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Chapter 10 Three-Dimensional Flow over Isolated 

Mountains 

 
(Based on “Flow over Three-Dimensional Mountains”, Sec. 5.4 of Mesoscale Dynamics (Lin 2007)) 

(Classical equation editor: )(kfcp  ) 

 

10.1 Three-Dimensional Flow over Isolated Mountains 

(Flow over three-dimensional mountains) 

Although the two-dimensional mountain wave theories 

discussed in previous sections helped explain some important 

flow phenomena generated by infinitely long ridges, such as 

upward propagating mountains waves, lee waves, wave 

overturning and breaking, and severe downslope winds, in 

reality most of the mountains are of three-dimensional, complex 

form.   

 

The basic dynamics of flow over complex terrain can be 

understood by considering flow over an idealized, three-

dimensional, isolated mountain.   
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In this section, we will discuss a linear theory of a stratified flow 

past an isolated mountain, as well as the generation of lee 

vortices in a nonlinear flow over an isolated mountain. 

 

 

10.1.1 Linear theory 

In the following, the two-dimensional, linear mountain wave 

theory developed in Section 5.2.1 is extended to three-

dimensional flow over an isolated mountain.   

 

Consider a steady state, small-amplitude, adiabatic, inviscid, 

nonrotating, stratified, Boussinesq fluid flow with uniform basic 

velocity (U) and Brunt-Vaisala frequency (N) over a three-

dimensional topography ),( yxh .  

 

The governing linear equations can be derived from (5.1.1)-

(5.1.4), 
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Using (5.1.19), the above equations can be combined into a 

single equation of , 

 

 02

2

2
2 =+  Hxx

U

N
. (5.4.6) 

Equation (5.4.6) can be solved by taking the double Fourier 

transform in x and y to obtain 

 

 0ˆˆ 2 =+  mzz , (5.4.7) 

 

where 
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and is the horizontal wavenumber.   

 

The double Fourier transform pair is defined as 
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The solution to (5.4.7) in the Fourier space can be found 
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Similar to the two-dimensional mountain wave theory, as 

discussed in section 5.2, there exist two flow regimes:  

 

 (I)  
2 2 2/ 1N k U   

 (II)  
2 2 2/ 1N k U    

 

For upward propagating waves (regime I), the sign of m must be 

the same as the sign of k, in order to satisfy the upper radiation 

condition.   

 

On the other hand, for evanescent waves (regime II), the positive 

root of (5.4.8) must be chosen, i.e.  

 

 , (5.4.11) 

 

Where mi is defined as 2 2 21 /K N k U− .   

 

The linear lower boundary condition is 

 

 , (5.4.12) 

 

which can be transformed into the Fourier space, 

 

 . (5.4.13) 

 

 

From the definition of inverse Fourier transform and (5.4.13), 

we have 
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 . (5.4.14) 

 

Now let us consider a three-dimensional (circular) bell-shaped 

mountain 

 

 , (5.4.15) 

 

Where h and a are the mountain height and horizontal scale, 

respectively.  The Fourier transform of (5.4.15) is, 
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The problem may be further simplified by using the hydrostatic 

approximation, i.e. neglecting the first term of (5.4.3).  Note that 

under the hydrostatic approximation, we require that .   

 

The solution, (5.4.14), may be reduced to a single integration by 

converting it into cylindrical coordinates, and asymptotic 

solutions for the flow aloft and the flow near the ground may 

thus be obtained (Smith 1980).   

 

Substituting (5.4.16) into (5.4.14) and nondimensionalizing it 

according to 
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yields 

 

 , (5.4.18) 

 

where F is the Froude number, as defined earlier.   

 

As discussed earlier, the linear theory holds for a large Froude 

number flow.   

 

On the other hand, for a small Froude number flow, nonlinear 

effects become more important and cannot be ignored.  This will 

be discussed in the next subsection. 

 

Equation (5.4.18) or (5.4.14) can also be solved numerically by 

applying a two-dimensional numerical FFT algorithm.    

