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Chapter 3 Atmospheric Thermodynamics, Instabilities, and 

Scale Analysis 
 
3.1 Derivation of the Thermodynamic Equation 
(Equation editor: zwyvxutDtD ∂∂+∂∂+∂∂+∂∂= ///// ) 
 
The thermodynamics equation is based on the following 2 equations: 
 
(a) Equation of state for ideal gas 
 
  RTp =α  (1) 
  
 where α is 1/ρ is called specific volume (i.e. volume per unit mass).   
 
(b) First law of thermodynamics 
 
  vc dT pd dqα+ = , dqdpdTcp =−α , or 
    

  J
Dt
Dq

Dt
Dp

Dt
DTcp ==−α  (2) 

 
 Taking total differentiation of (1) and then substitute it into (2) 

leading to the thermodynamic equation: 
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http://mesolab.org/
mailto:ylin@ncat.edu


 
 
 

 2 

 

  Dt
Ds

T
J

Dt
Dq

TDt
pDR

Dt
TDcp ===−

1lnln
     (2.43) 

 
 where s is the entropy, defined as ds=dq/T.  
 
 Eq. (2.42) may also be written in an alternative form, 
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 In isobaric coordinates, the thermodynamic equation can be written as 
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 where DtDp /≡ω is the vertical velocity in isobaric coordinates or ω 

vertical motion, and )/(/ pcRTpTS pp −∂∂=  is a stability parameter.  
The above equation is one form of the thermodynamic equation.   

 
 
 Potential Temperature 
  
 For an adiabatic process (dq = 0 or Dq/Dt = 0), it can be derived  
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 If an air parcel is moved from an initial state ),(),( 11 pTpT =  to a 
final state ),(),( 22 oppT θ= adiabatically (dq=0), then the above 
equation can be written as 
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=θ . (2.44) 

 
 The above equation is also called Poisson equation and θ is called 

potential temperature. Note that θ = constant during an adiabatic 
process. Thus, θ is the temperature an air parcel would have if it is 
displaced to 1000 mb. 

 
 Using (2.44), the thermodynamic equation, (2.43), can be rewritten as 
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p ==−=
1lnlnlnθ

 (2.46) 

 
 For an adiabatic process, Dq/Dt = 0, (2.46) implies Dθ/Dt = 0 and 

Ds/Dt = 0.  Thus, an adiabatic process is also an isentropic process (s 
= constant).   

  
 Linearization of the basic equations 

Consider the x-momentum equation 
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Now let 
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Then, the above equation can be written as 
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Assuming geostrophic flow for mean wind V and neglecting the 
“nonlinear” terms leads to the linear equation 
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[Supplementary Reading] The equations of motion, continuity equation, and thermodynamic 
equation, Eqs. (2.2.1) – (2.2.5), may be linearized by partitioning the field variables (Lin 2007): 
 

 ),,,(')(),,,( zyxtuzUzyxtu += , 

 ),,,(')(),,,( zyxtvzVzyxtv += , 

 ),,,('),,,( zyxtwzyxtw = , 

 ),,,('),,(),,,( zyxtzyxzyxt ρρρ += , 

 ),,,('),,(),,,( zyxtpzyxpzyxtp += , 

 ),,,('),,(),,,( zyxtzyxzyxt θθθ += ,  

 ),,,('),,(),,,( zyxtTzyxTzyxtT += , 

 ),,,('),,,( zyxtqzyxtq = , (2.2.8) 

where capital letters and overbars represent the basic state, such as synoptic scale flow in which 
the mesoscale disturbances evolve, and the primes indicate perturbations, such as the mesoscale 
flow fields, from the basic state.   
 The basic state is assumed to follow Newton’s second law of motion, conservation of mass, 
and the first law of thermodynamics.  The horizontal momentum equations, (2.2.1) and (2.2.2), 
of the basic state lead to geostrophic balance,  
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while the vertical momentum equation (2.2.3) of the basic state leads to hydrostatic balance,  
 

 g
z
p ρ−=

∂
∂ , (2.2.10) 

where TRp dρ= .  Equations (2.2.9) and (2.2.10) automatically imply approximately thermal 
wind balance for the basic state 
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where ( ) pd cR
o ppT //=θ and subscriptions indicate partial differentiations.  Conservation of 

mass, (2.2.4), of the basic state leads to  
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which is consistent with the geostrophic wind relation.  Conservation of the basic state 
thermal energy gives 

