ASME 433 Atmospheric Dynamics

Department of Physics NC A&T State University

Dr. Yuh-Lang Lin ylin@ncat.edu
http://mesolab.org

Chapter 4 Elementary Applications of the Basic Equations

4.6 Surface Pressure Tendency

Relationship between w and ω

$$\omega = \frac{Dp}{Dt} = \frac{\partial p}{\partial t} + \mathbf{V} \cdot \nabla p + w \frac{\partial p}{\partial z}$$
(3.36)

We may write $V = V_g + V_a$ and assume $V_a \ll V_g$ for synoptic flow.

Substituting $V = V_g + V_a$ into (3.36) and applying the hydrostatic equation lead to

$$\omega = \frac{Dp}{Dt} = \frac{\partial p}{\partial t} + V_a \cdot \nabla p - g\rho w \tag{3.37}$$

Based on (3.37), we have at surface

$$\omega_s = \frac{\partial p_s}{\partial t} + V_a \cdot \nabla p_s - g\rho_s w_s \tag{3.37}$$

The second term on the right side is small when a low pressure system or a cyclone is approaching. This gives

$$\frac{\partial p_s}{\partial t} = \rho_s g w_s + \omega_s \tag{3.37}$$

From the continuity equation (3.39),

$$\omega(p) = \omega(p_s) - \int_{p_s}^{p} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)_{p} dp.$$
 (3.39)

Taking $p \rightarrow 0$ (i.e., top of the atmosphere),

$$\omega_s = \omega(p_s) = -\int_0^{p_s} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)_p dp \tag{3.39}$$

Substituting ω_s of (3.39)' into (3.37)" yields

$$\frac{\partial p_s}{\partial t} = \rho g w_s - \int_0^{p_s} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)_p dp \tag{3.44}$$

Special case:

Special case: (continued) No terrain ($w_s = 0$)

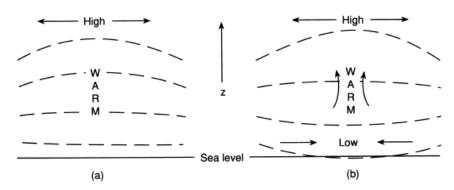


Fig. 3.11 Adjustment of surface pressure to a midtropospheric heat source. Dashed lines indicate isobars. (a) Initial height increase at upper level pressure surface. (b) Surface response to upper level divergence.

Adjustment of surface pressure to a midtropospheric heat source:

- 1. Heat the midtroposphere
- 2. Generate upward motion
- 3. Induced adiabatic cooling in the upper troposphere
- 4. Generate High pressure in upper troposphere
- 5. Produce divergence in upper troposphere
- 6. The average divergence of the air column increases ($\nabla \cdot V > 0$).
- 7. The surface pressure tendency equation, i.e. Eq. (3.44), implies:

$$\frac{\partial p_s}{\partial t} < 0$$

- 8. Induce low-level convergence
- 9. Strengthen w > 0 in midtroposphere