 

Figure 5.17 shows an example of a linear, hydrostatic flow 

passing over a bell-shaped mountain with a Froude number of 

100.   
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Fig. 5.17:  Three-dimensional, linear, hydrostatic stratified flow over a bell-shaped mountain 

(5.4.15) with 100/ == NhUF .  The basic flow is from left to right.  Displayed are the 

nondimensional vertical displacement at : (a) and (b) .  U-shaped 

disturbances are associated with the upward propagating wave energy.  Solid and dashed curves 

represent positive and negative values of vertical displacement.  The cross marks the position of 

the mountain peak.  The bold, dashed circle is the topographic contour at ar = , where r is the 

distance (radius) from the center of the mountain.  These wave patterns are computed by 

evaluating (5.4.18) numerically using a two-dimensional FFT.  (Adapted after Smith 1980) 

 

 

• Near the surface, the pattern of vertical displacement 

resembles the surface topography, (5.4.15), as required by 

the lower boundary condition.   

 

• Slightly aloft from the surface at  (Fig. 5.17a), a 

region of downward displacement forms a U-shaped 

== UNzz /~ 4/ 

4/~ =z
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disturbance over the lee slopes of the mountain and extends 

some distance downstream.  

 

• At a level further aloft, such as (Fig. 5.17b), the 

region of downward displacement widens, moves upstream, 

and is replaced by a U-shaped pattern of upward 

displacement.   

 

• The general upstream shift of downward and upward 

displacement is caused by the upstream phase tilt of 

upward propagating hydrostatic waves.   

 

• At greater heights, the zone of disturbance continues to 

broaden, the disturbance directly in the lee of the mountain 

disappears, and the patterns of upward and downward 

displacement become more wavelike, due to wave 

dispersion. 

 

 

➢ The U-shaped patterns of vertical displacements are explained 

by a group velocity argument (Smith 1980).  The dispersion 

relation for internal gravity waves in a stagnant Boussinesq 

fluid may be reduced from (3.6.10) 
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With the hydrostatic approximation the above equation becomes 
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As discussed in Chapter 4, the energy propagation can be 

described by the group velocity components, which are 
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 For steady-state waves on a basic flow, replacing  by the 

intrinsic frequency  in (5.4.20) leads to 
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 Adding  to , the components of the group velocity in 

a frame fixed with the Earth become 

 

 
2

2gmx

Ul
c

K
= ;  2gmy

Ukl
c

K

−
= ;  

2 2

gmz

U k
c

NK
= . (5.4.23) 

 

➢ In the coordinates fixed with the mountain or Earth, wave 

energy propagates from the energy source, i.e. the mountain, 

along straight lines with slopes 
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The slope on the horizontal plane y/x may be evaluated from 

(5.4.23) and (5.4.24), 

 



Uk

U gxc



 

                          10 

 , (5.4.25) 

 

which is the geometric condition that the phase lines passing 

through the point (x, y) are radial lines from the origin.   

 

 Using (5.4.23)-(5.4.24) again gives 
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Since the mountain is the source of forcing, the horizontal 

wavenumber may be approximated by the mountain scale, i.e. 
1/K a , which yields 
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Thus, the energy concentrates in a parabola or a U-shaped 

pattern at a certain height, as shown in Fig. 5.17.   

 

➢ In the above theory, the basic flow speed and Brunt-Vaisala 

frequency are assumed to be constant with height.  In the real 

atmosphere, they normally vary with height.   

 

As in the two-dimensional mountain wave problem, a rapid 

decrease of the Scorer parameter with height leads to the 

formation of trapped lee waves.  

 

The formation of three-dimensional trapped lee waves is 

similar to that of Kelvin ship waves over the water surface.  

l
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Figure 5.18 shows an example of the cloud streets associated 

with three-dimensional trapped lee waves produced by 

airflow past a mountainous island.   

 

 

 

Fig. 5.18: Satellite imagery of three-dimensional trapped lee waves induced by the South 

Sandwich Islands in southern Atlantic Ocean on September 18, 2003.  The wave pattern is 

similar to that of the ship waves sketched in Fig. 5.19. (From Visible Earth, NASA) 

 

 

The wave pattern is generally contained within a wedge with 

the apex at the mountain. The three-dimensional trapped lee 

waves are composed by transverse waves and diverging 

waves, as depicted in Fig. 5.19.   

 



 

                          12 

 

Fig. 5.19: Schematic of transverse (bold-dashed) and diverging (solid) phase lines for a 

deep water ship wave.  (Adapted after Sharman and Wurtele 1983) 

 

➢ The transverse waves lie approximately perpendicular to the 

flow direction, and are formed by waves attempting to 

propagate against the basic flow but that have been advected 

to the lee.   

 

The formation mechanism of transverse waves is the same as 

that of the two-dimensional trapped lee waves.   