 
 0=
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U θθ , (2.2.13) 

which implies no basic state thermal advection by the basic wind and will be assumed for 
deriving the perturbation thermodynamic equation.  The left-hand side of (2.2.13) is related to 
the uniform heating ( sQ ) in the quasi-geostrophic model, which is required to satisfy the 
constraint that the vertical motion field vanishes at the surface and possibly at the upper 
boundary for some theoretical studies (Bannon 1986).  In the Eady (1949) model of baroclinic 
instability, this term is assumed to be 0.  In fact, if one assumes 0=V , then the above equation is 
automatically satisfied because 0 )/(/ ==∂∂ zVgfx θθ , based on the basic-state thermal wind 
relations.  Substituting (2.2.8) with (2.2.9)-(2.2.13) into (2.2.1)-(2.2.5) and neglecting the 
nonlinear and viscous terms, the perturbation equations for mesoscale motions in the free 
atmosphere (i.e. above the planetary boundary layer) can be obtained, 
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Remember that N is the Brunt-Vaisala (buoyancy) frequency and H is the scale height.  The 
Brunt-Vaisala frequency and scale height are defined, respectively, as 
 

 ,2

z
gN

∂
∂

≡
θ

θ
 

g
cH s

2

≡ , (2.2.19) 

where 

  TRc ds γ=2 , 
v

p

c
c

=γ .  

Note that the scale height has also been defined in the literature as the height at which the basic 
density of the air at surface ( sρ ) is reduced to its e-folding value, i.e. 1)( −== eHz sρρ , assuming 
the air density decreases with height exponentially. 
 In deriving (2.2.14) and (2.2.15), we have assumed Uu /'/' <<ρρ  and Vv /'/' <<ρρ , 
which is a good first approximation in the real atmosphere.  The sum of the fourth and fifth terms 
of 2.2.16 represents the buoyancy force ( ρρ /'g ) associated with the atmospheric motion, which 
may also be written as. )/('/' /' Hpgg ρθθρρ +−=   This relation reduces to θθρρ /' /' −≈ for an 
incompressible or Boussinesq fluid.  The incompressible and Boussinesq approximations will be 
discussed later.  The Brunt-Vaisala (buoyancy) frequency represents the natural oscillation 
frequency of an air parcel displaced vertically from its equilibrium position by the buoyancy 
force in a stably stratified atmosphere (i.e. 02 >N ).   The vertical oscillation period for parcels 
in this type of atmosphere is N/2π .  In deriving Eq. (2.2.17), we have substituted the equation 
of state and the first law of thermodynamics, )/(/)(ln TcqDtD p=θ , into the total derivative of the 
air density ( DtD /ρ ).  This yields the diabatic term on the right side of Eq. (2.2.17), which may 

be neglected for an incompressible or Boussinesq fluid since it is of the same order as other  
2
sc  

terms for most mesoscale flows.          
=================================================== 
 
3.2 Basic Concepts 
 
 Dry Adiabatic Lapse Rate 
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 Taking z∂∂ /))44.2(ln( [i.e., Poisson equation] leads to 
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In deriving (2.47), we have assumed a hydrostatic atmosphere.  
 
For an adiabatic process (θ = constant), (2.47) gives the dry 
adiabatic lapse rate 

 

  d
p

T g
z c

∂
Γ = − =

∂ . (2.48) 

 
Thus, the temperature decreases with height at a rate of 9.8 K/km.  
Note that the actual lapse rate is smaller than g/cp, such as 5~6 
K/km.  

