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Chapter 8 Nonlinear Flow over Two-Dimensional 
Isolated Mountains 
[Based on Sec. 5.3 of Mesoscale Dynamics (Lin 2007)] 
 

5.3 Nonlinear Flow over Two-Dimensional Isolated 
Mountains 
(Based on 5.3 Nonlinear flows over two-dimensional mountains – Lin 2007) 
 
 As discussed in Sections 5.1 and 5.2, the response of a stably 

stratified flow over a two-dimensional mountain ridge has been 
studied extensively since the 1960’s (e.g., Queney et al. 1960; 
Smith 1979).   
 

 In particular, the linear dynamics are fundamentally 
understood, especially due to the development of linear 
theories in earlier times.   

 
 Linear theory, however, begins to break down when the 

perturbation velocity (u’) becomes large compared with the 
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basic flow (U) in some regions where the flow becomes 
stagnant.   

 
 This may happen when the mountain becomes very high, the 

basic flow becomes very slow, or the stratification becomes 
very strong.  In other words, flow becomes more nonlinear 
when the Froude number, , becomes small.  For 
simplicity, the mountain height is denoted by h.   

 
 Thus, in order to fully understand the dynamics of nonlinear 

phenomena, such as upstream blocking, wave breaking, severe 
downslope winds and lee vortices, we need to take a nonlinear 
approach.  

 
 Note that the reciprocal of the Froude number, /Nh U , has also 

been used as a control parameter and is known as 
nondimensional mountain height.  The reason for using this 
terminology is that some meteorologists argue that U/Nh does 
not represent the ratio of kinetic energy and potential energy as 
originally defined for shallow-water fluid flow, U/(gH)1/2.   

 
However, a recent study (Sun and Sun 2015, Geosci. Lett, 2:7; 
DOI 10.1186/s40562-015-0024-1) indicated that it does represent the same 
meaning. In the text, we will use these two parameters 
interchangeably.   

 

/F U Nh=
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 Nonlinear response of a continuously stratified flow over a 
mountain is very complicated since the nonlinearity may come 
from the basic flow characteristics, the mountain height, or the 
transient behavior of the internal flow, such as wave 
steepening.   

 
 In this section, we will begin with the discussion of a nonlinear 

theory developed by Long (1953), then discuss the two-
dimensional flow regimes for a continuously stratified flow 
over a two-dimensional mountain with the help of nonlinear 
numerical models, and the generation mechanisms of severe 
downslope winds and wave breaking.   

 

5.3.1 Nonlinear flow regimes 
 
 The governing equation for the finite-amplitude, steady state, 

two-dimensional, inviscid, continuously and stably stratified 
flow may be derived (Long 1953): 
 

 

2
2 2

2
1 1 ( ) 0

2
de N

e dz z U
δδ δ δ∂ ∇ + − ∇ + = ∂  , (5.3.1) 

 
where ozzzx −=),(δ  is the streamline deflection at ),( zx from 

its far upstream, undisturbed height oz ; U  and N are the far 
upstream basic flow speed and Brunt-Vaisala frequency, 
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respectively, at height oz , and 2(1/ 2) oe Uρ=  is the kinetic 
energy of the upstream flow.   
 
 In deriving (5.3.1), it has been assumed that there is no 

streamline deflection far upstream.  In order to solve the above 
nonlinear equation, (5.3.1), we must specify e .   
 

 Under the special situation / 0de dz =  and when the flow is 
Boussinesq, which assumes that ρ  is approximately constant 
and )(zU and )(zN are effectively constant, (5.3.1) becomes a 
linear Helmholtz equation,  

 

  022 =+∇ δδ l ,  (5.3.2) 
 

where UNl /= is the Scorer parameter of the basic flow far 
upstream.   

 
 The nonlinear lower boundary condition for (5.3.2) is given by 

 
  )(),( xhzx =δ    at )(xhz = , (5.3.3) 

where )(xh is the height of the mountain surface.  
 