 

➢ Unlike the transverse waves, the diverging waves attempt to 

propagate laterally away from the mountain and have been 

advected to the lee.   

 

Also, the diverging waves have crests that meet the incoming 

flow at a rather shallow angle.   

 

➢ Both of the transverse and diverging waves are 

mathematically associated with a stationary phase point, and 

the significant disturbance is confined within a wedge angle 

of about '2819o with the x-axis.   
o   

 (10/29/14) 
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10.1.2 Generation of lee vortices 

 

The above linear theory of three-dimensional, stratified flow 

over mountains is valid only for high Froude number flow due 

to the limitations of the small-amplitude (linear) assumption.  

 

When the Froude number decreases, the perturbations generated 

by the mountain become larger and the flow becomes more 

nonlinear.   

 

Due to mathematical intractability, many observed phenomena 

associated with nonlinear flow over mountains, such as flow 

recirculation, stagnation points, flow splitting, and lee vortices, 

have been carried out in tank experiments and by nonlinear 

numerical simulations.   

 

 

a. Boundary layer separation 

 

The flow pattern produced by laboratory tank experiments for 

three-dimensional, stratified flow with relatively large Froude 

numbers (e.g. 2F  ) past a bell-shaped mountain is similar to 

that predicted by linear theory as described in subsection 5.4.1.  

Flow patterns are dramatically different for flow with smaller 

Froude numbers.   

 

Figure 5.20 shows a stratified flow with F=0.4 past an isolated 

mountain in a tank experiment.  
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Fig. 5.20: (a) Side view of the mean surface shear stress pattern and streamlines on the center 

plane of symmetry for a three-dimensional, stratified, viscous flow with  past 

an obstacle with circular contours (e.g., bold solid curve in (b)).  In the figure, N and S denote 

nodes and saddle points, respectively, and subscripts a and s denote attachment and separation, 

respectively.  (b) As (a) but for a plane view of the pattern of surface stress.  (Adapted after Hunt 

and Snyder 1980) 

 

 

The most eye-catching phenomenon is a pair of counter-rotating 

vortices formed in the lee of the obstacle.  The formation of this 

pair of lee vortices is attributed to the boundary layer separation 

mechanism (Batchelor 1967; Hunt and Snyder 1980), as briefly 

summarized in the following.    

 

• When the Reynolds number ( Re ) is sufficiently high 

(where /Re UL = , U is the velocity scale, L the length scale 

and   the kinematic viscosity; show the derivation of Re), 

the boundary-layer flow develops a region of flow reversal 

near the surface due to an opposing pressure gradient in the 

direction of flow.   

4.0/ == NhUF

Attachment point or 

Node of attachment 

Saddle point of 

separation 
Saddle point of 

separation 

Saddle point of 

attachment 

Node of 

separation 
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• The reversed flow meets the incoming flow and forms a 

stagnation point at which the streamline breaks away from 

the surface of the obstacle. This process is known as 

boundary layer separation.  

 

o Mathematically, the streamline of boundary layer 

separation is a line whose points are singular points of 

the solutions of the equations of motion in the boundary 

layer.   

 

➢ For three-dimensional, nonlinear, stratified viscous flow past 

a symmetric mountain, boundary layer separation first occurs 

on the center vertical plane before the mountain peak is 

reached.   

 

During the process, several singular points can form.   

 

o Over the upslope on the center plane, an attachment point 

(node of attachment) aN  forms,  

 

which forces part of the flow to recirculate back upstream 

along the upslope, where it meets the incoming flow, and 

forms another stagnation point (saddle point of separation) 

sS  (Fig. 5.20a).   

 

o Downstream of the obstacle on the center vertical plane, 

flow separates and forms a third stagnation point(s) (saddle 

points of attachment) .  

 

aS
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o The separated flow recirculates on this vertical plane, meets 

with the downslope flow and forms another saddle point of 

separation ( sS ) over the lee slope.  

 

o On the surface (Fig. 5.20b), the recirculated flow from aN

forces the incoming flow to split (i.e. flow splitting) at sS  

and part of the split flow recirculates and forms a pair of 

stationary lee vortices centered at the nodes of separation (

).   

 

o If the Froude number is decreased further, this flow pattern 

persists, but moves closer to the mountain peak and the 

lee vortices expand further downstream.  