 
3.2.1 Static Instability 

 
The concept of static instability can be also understood by applying 
parcel theory to the vertical momentum equation,  
 

 
1Dw p g

Dt zρ
∂

= − −
∂ , (7.3.1)  

 
where ρ  and p are the density and pressure of the air parcel, 
respectively.   
 
In the parcel theory, we assume that:  
(a) The pressure of the air parcel adjusts immediately to the pressure 

of its environment ( p ), i.e. pp = , when it moves away from its 
initial level;  

(b) The environment of the air parcel is in hydrostatic balance;  
(c) No compensating motions exist in the parcel’s environment;  
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(d) The air parcel does not mix with its environment and so retains its 
original identity.   

 
 
Applying condition (a) to the air parcel leads to 
 

  Dw g b
Dt

ρ ρ
ρ

 −
= ≡ 

 
, (7.3.2) 

 
where b is the buoyancy, or more precisely the buoyancy force per 
unit mass.   
 
The above equation indicates that the vertical acceleration of the air 
parcel is controlled by the buoyancy force, ( ) /g ρ ρ ρ− .   
 
It can be derived that 
 

 T T
T

ρ ρ θ θ
ρ θ
− − −

≈ ≈ . (7.3.3) 
 
Substituting (7.3.3) into (7.3.2) leads to  
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=
θ

θθ
ρ

ρρ = b = buoyancy   (7.3.2)’ 

 
Note that if 
 
  b > 0, then the air parcel will accelerate upward 
   (e.g., when air parcel is warmer than its environment) 
  b = 0, then the air parcel experience no acceleration 
   (e.g., when air parcel and its environment has the same temperature) 
  b < 0, then the air parcel will accelerate downward 
   (e.g., air parcel is colder than its environment) 
The Brunt-Vaisala frequency, defined as 
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is a measure of static stability. The overbar means the value of a 
variable (θ in this case) in the environment of an air parcel.  It can 
also be shown 
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Equation (2.47)         
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can be rewritten as 
 

 Γ−Γ=
∂
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dz
T θ
θ

. (2.49) 

   
Based on (2.49) and (2.52) (i.e., )/)(/(2 zgN ∂∂≡ θθ ), the atmosphere is 
 
   Statically stable (static stability) if dΓ<Γ  or 02 >N  

   Statically neutral (static neutrality) if dΓ=Γ  or 02 =N  
   Statically unstable (static instability) if dΓ>Γ  or 02 <N . 

 where 
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, (2.52) 

 
 is the Brunt-Vaisala frequency. 
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3.2.2 Conditional Instability and Thermodynamic Diagram 
 
The necessary conditions for conditional instability to occur are: (a) 

s dγΓ < < Γ  and (b) a lifting of the air parcel past its LFC. A 
thermodynamic diagram can help understand the concept and 
determine conditionally stability or instability.  

 
• Skew-T log-p Diagram [reading assignment] 

(Click here for: Skew-T, log-p diagram analysis procedure) 
(Click here for: interactive Skew-T diagram) 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7.5: Example of a sounding with conditional instability displayed on a skew-T log-p thermodynamic diagram.  

The lifting condensation level (LCL), level of free convection (LFC), and level of neutral buoyancy (LNB) for 
the air parcel originated at A are denoted in the figure. The convective available potential energy (CAPE) is the 
area enclosed by the temperature curve (thick dashed line) and moist adiabat (dot-dashed curve) in between 
LFC and LNB, while the convective inhibition is the area enclosed the temperature curve and dry adiabat 
(below LCL) and moist adiabat (above LCL) in between the surface and the LFC.  (From Lin 2007, Mesoscale 
Dynamics)  
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•  Need to learn how to: 
 

(a) Use skew-T log-p diagram to find temperature for an air parcel 
located at 500 mb on a sounding. 