In other words, the nonlinear lower boundary condition is 
applied on the mountain surface, instead of approximately 
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applied at 0=z  as in the linear lower boundary condition, such 
as (5.1.10).   
 

 Equation (5.3.2) with the lower boundary condition (5.3.3) 
forms Long’s model, in which the steady-state nonlinear flow 
is remarkably described by a linear differential equation with 
constant coefficients.   
 
In fact, (5.3.2) is exactly the same differential equation which 
applies to infinitesimal perturbations adopted in many linear 
theories and discussed earlier in this chapter.   
 

 The appropriate upper boundary condition for a semi-infinite 
fluid, such as the atmosphere, is the radiation or boundedness 
condition, similar to (5.2.3) in the Fourier space for a uniform 
basic flow over an infinitesimal mountain.   
 

 Following the procedure for treating linear flow over small-
amplitude mountains, we make the Fourier transform of 
(5.3.2), 

 

 0ˆ)(ˆ 22 =−+ δδ klzz .  (5.3.4) 
 
 The general solution for the above equation is 

 ˆ ˆ( ,0) imzk eδ δ=    for kl >  and (5.3.5a) 

  ˆ ˆ( ,0) zk e λδ δ −=   for kl < , (5.3.5b) 
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where 2 2m l k= − , and 2 2k lλ = − .   
 
Note that the upper radiation and boundedness conditions have 
been applied to (5.3.5a) and (5.3.5b), respectively, while the 
linear lower boundary condition has been applied at 0=z , 
instead of at )(xhz = .   
 
The streamline deflection in the physical space can then be 
obtained by taking the inverse Fourier transform 
 

 0
ˆ ˆ( , ) Re ( ,0) ( ,0)

l imz ikx z ikx

l
x z k e e dk k e e dkλδ δ δ

∞ − = +  ∫ ∫ , (5.3.6) 

 
which may be obtained numerically, as with the Fast Fourier 
Transform numerical technique.   
 

 Since we have assumed the fluid is incompressible, it allows us 
to define a streamfunction, ψ, such that  
 

 u
z
ψ∂

=
∂  and w

x
ψ∂

= −
∂ . 

 
The density perturbation is related to ψ , 

  
2
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gU

ρ ρ ψ
 

= − 
 

;  
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 (5.3.7)  
It can be derived that ψ  equals to ( )U z δ− .  The exact 
nonlinear lower boundary condition, (5.3.3), can be 
implemented using an iterative method (e.g., Laprise and 
Peltier 1989a).   
 

 Figure 5.8 shows streamlines of analytical solutions for flow 
over a semi-circle obstacle for the nondimensional mountain 
heights /Nh U = 0.5, 1.0, 1.27, and 1.5.  

 
Fig. 5.8: Streamlines of Long’s model solutions for uniform flow over a semi-circle obstacle 
with /Nh U =  (a) 0.5, (b) 1.0, (c) 1.27, and (d) 1.5, where /Nh U  is the nondimensional 
mountain height or the reciprocal of the Froude number.  Note that the streamlines become 
vertical in (c) and overturn in (d).  (Adapted after Miles 1968) 
 

 As mentioned earlier, the nondimensional mountain height is a 
measure of the nonlinearity of the continuously stratified flow, 
which equals the reciprocal of the Froude number ( NhU / ).  
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When UNh /  is small, such as 5.0/ =UNh , the flow is more 
linear.   
 
When UNh /  increases to 1.27, the flow becomes more 
nonlinear and its streamlines become vertical at the first level 
of wave steepening.   
 
For flow with 27.1/ >UNh , the flow becomes statically and 
shear unstable (Laprise and Peltier 1989b).  The vertical 
streamline marks the approximate limit of applicability of 
Long’s model.   
 
For the hydrostatic solution of Long’s model with a bell-shaped 
mountain subject to a nonlinear lower boundary condition, this 
critical value is 85.0/ =UNh  (Miles and Huppert 1969) or 
U/Nh = 1.18.   
 