 

o Although an unrealistically large mountain slope of O(1), 

compared to that in the real world is often used in 

laboratory experiments, the simulated flow features are 

very similar to those observed in the real atmosphere.  

  

 

b. Generation of lee vortices in an inviscid fluid 

 

➢ Using a nonlinear numerical model with free-slip lower 

boundary condition, a pair of counter-rotating vortices was 

found to form on the lee of an isolated mountain when a low-

Froude number (e.g., F = 0.66, Fig. 5.21a), three-dimensional, 

stratified, uniform flow passes over the mountain 

(Smolarkiewicz and Rotunno 1989).   

 

sN

aN
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Fig. 5.21:  Three-dimensional, stratified, uniform flow with no surface friction over a bell-shaped 

mountain simulated by a nonlinear numerical model.  Surface streamlines, vertical displacements 

at / / 4Nz U = , and  streamlines in the vertical plane / 0y a =  after / 9Ut a =  are shown in (a), 

(c), and (e), respectively, for the case with 0.66F = .  The same flow fields but for 0.22F =  are 

shown in the right panels ((b),(d) and (f)).  The simulated flow fields have reached quasi-steady 

state.  The flow and orographic parameters are: -110msU =  or 
-13.3ms , N = 0.01 s-1, h = 1.5 km, 

and a = 10 km,  which give 0.66F =  or 0.22, respectively.  The bell-shaped mountain is 

prescribed by (5.4.15).  (Adapted after Smolarkiewicz and Rotunno 1989) 

 

The simulated results agree fairly well with laboratory tank 

experiments as shown in Fig. 5.20.   
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The free-slip lower boundary condition implies no explicit 

surface friction is included in the model atmosphere.   

 

Although linear theory breaks down, at least locally, the 

vertical displacement field (Fig. 5.21c) still resembles the U-

shaped pattern found in the linear theory described in 

subsection 5.4.1 (Fig. 5.17).   

 

A large-amplitude mountain wave develops over the 

mountain peak (Fig. 5.21e).  The trough of the vertically 

propagating gravity waves in Fig. 5.21e shifts upstream and 

becomes narrower, indicating a tendency toward collapse of 

the isentropic surfaces on the lee slopes of the mountain, 

which is also in agreement with the linear theory.  Since the 

air parcels are able to flow almost directly across the 

mountain, this flow regime is characterized as the flow-over 

regime.    

 

When the Froude number is reduced to approximately below 

0.5, such as  (Fig. 5.21b), the following flow 

characteristics are observed: 

 

• A pair of counter-rotating vortices forms on the lee side 

and a saddle point of separation and a node of attachment 

are produced on the upstream side of the mountain, 

strikingly similar to the results obtained in laboratory 

experiments (Fig. 5.20b).   

• The region of downward displacement is enlarged (Fig. 

5.21d).   

• The gravity wave response is drastically reduced, as 

much of the airflow is diverted around the flanks of the 

22.0=F
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mountain and the disturbance appears to be much more 

horizontal (Fig. 5.21f).   

• Below the mountain top, there is a recirculating flow 

associated with the lee vortices.  This flow regime is 

characterized as the flow-around regime.   

 

➢ Based on the nondimensional mountain height ( /Nh U , also 

called inverse Froude number), and horizontal mountain 

aspect ratio ( /b a ), four classes of wave and flow phenomena 

of importance in three-dimensional, stratified, uniform, 

hydrostatic flow past an isolated mountain can be identified 

(Fig. 5.22):  

(1) linear mountain waves 

(2) wave breaking 

(3) flow splitting 

(4) lee vortices.    

 

 
 

Fig. 5.22: Regime diagram for three-dimensional, stratified, uniform, hydrostatic flow over an 

isolated mountain.  The flow regime is controlled by the horizontal mountain aspect ratio ( /b a ) 

and the nondimensional height or the inverse Froude number ( /Nh U ), where a and b are the 

mountain scales in along (x) and perpendicular (y) to the basic flow directions, respectively.  

Four classes of phenomena of importance in this type of flow are: (1) linear mountain waves, (2) 
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wave breaking, (3) flow splitting, and (4) lee vortices.  The circles/ellipses represent the 

mountain contours.  (Lin 2007; Adapted after Smith 1989a and Epifanio 2003) 

 

  

 

➢ The key question of the numerically simulated lee vortices as 

shown in Fig. 5.21 is the source of vorticity.   

 

In the absence of surface friction, boundary layer separation 

will not occur and thus cannot be held responsible for the 

formation of the lee vortices.   