(b) Given a sounding, (T, Td), on the thermodynamic diagram, 
estimate the LCL (lifting condensation level) for an air parcel 
lifted upward from the ground.  LCL is where the cloud base is 
located. 

(c)  Determine LFC (Level of Free Convection), LNB  
 (Level of Neutral Buoyancy), CAPE (Convective  
 Available Potential Energy), and positive area. 
 
(d) CIN (Convection Inhibition) – the energy needed to lift an air 

parcel vertically and pseudoadiabatically from its originating 
level to its level of free convection (LFC). Units: J/kg  
Procedure: Take the surface dew point temperature and raise it 
adiabatically. At the same time, take the surface temperature 
and raise it pseudoadiabatically. Raise these two parcels until 
they intersect. From the point of intersection, raise the parcel 
pseudoadiabatically until it crosses the temperature curve. This 
point is the level of free convection. The area under the LFC 
and to the right of the temperature curve is CIN. CIN is often 
called Negative Area which is proportional to the amount of 
kinetic energy that must be supplied to move the parcel to the 
LFC. 
 

3.2.3 Potential instability 
 
 Potential instability, also known as convective instability, describes an 

atmospheric state in which an atmospheric layer becomes unstable 
statically after lifting.  This means that dense air lies on top of less dense 
air within the layer.  An entire atmospheric layer may be lifted by a 
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density current, a broad mountain range, a frontal surface, or a cyclone.  
Under these situations, layer theory is more appropriate for assessing the 
instability of the lifted layer, as opposed to parcel theory for conditional 
instability.  

 

 
 

Fig. 7.6 (Lin 2007): Illustration of potential (convective) instability by lifting an 
initially absolutely stable layer AB with 0e zθ∂ /∂  < .  The top of the layer (B) 
follows a dry adiabat to saturation at B’, while the bottom of the layer becomes 
saturated earlier (at LCL) and then follows moist adiabat to A’.  The lapse rate of 
the final saturated layer (A’B’) is greater than the moist adiabat, thus is unstable.  
(Adapted after Darkow 1986) 
 

The criteria for potential (convective) instability can be expressed in terms of the 

equivalent potential temperature, since this is a conserved quantity for the moist 

layer, 
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3.2.3 Kelvin-Helmholtz instability 

 Kelvin-Helmholtz (K-H) instability may occur when there 
is vertical shear across the interface between two fluids or 
when vertical shear is present within a continuous fluid.  
K-H instability is also referred to as shear instability in the 
literature.   
 

 
 
Fig. 7.8: A sketch illustrating the growth of a sinusoidal disturbance associated 
with shear or Kelvin-Helmholtz instability.  The initially uniform vortex sheet 
(thick line) has positive vorticity in y-direction (into the paper).  The local 
strength of the vortex sheet is represented by the thickness of the sheet and the 
curved arrows indicate the direction of the movement induced by the vorticity in 
the sheet.  (Adapted after Batchelor 1967) 

 
 Figure 7.8 illustrates the growth of a sinusoidal disturbance in a 

homogeneous shear flow associated with K-H instability.  In the figure, two 
layers of fluid, one beneath the other, move parallel to the x-axis, but in 
opposite directions and at the same speed U.  When the fluid system is 
undisturbed, the interface of these two layers of fluid is horizontal.  This 
interface is regarded as a thin layer of strong vorticity and is also referred to 
as a vortex sheet.   
 
