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(Holton Sec. 4.2 - Vorticity; Equation editor: D/ Dt=0/0ot +ud/ ox)

e Vorticity is a microscopic measure of rotation in a fluid.
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e Definitions of 3D vorticity and absolute vorticity
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e Definitions of vertical relative vorticity (¢) and vertical
absolute vorticity:
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e Relation between ¢ and C:
Applying the Stokes’ theorem to the definition of circulation,
we may obtain the relation between vorticity and circulation:

Stokes’ Theorem: Stokes’ theorem (e.g. see Adv. Calculus for appl. by
Hildebrand) links contour integration to area integration,

§V -dl :J‘I(VXV)-ndA, a

where 4 is the surface area enclosed by the contour for contour integration and
n is a unit vector perpendicular to the surface in counterclockwise sense.
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http://tutorial.math.lamar.edu/Classes/CalcIII/StokesTheorem.aspx

The above relation can also be obtained by evaluating the circulation along each
side of a small rectangle:
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Thus, we have
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This implies that

C=§v-di=¢A sy

In words, circulation is roughly equal to the mean vorticity
times the area enclosed by the integration contour.

The above equation may also be rewritten as



DC
DA =¢ (4.8)

e Vorticity in Natural Coordinates

Definition of natural coordinates, (¢, n): ¢ i1s a unit vector
tangential to the local velocity vector, m 1s a unit vector
perpendicular to ¢ pointing to the left.
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~ Fig 4.5 Circulation for an infinitesimal loop in
_I_..___— Ss the natural coordinate system.

d(Ss)

However, from Fig. 4.5, d(§s) = §86n, where §§ is the angular change in the wind
direction in the distance és. Hence,
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or, in the limit é#, és — 0
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where R, 1s the radius of local curvature.



In this coordinate system, the vertical vorticity is composed
by the curvature vorticity (V/R) and shear vorticity (-oV /an),

V oV
=R an>

where R 1s the radius of local curvature.
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Fig. 4.6 Two types of 2-D flow with: (a) shear vorticity, and (b)
curvature vorticity.

Example of shear vorticity and curvature vorticity:

300mb isotachs 300mb geopotential heights

Shear Vorticity Curvature Vorticity

Even straight-line motion may have vorticity if
the speed changes normal to the flow axis.