 

Although many detailed dynamics of this problem are still 

topics of current research, the basic dynamics for the 

generation of lee vortices can be understood through the 

following two major theories:  

 

(1) Tilting of baroclinically-generated vorticity (Smolarkiewicz 

and Rotunno 1989) and  

(2) Generation of internal potential vorticity by 

turbulence dissipation in numerical simulations  
 (Smith 1989b; Schär and Smith 1993a, b).    

 

➢ (1) Tilting of baroclinically-generated vorticity 

   

The mechanism of baroclinically-generated vorticity tilting 

can be understood by taking cross differentiations of (2.2.1) – 

(2.2.3) to yield the inviscid vorticity equation 
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where x  ( , , )  = =V    is the three-dimensional vorticity 

vector.  The last term on the right side of the above equation 

represents the generation of vorticity by baroclinicity.   

 

Once local vorticity anomalies are generated, they are 

advected by the flow field through the first term or tilted and 

stretched through the second term on the right side of 

(5.4.28).   

 

For mountains with small aspect ratio of the obstacle height 

and horizontal width, the baroclinicity term reduces to (e.g., 

Epifanio 2003): 
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 x 
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 where b is the buoyancy.   

  

 Figure 5.23 shows a schematic diagram depicting the 

generation of leeside vorticity by the vertical tilting of 

baroclinically generated horizontal vorticity.  

 

 

Fig. 5.23: A schematic diagram (Lin 2007) showing the generation of leeside vorticity by the 

vertical tilting of baroclinically generated horizontal vorticity (Smolarkiewicz and Rotunno 
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1989). The downward (upward) arrow below the adiabatically-induced cold (warm) region 

denotes downward (upward) motion.  A negative x -vorticity, 0  , is produced over the right 

side of the upslope baroclinically by the relatively cold air (b < 0) along the center line and the 

relatively warm air to the right (facing downstream), as indicated by (5.4.29).  This negative x -

vorticity is then swept downstream and produces a positive vertical vorticity, 0  , on the right 

side of the lee due to the vertical tilting of the x-vorticity, as implied by (5.4.28). 

 

 

 A negative x-vorticity, 0  , is generated on the right 

upslope baroclinically by the relatively cold air along the 

center line and the relatively warm air to the right (facing 

downstream), as indicated by (5.4.29).   

 

This negative x-vorticity is then swept downstream and 

produces a positive vertical vorticity, 0  , to the lee by the 

vertical tilting of the x-vorticity, as implied by (5.4.28).   

 

Similarly, a positive x -vorticity anomaly generated over the 

left upslope is tilted into a negative vertical vorticity to the 

lee.  As these vertical vorticity anomalies intensify, 

recirculating warm-core eddies develop as a result of 

reconnection.   

 

This mechanism dominates during the rapid start-up, early 

stage, over a nondimensional time /Ut a = O(1), in which the 

flow is essentially inviscid and adiabatic and the potential 

vorticity (PV) is conserved ( and Durran 1997).   

 

➢ (2) Generation of potential vorticity by turbulence 

dissipation 

 

raSch 



 

                          23 

• At a later stage, the associated thermal anomalies generated 

by baroclinicity are eroded by dissipative and diffusive 

processes, whereby the warm surface anomalies are 

converted into PV.  

 

• During this stage, the flow is controlled by dissipation and 

is accompanied by the PV generation over a 

nondimensional time of O(10) – O(100) ( and Durran 

1997).   

 

Note that the conservation of potential vorticity is violated 

in regions of flow stagnation, such as in the region of 

upstream blocking where the isentropic surface intersects 

the ground, and the region of wave breaking above the lee 

slope where turbulence occurs (Fig. 5.24a).  

 

 
 

raSch 
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Fig. 5.24: (a) A conceptual model depicting potential vorticity (PV) generation by turbulence 

dissipation at stagnation points associated with wave breaking aloft and upstream blocking.  The 

symbol “^^^” denotes areas of turbulence generated by wave breaking or blocking. (Adapted 

after Smith 1989a); (b) Schematic depiction of the relationship between PV generation and 

Bernoulli function on an isentropic surface in steady-state, stratified flow over the wave breaking 

region.  Thin lines are streamlines and dark-shaded area over the lee slope denotes a localized 

region of dissipation due to wave breaking, a hydraulic jump or blocking.  The grey shaded area 

extending downstream denotes a reduced Bernoulli function.  Open arrows denote the PV flux J 

associated with the Bernoulli gradient on the isentropic surface as described by (5.4.35).  (Lin 

2007; (a) adapted from Smith 1989a and (b) from Schär and Durran 1997) 

 

 
• The dynamics of dissipative generation of PV is directly linked to the 

reduction in the Bernoulli function within the wake, as demonstrated in 

steady shallow-water flow past an obstacle (Schär and Smith 1993a).   

