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Chapter 2 Circulation Theorems

(Holton Sec. 4.1 - Circulation Theorems)

e Linear motion: measured by (linear) velocity

v=d/T

(velocity = distance traveled/time to travel distance)
Circular motion: measured by angular velocity
wo=alT

(angular velocity = angle traveled/time to travel angle)

There are alternative ways to measure circular motion than the
angular velocity.

e Two primary measures of rotation in a fluid are:

» Circulation — macroscopic measure for a fluid area,
which is a scalar integral quantity.

» Vorticity — microscopic measure at a point of the fluid,
which is a vector.

These quantities also allow us to apply the conservation of
angular momentum to the fluid motion in an easier fashion.



http://mesolab.org/
mailto:ylin@ncat.edu

» Definition of Circulation
The circulation, C, about a closed contour in a fluid 1s defined
as the line integral evaluated counterclockwise along the

contour of the component of the velocity vector that is locally
tangent to the contour:

C={V -dl =§Vldi|cosa

Fig. 41 Circulation about a elesed contour,

dl

Since
C :j?v dl =§Vcosa dl-

C >0 for cyclonic flow.

e Claim: Circulation 1s twice of the angular velocity times area
(2£2x Area) for a disc of fluid in a solid body rotation.

Proof: Consider a solid-body rotation.

V and dl are in the same direction all the time => o= 0, i.e.
cos a= 1. This gives



C =V -di =fvdl = [ (@r)(rda) = [ "Qr*da =r? [ da = 270r*
Thus%ﬂﬁ-

That is: Cm;ulatlon =Twice of the angular velocity
rea

» The circulation theorem may be derived by taking the line
integral of Newton’s second law for a closed chain of fluid
particles, with the help of Stoke’s theorem.

2.1 Circulation Theorem

Recall Eq. (2.8) in Ch. 2 (Holton’s),

DU 1
50 = "20xU~—Vp+g+F, (2.8)

Let U =V and assume friction is small, it leads to

DV 1

ﬁ = -20xV —;Vp — gk ’ (28a)
or

DV, 1

—a'a __~vyp_V

Dt~ PV, (2.80)
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Vop=—I1+
because V¢ ox oy oz oz .

Take -dl on both sides of (2.8a),



PV gt ——Lvp.di-vg.dl

Dt P (2.8¢)

Left hand side can be rewritten as
DV D
—2a'a dl = V., -dl L -—=(dl
Dt Dt ( ) Dt (dh)

or after observing that since | is a position vector,

a :Va

Dt ’

DV D

—22.dl = V. -dl)-V, -dVv

Dt -d Dt( a d) a d a (42)

Substituting (4.2) into (2.8)"’ leads to
Dg 1
D—t(Va-dl) -V, -dv, = —;Vp-dl— Vo - dl
Taking a close line integral of the above equation gives
§ £ (v, -dl)—§V, -aV, _—§Vp L _§vg.a

(1) 2) (3) 4)

Term (1): fo2 0V, d) = 22§V, -dy = 2o - 2

Dt
Term (2): _§Va v, = _§§d(va Va) =0

(because close line integral of an exact differential 1s 0.)
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Term (3): _§— ~

vp-dl _ cdp
p §p

Term (4): —§V¢'d| =—§d¢=0.

Thus, we obtain the circulation theorem:

Dt

DC, dp
— 4.3
s 43)
The term on the right hand side is called “solenoidal term”.
The physical meaning of the solenoidal term will be explained
later.

e Physical meaning of the solenoidal term
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ot =, (4.3)
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2.2 Kelvin’s Circulation Theorem

For a barotropic fluid, o= p(p,T) = p(p), there is no
temperature difference on an isobaric (pressure) surface. This
lead to

DC, ¢dp _
Dt b0

e.g., suppose p=p(p)=ap, then

P _

§%:§Z_E:;§dp 1§o|(|n p)_—lnp

(Note that the closed line integral of an exact dlfferentlal is0.)

In other words, in a barotropic atmosphere or fluid, the absolute
circulation is conserved following the motion, i.e.

DC,

Dt

This is called the Kelvin’s circulation theorem.

It can be shown (in homework problem) that Kelvin’s
circulation theorem is analogous to the conservation of angular
momentum.

Recall that
Linear momentum: B,..., =MV
Angular momentum: L=1Q where I is the moment of
Inertia, which depends on the shape of rotating subjects,
and Q is the angular velocity.



2.3 Bjerknes’ Circulation Theorem

For meteorological applications, it is more convenient to use the
relative circulation.

Bjerknes’ extends Kelvin circulation theorem to the “Bjerknes’
circulation theorem™.

Recall

V,=V +Qxr (2.5) (Holton)

Taking -dl and integrate along a closed contour on earth’s surface
gives

§va-d| =§v -d|+§(gxr)-d|

Absolute Relative
Circulation  Circulation

After some manipulation of the second term on the right-hand
side, the above equation can be rewritten as

C,=C+2QAsing =C+20QA,
Here A. defined as
A =Asing

is the projection of A on equatorial plane as shown below:



Taking integration of the above equation involving C, yields

DC, DC 20 D(Asin¢)

a

Dt Dt Dt

, Or

DC _DC, ,,D(Asin ?)
Dt Dt Dt

Inserting the circulation theorem into the above equation gives the
Bjerknes’ circulation theorem:

DC_ ¢ 54D (asing
Dt §p ZQDt(Asmgb) (4.5)

For a barotropic atmosphere (no temperature variation on an
isobaric surface), Eq. (4.5) reduces to

DC D . =
—=-20Q—(AsIn
Y Dt( P) .



Integrating the above equation from time 1 to 2 leads to
2DC 2 D -
—dt =-2Q| — (Asin ¢)dt
J, o (Asin ),
or

C,—C,=-20Q(A,sing, —Asing). (4.6)

That is, circulation changes if the area of the fluid chain or the
latitude changes.

e Applications of Bjerknes circulation theorem.

Example 1: Consider an area, say A4, originally located at
equator with no circulation, which moves to the North Pole
without changing its area. Estimate the final circulation C. Why
does the final circulation become negative?

Example 2: Sea-breeze circulation
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Fig. 4.3 Application of the circulation theorem to the sea breeze problem. The closed heavy solid
line is the loop about which the circulation is to be evaluated. Dashed lines indicate surfaces
of constant density.

Note that the 1sothermal surfaces are tilted in opposite way of
the density surface.

DC,
Dt

_ 9P _ fprdp_
_§p §RTp §RT d(In p)

:_j:RT d(In p)—jbcRT d(In p)—Ld RT d(In p)—jdaRT d(In p)

Where a denotes the lower left corner, b the lower right corner, ¢ upper right
corner, and d the upper left corner.

Assuming the 1sobaric (pressure) surface is nearly horizontal,
then the 1% and 3" terms are approximately 0.

DCa c a — C — ra
= =-jb RT d(In p)—L RT d(In p)=—RT2_[bd(In p)—RTlLd(In %)
DC.  RTInPe_RT InPe —R(T, -T)In Pe
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