A vortex sheet is defined as a layer of fluid consisting of small, discrete 
vortices rotating in the same direction.  In the figure, the curved arrows 
indicate the direction of the self-induced movement of the vorticity in the 
sheet, as well as (a) the general rotation about points like C and (b) the 
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accumulation of vorticity at points like C.  The positive vorticity 
accumulating at points like C will induce clockwise velocity around these 
points, thereby amplifying the sinusoidal disturbance of the vortex sheet.  
This process of vorticity accumulation at points like C will continue, leading 
to exponential growth of the disturbance.  The spatial form of the 
disturbance will not change as long as the disturbance is small enough not to 
significantly change the basic state. The basic mechanism of K-H instability 
is the conversion of the available kinetic energy embedded in the basic shear 
flow into the kinetic energy of the disturbance, whereby the fluid aquires the 
potential energy needed to lift or lower fluid parcels when 02 >N  ( 0/ <dzdρ ) 
everywhere.  Therefore, vertical shear tends to destabilize the flow while 
buoyancy tends to stabilize it.   

  

The K-H instability can be understood by using the energy argument 
presented below (as characterized by Chandrasekhar 1961). To quantify the 
effects of buoyancy and vertical shear, we consider two neighboring fluid 
parcels of equal volumes at heights z and zz δ+ and interchange them. The 
work Wδ that must be done to incur this interchange against gravity is given 
by 
 
 zgW δρδ   −=∆ ,  (7.4.1) 
 
where zdzd δρρδ )/(= is the difference in the basic density at the two heights. 
The kinetic energy per unit volume available to do this work is given by 
 

 
2

2 2 21 1 [ ( )] 1( ) ( )
2 2 2 2 4

U U UK U U U Uρ δρ ρ δ ρ δ+ + ∆ = + + − = 
 

. (7.4.2) 

                                1                   2                          3 
In (7.4.2), terms 1 and 2 respectively represent the kinetic energies of air 
parcels 1 and 2 before the interchange, while term 3 represents the kinetic 
energy of the air parcels after the interchange.    

 
 A necessary condition for this interchange, and thus for instability, is that 

KW ∆≤∆ somewhere in the flow: 
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N g d dzRi
U dU dz

ρ ρ−
≡ = < .  (7.4.3) 

 Thus, K-H instability tends to occur when the airflow experiences marked 
vertical shear and weak thermal stratification.  Note that the example given 
in Fig. 7.8 is in a homogeneous fluid with 0Ri = , which indicates the K-H 
instability is purely produced by the shear effect and may thus be defined as 
shear instability.   When 0Ri < , either buoyancy ( N ) or the shear ( zU ) effect 
may lead to K-H instability (because 2 2/ zRi N U= ).  In this situation, the K-H 
instability appears to be a mixed instability, but may be more dominated by 
the shear effect (shear instability) when Ri is less negative (e.g., 

0.25 0Ri− < < ) and by the buoyancy effect (static or buoyant instability) when 
Ri is more negative (e.g., 0.25Ri < − ).   
 

 K-H instability may produce large-amplitude gravity waves and clear air 
turbulence (CAT).  CAT is a major cause of atmospheric turbulence and an 
extraordinarily challenging subject, long studied by atmospheric scientists, 
computational fluid dynamicists, and aerospace engineers.  CAT is of crucial 
interest to aviators because of the significant impact of this phenomenon on 
aviation safety.  Occasionally, K-H instability becomes visible when there is 
enough moisture in the atmosphere and air parcels are lifted above their 
LFCs by the K-H waves.  Figure 7.9 shows an example of such K-H billow 
clouds. 

 

  
 
Fig. 7.9: An example of breaking Kelvin-Helmholtz waves in clouds (billow 
clouds) formed over Laramie, Wyoming, USA. (Photo by Brooks Martner, 
NOAA Environmental Technology Laboratory) 



 
 
 

 16 

 

 

 
 
3.3 Scale Analysis of Thermodynamic Energy Equation 
 
One form of the thermodynamic equation derived in 3.2 can be written 
as 
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Equation (2.46) can be linearized by letting 
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where DtDqJ /=  is the heating rate.  The above equation may also be 

written as 
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where N is the Brunt-Vaisala (buoyancy) frequency defined as 

)/)(/()/)(/(2 zgzgN oo ∂∂≈∂∂= θθθθ .  



