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Sec. 2.2 Scale Analysis and Approximations of the 
Continuity Equation 
 
The governing equations of atmospheric motion and processes are based 
on the following physical laws (Ch. 2, Lin 2007):  
 
 (a) Newton’s second law of motion,  
 (b) Conservation of mass, and  
 (c) First law of thermodynamics.   
 
These laws are represented by the set of primitive equations that are 
comprised by  
 
 (a) Horizontal and vertical momentum equations  
 (b) Continuity equation, and  
 (c) Thermodynamic energy equation.  
 

Note that wave motions behave completely differently from mass 
transport.   
 

Briefly speaking, fluid particles do not necessarily follow the 
disturbance in wave motion, while they do always follow it in mass 
transport.  For example, air parcels associated with gravity waves may 
oscillate in the vicinity of the source or forcing region, but the gravity 
waves themselves may propagate to great distances from their origin.   
 
On the other hand, the air parcels within a cold pool generated by 
evaporative cooling - associated with falling raindrops beneath a 
thunderstorm - always move in concert with the density current. 

http://mesolab.org/
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Considering an atmosphere on a planetary f plane, the momentum 
equations, continuity equation, and thermodynamic energy equation can 
be expressed in the following form (Lin 2007): 
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where  

zwyvxutDtD ∂∂+∂∂+∂∂+∂∂= ///// : (total or material  
 derivative) the change of a certain property within a fluid parcel 

following the motion. 
rzryrx FFF  and , , : viscous terms or frictional forces per unit mass in  

 the x, y, and z directions, respectively.   
pc : heat capacity of dry air at constant pressure (1004 J/kg-K), and  

q : diabatic heating rate in 1 1J kg s− − .   
Other symbols are defined as usual (e.g., see Appendix A of Lin 2007).   
 
In the viscous sublayer, which is a very thin layer of O(cm) near the 
earth’s surface, the viscous terms may be represented by molecular 
viscosity in the form wvu 222  and , , ∇∇∇ ννν , kinematic viscosity coefficient 
associated with molecular viscosity.  Note that ν is equal to ρµ / , where 
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µ is the dynamic viscosity coefficient and ρ is the air density.  At sea 
level, ν has a value of about 126 1046.1 −− smx .   
 

The molecular viscosity is almost completely negligible in the 
atmosphere above the viscous sublayer, where momentum and heat 
transfers are dominated by turbulent eddy motion.  A number of 
parameterization schemes for turbulent eddy viscosity in the planetary 
boundary layer will be discussed in Ch. 5 of Holton (2005).   
 
The equation set (2.2.1-2.2.3) with no Coriolis terms is often referred to 
as the Navier-Stokes equations of motion.  The diabatic heating rate may 
be taken to represent, for example, surface sensible heating, elevated 
latent heating, or cloud-top radiative cooling.   
 

Note that the viscous terms on the right-hand side of Eqs. (2.2.1) and 
(2.2.2) can be approximated by Rayleigh friction ( uoν− , voν− ), while 
the diabatic heating term of Eq. (2.2.5) can be approximated by the 
Newtonian cooling ( θνo− ), as is done in some theoretical studies to 
simplify the above system of governing equations.  The coefficient oν  is 
determined by the e-folding time scale of the disturbance.   
 
In the above system, Eqs. (2.2.1) - (2.2.5), there are seven unknowns 
represented by five equations.  In order to close the system, we need two 
additional equations. Two equations can be used to close the system:  
 

(1) The equation of state for dry air (which is well represented by an 
ideal gas law), 

  

  TRp dρ=  (2.2.6) 

 (2)  The Poisson’s equation  

  , (2.2.7) 

 where 
     

pd cR
o ppT /)/(=θ

http://mathworld.wolfram.com/Navier-StokesEquations.html
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θ  : potential temperature (the temperature a dry air parcel would 
be when it is taken to 1000 mb) 

: a constant reference pressure level (normally chosen as 1000  
 mb) and  

: the gas constant for dry air (287 J/kg-K).   
 
For a moist atmosphere, the temperature in Eq. (2.2.6) is replaced by the 
virtual temperature, which takes into account the moist effects due to 
latent heat release, and the density is replaced by the total density, which 
is a sum of the dry air density and the total water density. 
 
To formulate a more complete atmospheric system, we need to include 
nonlinear advective accelerations, viscosity and conservation equations 
for water substances (e.g. water vapor, cloud water, rain, ice, snow, and 
hail) in addition to the system of Eqs. (2.2.1) – (2.2.5). 
  
• Derivation of Continuity Equation 

2.5.1 A Eulerian Approach 
 

 
 
A simple alternative for this Eulerian approach is to  
 

(a) move the (x, y, z) to the center of the left side of the control volume, and  
(b) replace the mass inflow and outflow in Fig. 2.5 by 𝜌𝜌𝜌𝜌 and 𝜌𝜌𝜌𝜌 + 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜌𝜌𝜌𝜌)𝛿𝛿𝛿𝛿, 

respectively. 
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                   𝜌𝜌𝜌𝜌                                                      𝜌𝜌𝜌𝜌 + 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜌𝜌𝜌𝜌)𝛿𝛿𝛿𝛿 

 
 

Because the area of each of these faces is δyδz, the net rate of mass 
flow into the volume due to the x velocity component is 
 

                                  (𝜌𝜌𝜌𝜌)𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 − �𝜌𝜌𝜌𝜌 +
𝜕𝜕
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(𝜌𝜌𝜌𝜌)� 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 = −

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜌𝜌𝜌𝜌)𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿  

 
Similar expressions obviously hold for the y and z directions.  Thus, 
the net rate of mass inflow is  
 