Thus, for a continuously stratified, hydrostatic flow over a bell-
shaped mountain, the flow may be classified as supercritical 
flow when 18.1/ >NhU  ( / 0.85Nh U < ) and as subcritical flow 
when 18.1/ <NhU  ( / 0.85Nh U > ).   
 
Note that in the literature it is often misquoted / 1U Nh =  as the 
regime boundary for supercritical and subcritical regimes for 
continuously stratified flow over mountains.   
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 As discussed in Section 3.3, there exist five flow regimes in 
one-layer shallow-water system, based on the shallow water 
Froude number, /F U gH= , and the nondimensional mountain 
height, /mM h H=  (Fig. 3.3).   
 
 In a non-rotating, continuously stratified flow over a two-

dimensional, bell-shaped mountain, three nondimensional 
control parameters may be identified: NhU / , ah / , and 

UNa / , based on Buckingham-Π theorem.  However, only 
two of them are independent.   
 

NhU / : Froude number or inverse nondimensional height  
ah / :  Steepness of mountain 
UNa / :  Nondimensional mountain width which measures the 

degree of hydrostatic effect (the larger the more 
hydrostatic).   

 
In the hydrostatic limit ( ∞→UNa / ), the sole control 
parameter is the Froude number.   

 
 Figure 5.9a shows streamlines for Long’s solutions for flow 

over a bell-shaped mountain with a half-width (a) of 3 km with 
the nonlinear lower boundary condition (5.3.3) applied.  
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Fig. 5.9: (a) Streamlines for Long’s model solution over a bell-shaped mountain with 
U = 5 ms-1, N = 0.01 s-1, hm = 500 m and a = 3 km; and (b) same as (a) except with 
a = 1 km.  An iterative method is adopted in solving the nonlinear equation (5.3.2) 
with the nonlinear lower boundary condition (5.3.3) applied.  Note that the 
dispersive tail of the nonhydrostatic waves is present in the narrower mountain (case 
(b)). (Adapted from Laprise and Peltier 1989a) 

 

Internal waves tend to overturn in regions of reversed density 
gradient (statically unstable), 0/ >∂∂ zρ , which corresponds to 

1/ >∂∂ zδ  from (5.3.7).   The heights of critical steepening 
levels differ slightly from those predicted by linear theory for 
hydrostatic waves, )/2)(4/3( NUnzo π+= , where n  is an 
integer, just over the crest of the topography (Laprise and 
Peltier 1989a).  
 
In Fig. 5.9a, the first steepening level for nonlinear, hydrostatic 
waves is about 2.36 km.  With a narrower mountain, such as a 
= 1 km (Fig. 5.9b), a dispersive tail, caused by nonhydrostatic 
dispersion, is produced.   
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The downstream displacement of the steepened region is 
caused by both the nonhydrostatic effect and the nonlinearity 
of the interior flow and the lower boundary condition.   
 
When 1/ >>UNa , the flow approaches the hydrostatic limit.  
This control parameter can be obtained by comparing the scales 
of 2 2'/w x∂ ∂ and 2 2'/N w U of (5.1.5).  
 
                                                          
 (5.1.5)  
 
Direct comparison of 22 /' xw ∂∂ and 22 /' zw ∂∂ terms by scale 
analysis leads to the conclusion that h/a is a control parameter 
of nonhydrostatic effect.   
 
The Froude number, /U Nh , can also be derived by comparing 
the scales of 2 2'/w z∂ ∂ and 2 2'/N w U  of (5.1.5).   

 
 Remember, in Sec. 5.1, we have discussed about 
 
 
 
 
 
 
 

0')(  ' 22 =+∇ wzlw .   
 

It may also be interpreted as a vorticity equation 
upon being multiplied by U (Smith 1979).   

 The first term, )( ''
zzxx wwU + , is the rate of change 

of vorticity following a fluid particle.   
 The second term, UwN /'2 , is the rate of vorticity 

production by buoyancy forces.   
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 Long’s nonlinear theory advances our understanding of 
orographically forced flow considerably.  However, the 
constant upstream condition assumed by Long may not be 
necessarily consistent with the flow established naturally by 
transients, especially when blocking occurs (Garner, 1995).   
 

