular to t pointing to the left.   

 

 

 
where Rs is the radius of local curvature.  
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In this coordinate system, the vertical vorticity is composed 

by the curvature vorticity ( RV / ) and shear vorticity ( nV  / ), 
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where R is the radius of local curvature. 

  
 
Fig. 4.6 Two types of 2-D flow with: (a) shear vorticity, and (b) 

curvature vorticity. 

 

Example of shear vorticity and curvature vorticity:  

                
                 300mb isotachs                  300mb geopotential heights    

  

                 Shear Vorticity                    Curvature Vorticity 