 
 
 

 17 

 

For the following characteristic scales of synoptic motion in the 

planetary boundary layer at midlatitude, 

 .01.0~,01.0~
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Equation (2.53)’ can then be approximated by 
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Since oo TT /'/' ≈θθ , the above equation can also be expressed as 
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where Γd and Γ are dry and actual lapse rates, respectively.  
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[Supplementary reading]  
(From Lin 2007 – Mesoscale Dynamics, Cambridge University Press) 
 
7.3.2 Conditional instability  

The method for determining static instability, as discussed above, assumes either no 
saturation or 100% saturation.  However, the situation is significantly different if the 
air parcel becomes saturated as is lifted upward.  In an unsaturated atmosphere, the 
unsaturated moist Brunt-Vaisala frequency ( wN ) can be estimated using the 
following formula: 

 
z

gN v

v
w ∂

∂
=

θ
θ

2 ,   (7.3.14) 

where vθ  is the virtual potential temperature of the environmental air and is related 
to the virtual temperature by 

 
/

 
d pR c

s
v v

pT
p

θ  
=  

 
,    (7.3.15) 

where 
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1
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1
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+≈








+

+
≈








+

+
=

ε .   (7.3.16) 

In the above equation, q is the water vapor mixing ratio and ε is the ratio of the 
molecular weight of water vapor ( vm ) to that of dry air ( dm ), which has a value of 
0.622.   
 When an unsaturated air parcel is lifted upward, its temperature follows a dry 
adiabat path until it reaches the lifting condensation level (LCL) (Fig. 7.5).  Further 
lifting will result in condensation and cause the temperature of the air parcel to follow 
a moist adiabat.  The latent heat released from the condensation will warm the air 
parcel and slow down the moist adiabatic lapse rate ( sΓ ), making it slower than the 
dry lapse rate ( dΓ ).  Suppose the value of the observed environmental lapse rate (γ ) 
is between sΓ  and dΓ  (i.e. s dγΓ < < Γ ), and that the forcing is strong enough to lift 
the air parcel past its LCL.  A continued lifting will then force the air parcel to cool at 
a rate of sΓ , eventually reaching a level where the temperature of the air parcel and 
the environment are equal.  Further lifting will cause the air parcel’s temperature to 
surpass its environment temperature, causing it to accelerate upward due to the 
buoyancy force.  Since the buoyancy force acts on the parcel during this step, no 
additional forcing is needed.  In other words, the air parcel is now experiencing free 
convection.  This level is known as the level of free convection (LFC).   Since this 
type of air parcel instability is subjected to a finite-amplitude displacement from its 
initial level to the LFC, it is referred to as conditional instability.  Thus, the necessary 
conditions for conditional instability to occur are: (a) s dγΓ < < Γ  and (b) a lifting of 
the air parcel past its LFC.    
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 The criterion for conditional instability can also be determined via the vertical 
gradient of the saturation equivalent potential temperature ( *

eθ ) which is defined as 
the equivalent potential temperature of a hypothetically saturated atmosphere at the 
initial level.  This hypothetical atmosphere has been set to mimic the thermal 
structure of the actual atmosphere.  In other words, *

eθ can be defined as the 
equivalent potential temperature that the air parcel would have if it were saturated 
initially at the same pressure and temperature, and can be calculated by 
 /* vs pLq c T

e eθ θ= .   (7.3.17) 

 In order to derive the criterion for conditional instability, we consider an air 
parcel lifted from oz zδ−  to oz .  At oz zδ− , the air parcel is assumed to have the 
same potential temperature as that of the environment, ( / )zθ θ η− ∂ ∂ , where θ is the 
potential temperature of the environmental air at oz , and zη δ=  is the vertical 
displacement.  The potential temperature of the air parcel experiences a change of δθ  
when it is lifted from oz η− to oz , i.e. [ ( / ) ]zθ θ η δθ− ∂ ∂ + .  Thus, the buoyancy of 
the air parcel at oz is 

  gb g g
z

θ θ θ δθη
θ θ θ

 − ∂
= = − +  ∂ 

.   (7.3.18) 