    − � 𝜕𝜕
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            Thus, the local rate of change of the mass of the control volume is 
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  Dividing the above equation by 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 (=𝛿𝛿𝛿𝛿) leads to  

 

        𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − � 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌)� 

 Or  
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+ ∇ ∙ 𝜌𝜌𝑼𝑼 = 0    (2.30) 

 Eq. (2.30) is the mass divergence form of the continuity equation.   
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• Scale Analysis of the Continuity Equation   

Letting ),,,(')(),,,( zyxtzzyxt ρρρ += , the continuity equation (2.2.4) 
reduces to the perturbation form 

 
  𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
+ 𝑉𝑉 ⋅ 𝛻𝛻𝛻𝛻′ + 𝑤𝑤 𝑑𝑑𝜌𝜌�

𝑑𝑑𝑑𝑑
+ (𝜌̅𝜌 + 𝜌𝜌′)𝛻𝛻 ⋅ 𝑉𝑉 = 0, (2.2.20) 

 where ),,( wvu=V , or 
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            (or 
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ρ ' )                      (or 

zL
W )  (or 

zo L
W

ρ
ρ ' )   

 Characteristic magnitudes (m/s2) for midlatitude synoptic motion: 

  U ~ 10 m/s, L ~ 1000 km (106 m), ρo ~ 1 kg/m3, ρ’ ~ .01 kg/m3, 

  H ~ 10 km, Lz ~ 10 km (deep convection) or 1 km (shallow convection), 

  W ~ 0.01 m/s  

  
It is important to distinguish the difference between the scale height 
(H) and the vertical scale of convection or disturbance (Lz); the 
former (H) is controlled by the basic structure of the atmosphere 
while the latter (Lz) is controlled by the fluid motion.   
 
Anelastic and incompressible approximations to the continuity 
equation can also be obtained by applying scale analysis to (2.2.17).  
Unlike that used in Holton (2004, Ed. 4), here we make a difference 
in H and Lz, as mentioned above. 

 

For shallow convection or disturbance 
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 10-7          10-7 (or 10-7)     10-6         10-5 (or10-5)   10-7(or 10-7)  (2.2.23) 

For deep convection or disturbance 

 10-7          10-7 (or 10-8)     10-6         10-5 (or10-6)   10-7(or 10-8) (2.2.24) 

 

 Anelastic approximation   

Keeping the terms of O(10-5) & O(10-6) leads to the anelastic (deep) 
convection continuity equation: 
 

 0=⋅∇+ V
dz
dw ρ

ρ .                                                  (2.3.1)’ 

The effect of this approximation is to eliminate all waves with very high 

propagation speeds associated with rapid (adiabatic) compression and 

expansion of the fluid.   

 
The above anelastic (deep-convection) continuity equation may also be 
written as 

 

 , (2.3.1) 

or 

 , (2.3.2) 

since the scale height is taken to be a constant.  Equations (2.3.1) and 
(2.3.2) may also be expressed in an alternative form: 
  

 . (2.3.3) 
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Note that (2.3.3) is linked with (2.3.2) when the density decays 
exponentially with height, with an e-folding value of scale height H.   
 

Equations (2.3.1), (2.3.2), or (2.3.3) are called the anelastic or deep 
convection continuity equations.   
 
 Incompressible approximation                                                      

If we keep only the largest terms (O(10-5)), it leads to the incompressible 
(shallow convection) continuity equation: 
 

 0=⋅∇ V . (2.3.4) 

This means that conservation of mass has become conservation of 
volume because density is treated as a constant.  Thus, volume is a good 
proxy for mass under this approximation.   

 

[Reading Assignment] (From Ch. 2 of Lin 2007) 
 

“Equation (2.3.3) was first proposed by Batchelor (1953), who defined to be the density in an 
adiabatic, stably stratified, horizontally uniform reference state.  The name anelastic was coined by Ogura 
and Phillips (1962), who derived (2.3.3) through a rigorous scale analysis, along with approximate forms 
for the momentum and thermodynamic energy equations.   

Their scaling analysis assumes that: (a) all deviations of the potential temperature ' θ from some 
constant mean value 

oθ are small, and (b) the time scale of the disturbance is comparable to the time scale 
for gravity wave oscillations.  The terms that are neglected in the original anelastic equations are an order 

oθθε /' = smaller than those that are retained.  Thus, in the case of dry convection (where mixing will 
keep the environmental lapse rate close to the adiabatic lapse rate), ε  will be small and the anelastic 
equations can be used to represent nonacoustic modes with complete confidence.  For deep, moist 
convection or gravity wave propagation, however, the mean-state static stability can be sufficient to make 
ε  rather large.  For example, the ' θ variations across a 10 km deep isothermal layer may reach as high 
as 40% of the mean oθ .  

Equation (2.3.1) may be further simplified, by assuming that the vertical scale (Lz) of the mesoscale 
disturbance is much smaller than the scale height of the basic state atmosphere, ,  
 .                       (2.3.4) 
The above equation is called the incompressible or shallow convection continuity equation.  This means 
that conservation of mass has become conservation of volume because density is treated as a constant.  
Thus, volume is a good proxy for mass under this approximation.   
Again, it is important to distinguish the difference between the scale height (H) and the vertical scale of 
convection or of the disturbance (Lz) because the scale height is controlled by the basic structure of the 
atmosphere, instead of by the fluid motion.  Anelastic and incompressible approximations to the 
continuity equation can also be obtained by applying scale analysis to 2.2.17, similar to that used in 
Holton (2004), except that it is necessary to differentiate H and Lz, as mentioned above.”  
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