 In the real atmosphere, turbulence will come into play and 
produce vertical mixing in a subcritical (overturning) flow.  
To simulate a subcritical flow, one may consider using a 
laboratory tank experiment or adopting a nonlinear numerical 
model.  

 
 As mentioned earlier, flow may become stagnant, where the 

total horizontal wind speed reduces to zero (u = U + u’ = 0), 
in essentially two regions: in the interior of the fluid over the 
mountaintop or on the lee slope and along the upstream slope 
of the mountain.    

 
 Flow stagnation in a two-dimensional flow is responsible for 

flow recirculation, while stagnation in a three-dimensional 
flow is responsible for flow splitting.  

 
Flow stagnation in the interior of the fluid is due to nonlinear 
wave steepening, which may lead to wave breaking and wave 
overturning over the lee slope, while the flow stagnation at 
the upstream surface of the mountain is called flow blocking.   
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 Although the two-dimensional, nonrotating, hydrostatic flow 

may be simply classified as supercritical and subcritical 
regimes, as discussed above, the transient flow behavior 
becomes much more complicated.   
 

 Figure 5.10 shows the time evolution for the θ and 'u  fields 
for a hydrostatic flow over a two-dimensional, bell-shaped 
mountain simulated by a numerical model at nondimensional 
times 6.12/ =aUt and 50.4 for F ranging from 0.5 to 1.3.   
 

 
 

Fig. 5.10: Nonlinear flow regimes for a two-dimensional, hydrostatic, uniform flow over a 
bell-shaped mountain as simulated by a numerical model, based on the Froude number (

/F U Nh= ). F varies from 0.5 to 1.3, which gives four different flow regimes as discussed 
in the text.  Displayed are the θ fields (left two columns) and the 'u fields (right two 
columns) for two nondimensional times / 12.6Ut a =  and 50.4.  The dimensional parameters 
are: N = 0.01 ms-1, h = 1 km, a = 10 km, and U = 5, 7, 11, and 13 ms-1 corresponding to F = 
0.5, 0.7, 1.1, and 1.3, respectively.  A constant nondimensional physical domain height of 

zλ7.1 (where 2 /z U Nλ π= ) is used.  Both the abscissa and ordinate in the small panels are 
labeled in km.  (Adapted after Lin and Wang 1996) 
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 Four regimes are identified:  
(I) flow with neither wave breaking aloft nor upstream 

blocking (e.g., 1.12 F≤ )  
(II) flow with wave breaking aloft in the absence of upstream 

blocking (e.g., 0.9 1.12F≤ < )  
(III) flow with both wave breaking and upstream blocking, 

but where wave breaking occurs first (e.g., 0.6 0.9F≤ < ) 
(IV) flow with both wave breaking and upstream blocking, 

but where blocking occurs first (e.g., 0.3 0.6F≤ < ).   
 

 Note that the exact Froude numbers separating these flow 
regimes might be different in other numerically simulated 
results because these numbers are sensitive to some numerical 
factors, such as the grid resolution, domain size, numerical 
boundary conditions, and numerical scheme adopted in 
different numerical models.   
 

 Regime I (e.g., F = 1.3 in Fig. 5.10), neither wave breaking 
nor upstream blocking occurs, but an upstream propagating 
columnar disturbance does exist. The basic flow structure in 
regime I resembles linear mountain waves.  

 
Columnar disturbances are wave modes with constant phase 
in the vertical, which permanently alter the upstream 
temperature and horizontal velocity fields as they pass 
through the fluid (e.g., Pierrehumbert and Wyman 1985).  A 
columnar disturbance may be generated by a sudden 
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imposition of a disturbance, such as the impulsive 
introduction of a mountain in a uniform flow.   
 