Substituting the heating rate ( q ) from latent heat release, ( / )vsq L Dq Dt= − , into 
(2.2.5) gives   

 vs vs

p p

Lq Lq
c T z c T

δθ δ η
θ

   ∂
≈ − ≈ −      ∂   

.   (7.3.19) 

Substituting (7.3.19) into (7.3.18) and using the definition of *
eθ  leads to  

 
*

*  e

e

gb
z

θ η
θ

 ∂
≈ − ∂ 

.   (7.3.20) 

Substituting the above equation into (7.3.2) for a moist atmosphere, gives us 

 
2 *

2 *  0e

e

D g
Dt z

η θ η
θ

 ∂
+ = ∂ 

.   (7.3.21) 

Therefore, the conditional stability criterion for a saturated layer of air becomes 

 








<
=
>

∂
∂

unstablelly conditiona        0
neutrallly conditiona        0
stablelly conditiona        0

   
*

z
eθ    (7.3.22)  

Note that in addition to 0/* <∂∂ zeθ , the release of conditional instability requires the 
air parcel to be lifted above its LFC.  This requirement is not included in the above 
derivation (e.g. Sherwood 2000; Schultz et al. 2000).  Parcel theory also neglects the 
effects of mass continuity and pressure perturbation (Xu 1986), as also known from 
dry static instability. 
 Figure 7.5 illustrates the concept of conditional instability, where an idealized 
sounding is plotted on a skew-T log-p thermodynamic diagram.  The LCL, LFC, and 



 
 
 

 20 

 

LNB for the air parcel originating at A are denoted in the figure.  The amount of 
energy available for free convection is called the convective available potential 
energy (CAPE), which is defined as the work done by the buoyancy force in lifting an 
air parcel from its LFC to LNB,  
 

    LNB LNB LNB LNB

LFC LFC LFC LFC

z z z z

z z z z

T TCAPE b dz g dz g dz g dz
T

ρ ρ θ θ
ρ θ

  − − − = = = =     
    

∫ ∫ ∫ ∫     

  (7.3.23) 
In a thermodynamic diagram, CAPE is proportional to the area enclosed by the 
environmental temperature curve and the moist adiabat of the air parcel in between 
the LFC and LNB (Fig. 7.5).  The moist adiabat follows a saturated adiabatic 
process, which assumes all of the condensates remain in the air parcel.  The moist 
adiabatic lapse rate can be derived to be 

 
1 ( / )( / )

d
s

p vs

dT
dz L c dq dT

Γ
Γ ≡ − =

+
.   (7.3.24) 

The saturation water vapor mixing ratio is defined as the ratio of the mass of water 
vapor to the mass of dry air containing the vapor at saturation. A saturated adiabatic 
process is almost identical to a pseudoadiabatic process. This is because the heat 
carried by the condensates is negligible compared to that carried by the air parcel.  
The moist adiabatic lapse rate can be approximated by 

 2 2
[1 ( / )]

1  /( )
d vs d

s
vs p d

Lq R T
L q c R Tε

Γ +
Γ ≡

+
,   (7.3.25) 

where 622.0/ ≈= dv mmε  as defined earlier.  Observed values of sΓ  show that it is 
about 4 K km-1 near the ground in humid conditions, increases to 6 to 7 K km-1 in the 
middle troposphere and is nearly equal to the dry lapse rate of 9.8 K km-1 at high 
altitudes where the air is colder and holds less water vapor. 
 The total amount of potential energy for an air parcel lifted upward from a 
certain level iz to its LNB can be calculated as follows: 

 ∫ 






 −
=

LNB

i

z

zi dz
T

TTgCAPE  .   (7.3.26) 

