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Chapter 4   

Elementary Applications of the Basic Equations 
 

4.1 Basic Equations in Isobaric Coordinates 
 (Ref: Holton Sec. 3.1) 
 

➢ The Horizontal Momentum Equation 
 

The approximate horizontal momentum equations (2.24) and (2.25) 

may be written in vectoral form as 
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 Inertial     Coriolis       PGF 

 Force 

 [1st term: Also called total rate of change following the motion; total derivative, material derivative] 
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where jiV vu += is the horizontal velocity vector. 
 

Substituting the following gradient force in isobaric coordinates,  
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into (3.1) leads to 
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where p
 is the horizontal gradient operator applied with pressure 

held constant.  

  

Because p is the independent vertical coordinate, we must expand the 

total derivative as 
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 Here DtDp /= is called the omega vertical motion which is  

defined as the pressure change following the motion, equivalent to 
DtDzw /=  in height coordinates. 

 

 Note that for synoptic motions, gw − . 
 

• From (3.2), the geostrophic relation in isobaric coordinates can be 

written as 
 

pf = xkVg
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 or in scalar form 
 

 y
fug




−=


, (3.4a) 

 x
fvg




=


.  (3.4b) 

 



 

 

 

 

 

 

3 

 Note there is no density present in (3.4).      
 

 In addition, on an f-plane (i.e., f is constant), we have 

 

  0= gVp  

 

 That is, there is no divergence for the geostrophic flow (non- 

 divergent). 
 

 

• The continuity equation in the isobaric coordinates can be derived 

directly from Eq. (2.31) 
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But it is easier to derive the isobaric form by considering a 

Lagrangian control volume V = xyz and p = -gz. The mass, 

M = V = - xyp/g, is conserved following the motion, 
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Applying the chain rule, we obtain 
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which gives us 
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• The thermodynamic energy equation 

 

Taking the total derivative of the equation of state 

 

RTp =  (a) 

 

 Gives 
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 Now consider the first law of thermodynamics 

 

  dqdwdu =+  

 or  

 dqpddTcv =+   (c) 

   

 Since Rcc vp += , (c) can be rewritten as 

 

 dqdpdTcp =−  (d) 

  

 Taking total derivative of (d) gives 
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where J = Dq/Dt is the diabatic heating rate (J kg-1 s-1). 

Equation (2.42) may be rewritten as 
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where 
Dt

Dq
J = is the diabatic heating rate and  
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is a “static stability parameter”. 