 Regime II (e.g., F = 1.1 in Fig. 5.10) resembles weakly 
nonlinear mountain waves: flow with wave breaking aloft in 
the absence of upstream blocking (e.g., 0.9 1.12F≤ < ). 
  
 
 
 
 
 
 
 
 
 
In this flow regime, an internal jump forms at the downstream 
edge of the wave-breaking region above the mountain, 
propagates downstream, and then becomes quasi-stationary.  
The region of wave breaking also extends downward toward 
the lee slope.   
 
After the internal jump travels farther downstream, a 
stationary mountain wave becomes established in the vicinity 
of the mountain above the dividing streamline, which is 
induced by wave breaking.  
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A high-drag state is predicted in this flow regime.  In 
addition, a vertically propagating hydrostatic gravity wave is 
generated by the propagating jump and travels with it.   
 
Along the lee slope, a strong downslope wind develops.  
Static and shear instabilities may occur locally in the region of 
wave breaking.  The computed critical Froude number for 
wave breaking is about 1.12, which agrees well with the value 
1.18 found by Miles and Huppert (1969).   

 
 Regime III: flow with both wave breaking and upstream 

blocking, but where wave breaking occurs first (e.g., 
0.6 0.9F≤ < ).  
 
 
 
 
 
 
 
 
 
 
In regime III (e.g., F = 0.7 in Fig. 5.10), the internal jump 
over the lee slope propagates downstream in the early stage 
and then becomes quasi-stationary.   
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Note that the propagation of the downstream internal jump is 
sensitive to the upstream numerical boundary condition, 
which may cause the internal jump to retrogress upstream.  To 
avoid this artificial effect from the numerical model, the 
upstream boundary should be placed far enough so as to 
effectively reduce its impact.   
 
Also, the layer depth of blocked fluid upstream is independent 
of the Froude number.   
 

 Regime IV: flow with both wave breaking and upstream 
blocking, but where blocking occurs first (e.g., 0.3 0.6F≤ < ).  
 
 
 
 
 
 
 
 
 
  
   Fig. 5.10 
 
In regime IV (e.g., F = 0.5 in Fig. 5.10), a significant portion 
of the upstream flow is blocked by the mountain.   
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The presence of wave breaking aloft is not a necessary 
condition for upstream blocking to occur.   
 
A vertically propagating gravity wave is generated by the 
upstream reversed flow and travels with it.  The speed of the 
upstream reversed flow is proportional to ah / .  The surface 
drag increases abruptly from regime I to II, while it decreases 
gradually from regime II (III) to III (IV).   

 

 Note that flow regimes may also be classified in different 
ways, depending upon particular characteristics.  For 
example, two-dimensional, uniform flow over an isolated 
mountain has been classified as either a quasi-linear regime, 
high-drag state, or blocked state, based on UNh / and gNU /  
(Stein 1992).   
 
In addition, the flow response of a three-dimensional flow 
over a long ridge is very different from that of a two-
dimensional flow when UNh /  is large.  For example, the 
onset of wave breaking and the transition to the high-drag 
state in the three-dimensional flow was found to be 
accompanied by an abrupt increase in deflection of the low-
level flow around the ridge (Epifanio and Durran 2001). The 
increased flow deflection is produced at least in part by 
upstream-propagating columnar disturbances forced by the 
transition to the high-drag state. 
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5.3.2 Generation of severe downslope winds 
 

 Severe downslope winds over the lee of a mountain ridge 
have been observed in various places around the world, such 
as the  
 
Chinook over the Rocky Mountains,  
Santa Ana winds in southern California, and  
Diabolo winds in San Francisco Bay Area.   
Foehn over the Alps,  
Bora over the Dinaric Alps,  
Zonda over the Agentina mountains,  
Berg wind in South Africa,  
Canterbury-nor’wester in New Zealand,  
Halny wiatr in the mountains of Poland. 
 
