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Chapter 2 Circulation Theorems 
(Holton Sec. 4.1 - Circulation Theorems) 

 

 Linear motion: measured by (linear) velocity 

 

 v = d/T  
 (velocity = distance traveled/time to travel distance) 

 

Circular motion: measured by angular velocity 
     

 T/   
 (angular velocity = angle traveled/time to travel angle) 
 

There are alternative ways to measure circular motion than the 

angular velocity. 

 

 Two primary measures of rotation in a fluid are: 

 

 Circulation – macroscopic measure for a fluid area, 

which is a scalar integral quantity. 

 Vorticity – microscopic measure at a point of the fluid, 

which is a vector. 
 

These quantities also allow us to apply the conservation of 

angular momentum to the fluid motion in an easier fashion. 
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 Definition of Circulation 

 

The circulation, C, about a closed contour in a fluid is defined 

as the line integral evaluated counterclockwise along the 

contour of the component of the velocity vector that is locally 

tangent to the contour: 

 

   cosdlVC dlV
. 

 
Since 

    dlVC cosdlV , 

 

C > 0  for cyclonic flow. 

 

 Claim: Circulation is twice of the angular velocity times area 

(2x Area) for a disc of fluid in a solid body rotation.   

 

Proof: Consider a solid-body rotation. 

 

V and dl are in the same direction all the time => = 0, i.e. 

cos  = 1.  This gives 
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That is:   velocityangulartheofTwice
Area

nCirculatio
  

 

 The circulation theorem may be derived by taking the line 

integral of Newton’s second law for a closed chain of fluid 

particles, with the help of Stoke’s theorem. 

 

2.1 Circulation Theorem 
 

Recall Eq. (2.8) in Ch. 2 (Holton’s), 

 

 
𝐷𝑼

𝐷𝑡
= −2𝛺x𝑼−

1

𝜌
𝛻𝑝 + 𝒈 + 𝑭𝑟  (2.8) 

 

Let U = V and assume friction is small, it leads to 
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Take ld on both sides of (2.8a),  
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 lll
Va ddpd

Dt

Da  


1
.   (2.8c) 

 

Left hand side can be rewritten as 

  l)VlVl
V
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a d

Dt

D
d

Dt
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d
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or after observing that since l is a position vector, 

 

 aV
l


Dt

Da

, 

 

 
  aaa

a VVlVl
V

dd
Dt

D
d

Dt

Da 
   (4.2) 

 

Substituting (4.2) into (2.8)’’ leads to 

 

 
𝐷𝑎

𝐷𝑡
(𝑽𝑎 ⋅ 𝑑𝒍) − 𝑽𝑎 ⋅ 𝑑𝑽𝑎 = −

1

𝜌
𝜵𝑝 ⋅ 𝑑𝒍 − 𝜵𝜑 ⋅ 𝑑𝒍 

 

 Taking a close line integral of the above equation gives 

 

   


 l
l

VVlV aaa d
dp

dd
Dt

Da 


)(  

(1)             (2)                 (3)            (4) 

 

   Term (1):  
Dt
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 Term (2):  0)(
2

1
  aaaa VVVV dd  

    (because close line integral of an exact differential is 0.) 
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 Term (3):   





dpdp l
 

 

 Term (4):     0 ddl . 

 

 Thus, we obtain the circulation theorem: 
 

    

dp

Dt

DCa
    (4.3) 

 

The term on the right hand side is called “solenoidal term”. 

The physical meaning of the solenoidal term will be explained 

later.  

 

 Physical meaning of the solenoidal term  
 

    

dp

Dt

DCa
    (4.3) 
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2.2 Kelvin’s Circulation Theorem 
 

For a barotropic fluid, )(),( pTp   , there is no 

temperature difference on an isobaric (pressure) surface. This 

lead to 
 

  0  
dp

Dt

DCa
. 

 

 e.g., suppose app  )( , then 

 

  0ln
1

)(ln
11

 
o

o

p

p
p

a
pd

ap

dp

aap

dpdp


. 

  (Note that the closed line integral of an exact differential is 0.) 
 

In other words, in a barotropic atmosphere or fluid, the absolute 

circulation is conserved following the motion, i.e. 
 

 0
Dt

DCa
. 

 

This is called the Kelvin’s circulation theorem.  

 

It can be shown (in homework problem) that Kelvin’s 

circulation theorem is analogous to the conservation of angular 

momentum. 

 

Recall that  

 Linear momentum: mvPlinear   

 Angular momentum:  IL  where I is the moment of  

 Inertia, which depends on the shape of rotating subjects, 

and  is the angular velocity.  
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2.3 Bjerknes’ Circulation Theorem 
 

For meteorological applications, it is more convenient to use the 

relative circulation.        

 

Bjerknes’ extends Kelvin circulation theorem to the “Bjerknes’ 

circulation theorem”. 

 

Recall  

    

  rΩVV xa      (2.5) (Holton) 

 

Taking  ld  and integrate along a closed contour on earth’s surface 

gives 

 

    lr)ΩlVlV ddda x(  
  Absolute  Relative  

  Circulation Circulation 

After some manipulation of the second term on the right-hand 

side, the above equation can be rewritten as 

 

  ea ACACC  2sin2  , 

 

Here Ae defined as 

 

  sinAAe  . 
 

is the projection of A on equatorial plane as shown below: 
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Taking integration of the above equation involving Ca yields 

 

  
Dt

AD

Dt

DC

Dt

DCa )sin(
2


 , or 

 

  
Dt

AD

Dt

DC

Dt

DC a )sin(
2


 . 

 

 

Inserting the circulation theorem into the above equation gives the 

Bjerknes’ circulation theorem: 

 

  )sin(2 


A
Dt

Ddp

Dt

DC
      (4.5) 

 

For a barotropic atmosphere (no temperature variation on an 

isobaric surface), Eq. (4.5) reduces to  

 

  )sin(2 A
Dt

D

Dt

DC
 .    
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Integrating the above equation from time 1 to 2 leads to 

 

   
2

1

2

1
)sin(2 dtA

Dt

D
dt

Dt

DC
 ,  

or 

 

  )sinsin(2 112212  AACC  .  (4.6) 

 

That is, circulation changes if the area of the fluid chain or the 

latitude changes. 

 
 Applications of Bjerknes circulation theorem. 

 

Example 1: Consider an area, say A, originally located at 

equator with no circulation, which moves to the North Pole 

without changing its area. Estimate the final circulation C. Why 

does the final circulation become negative? 

 

 

Example 2: Sea-breeze circulation 

 

  



 

10 

 

 
 

Note that the isothermal surfaces are tilted in opposite way of 

the density surface. 

 

   )(ln pdRT
p

dp
RT

dp

Dt

DCa


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Where a denotes the lower left corner, b the lower right corner, c upper right 

corner, and d the upper left corner. 

 

Assuming the isobaric (pressure) surface is nearly horizontal, 

then the 1st and 3rd terms are approximately 0.  
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