 

The shallow-water theory can be extended to stratified fluid flow by 

considering the PV (q) which satisfies a conservative equation of the form 

(Haynes and McIntyre 1990):  

  

  
( )

0
q

t


+ =


J , (5.4.30) 

 

where q is defined as  

 

 

αq



=

 
, (5.4.31) 

 

and the total PV flux (J) is given by 

 

( )xaq Q − +J = V F  . (5.4.32) 

 

In the above equation, Q  ( /D Dt ) is the diabatic heating, a the three-

dimensional absolute vorticity vector, and F the viscous force per unit 

mass.  In this section, we have assumed that the Earth rotation is negligible 

thus α =  .   

  

It can be shown that  
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x Β
t t




  
− 

  

V
J =   + , (5.4.33) 

 

where  

 

/ 2 pB c T gz=  + +V V  (5.4.34) 

 

is the Bernoulli function.  In a steady state flow, the Bernoulli function is 

conserved following the flow.  In addition, (5.4.33) reduces to  

 

x x Β= Β






J = n

n
   , (5.4.35) 

 

where n is a unit vector oriented perpendicular to the isentropic surface and 

pointing toward warm air.   

 

The generalized Bernoulli’s theorem (Schär 1993), (5.4.35), indicates that 

non-zero PV fluxes must be present where there is a variation in the 

Bernoulli function along any isentropic surface.   

 

Figure 5.24b shows a schematic of PV generation by turbulence dissipation 

on an isentropic surface in steady-state stratified flow past an isolated 

mountain.   

 

The narrow dissipative region may be produced by turbulence associated 

with wave breaking, a hydraulic jump or blocking, and generates Bernoulli 

function deficit in the wake extending downstream.   

 

Based on (5.4.34), PV is generated in the dissipative region and advected 

downstream along the edge of the wake.  A pair of counter-rotating vortices 

may form in the wake if the vertical vorticity associated with the generated 

PV is sufficiently strong. 

  

It appears that the above PV analysis is able to explain the close relationship 

between dissipative turbulence and PV generation for a low-Froude number, 

stratified flow over an isolated mountain. The causality, however, is still 

unclear due to the steady state assumption.   
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In addition, an assumption of balance is required in order to infer the 

structure of the flow from the distribution of PV (Hoskins et al. 1985).   

 

In the near field of the wake, these balance constraints are constantly 

strongly violated due to the presence of the strong surface temperature 

gradient over the lee slope, which results from the upstream blocking  

(Epifanio and Rotunno 2005). Therefore, although the PV generation may 

have important implications on the downstream evolution of orographic 

wakes and lee vortices, a fundamental understanding of the wake formation 

is needed. 

 

➢ When the wake flow in which the lee vortices are embedded 

becomes unstable, the vortices tend to shed downstream and 

form a von Kármán vortex street.   

 

A von Kármán vortex street is a repeating pattern of alternate 

and swirling vortices along the center line of the wake flow, 

and is named after the fluid dynamicist, Theodore von 

Kármán.  This process is also known as vortex shedding.  

 

Any noise, impulsive disturbance, or asymmetric forcing in 

the wake flow can trigger an instability, which gives way to a 

vortex street or vortex shedding.   

 

It needs to be examined whether a vortex shedding requires 

unstable flow (see Bridges 2009).  Figure 5.25 shows an 

example of a von Kármán vortex street formed in the 

atmosphere to the lee of a mountainous island.  The von 

Kármán vortex street or vortex shedding has also been 

simulated by many nonlinear numerical models, such as that 

shown in Fig. 5.28a. 

 

http://www.enu.kz/repository/2009/AIAA-2009-3718.pdf
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Fig. 5.25: A von Kármán vortex street that formed to the lee of the Guadalupe Island, off the 

coast of Mexico’s Baja Peninsula, revealed by MISR images from June 11, 2000 detected by 

NASA satellite Terra.  (From Visible Earth, NASA) 

 

 

 