One well-known event is the 11 January 1972 windstorm 
which occurred in Boulder, Colorado, and which reached a 
peak wind gust as high as 60 ms-1 and produced severe 
damage in the Boulder area (Fig. 3.4a). 
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Fig. 3.4: (a) Analysis of potential temperature from aircraft flight data and rawinsondes for the 11 
January 1972 Boulder windstorm.  Aircraft tracks are shown by dashed lines with locations of 
significant turbulence shown by plus signs.  The heavy dashed line separates data taken by the 
Queen Air aircraft (before 2200 UTC) and from the Saberliner aircraft (after 0000 UTC) (Adapted 
after Klemp and Lilly 1975).  The severe downslope wind reached a value greater than 60 ms-1.  
(b) A sketch of flow Regime c of Fig. 4.3, which may be used to explain the phenomenon 
associated with (a).  Q represents the volume flux per unit width. (Lin 2007; Adapted after Turner 
1973) 

 

 

 The basic dynamics of the severe downslope wind can be 
understood from the following major theories:  
(a) Resonant amplification theory (Clark and Peltier 1984, 

Wang and Lin 1999, Xeiteira et al. 2005)  
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(b) Hydraulic theory (Smith 1985, Durran and Klemp 1987,  
Bacmeister and Pierrehumbert 1988, Rottman and Smith 
1989,Wang and Lin 2005)  

 
The above theories will be reviewed in the following.  Also 
see Lin (2007) for detailed review and discussion. 

 

a. Resonant amplification theory 
 Idealized nonlinear numerical experiments indicate that a 

high-drag (severe-wind) state occurs after an upward 
propagating mountain wave breaks above a mountain, such as 
happens in Fig. 5.10 (F = 0.5, 0.7, and 1.1), in which severe 
downslope winds develop in a uniform flow over a bell-
shaped mountain.  The wave-breaking region is characterized 
by strong turbulent mixing (where  < 0.25), with a local 
wind reversal on top of it.   
 

 

 

 

 

 

 
 Fig. 5.10 

Ri
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 As mentioned in Section 3.8, the wind reversal level coincides 
with the critical level for a stationary mountain wave, and 
thus is also referred to as the wave-induced critical level.   
The lowest wave-induced critical level starts to develop at the 
height 3 / 4zz λ= ≈2.36, 3.30, and 5.18 km for cases of F = 
0.5, 0.7, and 1.1, respectively (at / 12.6Ut a =  in Fig. 5.10), 
where zλ  (= 2 /U Nπ ) is the hydrostatic vertical wavelength.   
 
A supercritical flow with a severe downslope wind can be 
found over the lee slope under the wave breaking region, 
which undergoes a transition from subcritical flow over the 
upwind slope.   
 

 The maximum perturbation wind over the lee slope is much 
higher than those predicted by linear and weakly nonlinear 
theories.  At a later stage, the well-mixed layer (wake) 
deepens, the depth of internal hydraulic jump (critically 
steepened streamlines) extends to a great depth, the flow 
above the initial wave-induced critical level is less disturbed 
compared to that in the lower layer, and severe winds develop 
over the lee slope and below the well-mixed layer ( / 50.4Ut a =

in Fig. 5.10).   
 

 The above example implies that the wave breaking region 
aloft acts as an internal boundary which reflects the upward 
propagating waves back to the ground and produces a high-
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drag state through partial resonance with the upward 
propagating mountain waves.  This is shown by performing 
nonlinear numerical simulations for stratified flow over a bell-
shaped mountain (Fig. 5.11).   

 

 
Fig. 5.11:  Resonant amplification mechanism for severe downslope winds developed for basic 
flow with a prescribed critical level ( iz ) over a bell-shaped mountain.  Displayed are the 
evolution of the Reynolds stress, ' 'ou wρ , profile for on-resonance flows with: /i zz λ = : (a) 
0.75 and (c) 1.75 and for the off-resonance flow with (b) / 1.15i zz λ = , where 2 /z oU Nλ π= .  
The flow and orographic parameters are: 10.02N s−= , ( ) tanh[( ) / ]o iU z U z z b= −  with 

-18 msoU = , b = 600 m, 2 2
min /( / ) 2.25oRi N U b= =  (minimum Ri), h = 300 m, and a = 3 km.  