The CAPE is also referred to as static potential energy or available buoyant energy 
and is represented as the positive area (PA) on a thermodynamic diagram if iz is 
assumed to be at LFC.  The positive area may then be defined as 

 ( ) (ln ) LNBLFC

LFCLNB

p z

dp z

T TPA R T T d p g dz
T
− = − =  

 ∫ ∫ .   (7.3.27) 

On the other hand, the negative area (NA) on a thermodynamic diagram is the area 
confined by the dry adiabat (below LCL) or the moist adiabat (above LCL) to the left, 
and the sounding to the right, from the initial level to the LFC (Fig. 7.5).  The 
negative area represents the energy needed to lift an air parcel vertically and dry 
adiabatically or pseudoadiabatically to its LFC and is also known as the convective 
inhibition (CIN).  Mathematically, CIN is defined as 
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  LFC

i

z

z

T TCIN g dz
T
− =  

 ∫ .   (7.3.28) 

In practice, the surface height ( sfcz ) is used for iz .  It can be shown that 

i iCAPE PA NA= − , where CAPEi and NAi are the CAPE and NA at iz .  Thus, a 
positive iCAPE is a necessary condition for conditional instability to occur, so that 
the air parcel has potential energy for convection.  In the absence of horizontal 
advection, the maximum vertical velocity that can be realized by an air parcel occurs 
when all the potential energy is converted into kinetic energy, i.e. CAPEw 2max = , 
because / /Dw Dt w w z≈ ∂ ∂ .  
  
When rain evaporates in sub-saturated air or when a solid precipitate (snow or hail) 
melts at the melting level, a downdraft will be generated by the cooled air.  The 
maximum downdraft can be estimated as iDCAPEw 2max =− , where DCAPEi is 
the downdraft convective available potential energy and is defined as 

  i

s

z

i z

T TDCAPE g dz
T
− =  

 ∫ ,   (7.3.29) 

where sz is normally the surface or the level at which an air parcel descends from the 
initial level iz , allowing a neutral buoyancy to be achieved.   
 Therefore, in addition to the commonly adopted lapse-rate definition of 
conditional instability, i.e. the environmental lapse rate lies between the dry and moist 
adiabatic lapse rates, an available-energy definition has also been proposed, i.e. an air 
parcel must possess positive buoyant energy (i.e., 0iCAPE > ).  More precisely, for 
an unsaturated air parcel, the stability can be classified as: (a) No CAPE: stability for 
all vertical displacements, (b) CAPE > 0: instability for some finite vertical 
displacements, which contains two subcategories: (i) CAPE > CIN and (ii) CIN > 
CAPE (Schultz et al. 2000).  The available-energy definition is more consistent with 
the concept of subcritical instability (Sherwood 2000), which is defined as an 
instability that requires a finite amplitude perturbation exceeding a critical amplitude 
(Drazin and Reid 1981).  Thus, it has been suggested that the term “conditional 
instability” should be reserved only for the lapse-rate concept, and the term “latent 
instability” for the energy-based concept (Schultz et al. 2000).  
 In summary (also see Table 7.1), there exist six static stability states for dry 
and moist air: 
 (1) absolutely stable  sγ < Γ  , 
 (2) saturated neutral  sγ = Γ ,  
 (3) conditionally unstable  s dγΓ < < Γ ,  
 (4) dry neutral dγ = Γ ,  
 (5) dry absolute unstable dγ > Γ , 
     (6) moist absolutely unstable s sγ > Γ ,                                         (7.3.30) 
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where sγ is the saturated lapse rate of the environmental air.  Note that moist absolute 
instability is not equivalent to conditional instability. In a typical conditionally 
unstable situation, an initially unsaturated air parcel is lifted to saturation in an 
unsaturated environment.  The air parcel will then follow a moist adiabat, and will 
become unstable after further lifting.  However, under certain circumstances, an 
initially conditionally unstable atmosphere may become moist absolute unstable after 
lifting (Bryan and Fritsch 2000). 
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