The Froude number ( /oU Nh ) is 1.33.  Height (z) is in km. The profiles in the figure range in 
time from 0 to 2880 t∆ , 1440 to 2880 t∆ , and 2080 to 4240 t∆  for panels (a) to (c), respectively, 
where t∆ = 5 s.  Some of the profiles are sequentially numbered from earliest to latest (labeled 
by small numbers).  (Lin 2007; After Clark and Peltier 1984) 
 

In these simulations, the basic flow reverses its direction at a 
prescribed critical level (zi).  In the absence of shear 
instability associated with the basic flow, and when the basic-
flow critical level is located at a nondimensional height of  
zi/λz = 3/4 + n (n is an integer) above the surface, nonlinear 
resonant amplification occurs between the upward 
propagating waves generated by the mountain and the 
downward propagating waves reflected from the critical level.   
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This leads to an extremely large Reynolds stress or surface 
drag and severe downslope winds (Figs. 5.11a and 5.11c).  In 
other words, the flow is on resonance.   
 
On the other hand, when the basic flow critical level is located 
at a nondimensional height off  zi/λz = 3/4 + n, such as 1.15, 
there is no wave resonance and no severe downslope winds 
generated (Fig. 5.11b).  
 
Because the severe downslope winds are developed by 
resonance between upward and downward waves, this 
mechanism is referred to as the resonant amplification 
mechanism.  

 
Based on numerical simulations with finer-grid resolutions, 
Scinocca and Peltier (1993) proposed three distinct stages for 
the development of severe downslope winds:  
 
(1) Local static (buoyancy) instability develops when the 

wave steepens and overturns, thus producing a pool of 
well-mixed air aloft (Figs. 5.12a-b).  
 

(2) A well-defined large-amplitude stationary disturbance is 
generated over the lee slope. In time, small-scale 
secondary Kelvin-Helmholtz (K-H) (shear) instability 
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develops in local regions of enhanced shear associated 
with flow perturbations caused by the large-amplitude 
disturbance (Figs. 5.12c-d).  

 
(3) The region of enhanced wind on the lee slope expands 

downstream, eliminating the perturbative structure 
associated with the large-amplitude stationary 
disturbance (Figs. 5.12e-f).   

 
The K-H instability dominates the flow in this mature 
windstorm state.  Thus, static instability helps explain the 
initiation of wave-induced critical level and the 
downstream expansion of the severe downslope winds. 
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Fig. 5.12: Three distinct stages for the development of severe downslope winds, as revealed by the 
triply-nested numerical simulations (see text for details).   Long’s (1953) nonlinear analytical 
solution is used to initiate the flow.  Displayed are the potential temperature fields over the lee 
slope at model times of (a) 0, (b) 20, (c) 66, (d) 96, (e) 160, and (f) 166 min.  The grid resolutions 
for the outer, middle, and inner domains are 500 m, 50 m, and 2

316  m, respectively.  A bell-shaped 
mountain with h = 165 m and a = 3 km is used.  The upstream flow parameters are U = 3.3 ms-1 
and N = 0.02 s-1.   Thus, F = U/Nh = 1.  (Lin 2007; Adapted after Scinocca and Peltier 1993) 
 

 

Once wave breaking occurs, it induces a critical level in the 
shear layer with low Ri and thus establishes a flow 
configuration favorable for wave ducting in the lower uniform 
flow layer, similar to that in case 3 of Table 4.1 and Fig. 
4.12b.   
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 Effects of the wave ducting on the development of high-drag 
states for a flow with uniform wind and constant static 
stability are illustrated in Fig. 5.13 (Wang and Lin 1999; 
reviewed in Lin 2007).    
 

 
 
Fig. 5.13: Wave ducting as revealed by the time evolution of horizontal wind speeds and regions 
of local 25.0<Ri  (shaded) for a flow with uniform wind and constant static stability over a 
mountain ridge at =aUt /  (a) 12.6, and (d) 50.4.  The Froude number of the uniform basic wind 
is 1.0.  (Lin 2007; Adapted after Wang and Lin 1999) 

 

Shortly after the occurrence of wave breaking, regions with 
local  < 0.25 form in the vicinity of the wave breaking (Fig. 
5.13a).   
 
This turbulent mixing region is expanding downward and 
downstream due to strong nonlinear effects on the flow with 
low Richardson number near the critical level (Fig. 5.14a).   
 

Ri
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Fig. 5.14: Effects of nonlinearity on the development of severe downslope winds: (a) Potential 
temperature field from nonlinear numerical simulations for a basic flow with 1.0=Ri  and 2F =
;  (b) Same as (a) except from linear numerical simulations.  The contour interval is 1 K in both 
(a) and (b).  (Lin 2007; Adapted after Wang and Lin 1999) 
 

 
The turbulent mixing region expands downward by wave 
reflection, overreflection, and ducting from the wave-induced 
critical level and accelerates downstream by the nonlinear 
advection (Fig. 5.13b of Wang and Lin 1999).   

  
Effects of wave reflection and/or overreflection are evidenced 
by the fact that the wave duct with severe downslope wind is 
located below the region of the turbulent mixing region.   
 
Note that the expansion of the turbulent mixing region 
provides a maintenance mechanism for the existence of the 
wave duct below it and above the lee slope, because the 
reflectivity in this region is about 1, according to linear theory 
(Wang and Lin 1999; Lin 2007).   
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Without this almost perfect reflector, the wave below cannot 
be maintained and would lose most of its energy due to 
dispersion.  In fact, wave overreflection can occur, according 
to the wave ducting theory discussed in Chapter 4, through 
the extraction energy from the well-mixed region and thus 
contribute to the acceleration of downslope winds.   
 
In the absence of nonlinearity (Fig. 5.14b), the wavebreaking 
region does not expand downward to reduce the depth of the 
lower uniform wind layer.  This, in turn, prohibits the 
formation of the severe downslope wind and internal 
hydraulic jump.  These results indicate that the nonlinear 
wave ducting has contributed to the downward and 
downstream expansion of the turbulent mixing region.   

 

 Hydraulic theory 

Based on the similarity of flow configurations of severe 
downslope windstorms and finite-depth, homogeneous flow 
over a mountain ridge, a nonlinear hydraulic theory was 
proposed to explain the development of severe downslope 
winds (Smith 1985).   

 
The hydraulic theory attributes the high-drag (severe-wind) 
state to the interaction between a smoothly stratified flow and 
the deep, well-mixed, turbulent “dead” region above the lee 
slope in the middle troposphere.  When a high-drag state 
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develops, a dividing streamline encompasses this well-mixed 
region of uniform density ( cρ in Fig. 5.15a).   
 

 

 

 
 

 

Fig. 5.15:  A severe downslope windstorm simulated by a hydraulic theory.  (a) Schematic of an 
idealized high-drag state flow configuration.  A certain critical streamline divides and encompasses 
a region of uniform density ( cρ ), which is called dividing streamline. Ho and H1 denote the heights 
of upstream dividing streamline and downstream lower dividing streamline, respectively.  (b) An 
example of transitional flow over a mountain.  The dimensional values of the flow and orographic 
parameters are U = 20 ms-1, N = 0.01 s-1, Ho = 9.42 km, and h = 2 km.  This gives / 1.0F U Nh= =
.  (Lin 2007; Adapted after Smith 1985) 

 

Assuming the upstream flow is uniform in U and N and the 
general flow is smooth, nondissipative, hydrostatic, 
Boussinesq and steady (Fig. 5.15a), the nonlinear, hydrostatic 
governing equation can be simplified from (5.3.1), 
 

 02 =+ δδ lzz , (5.3.8) 
 
 The horizontal velocity can be derived from (5.3.7), 
 
 )1( zUu δ−= . (5.3.9) 
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The lower boundary condition is given by (5.3.3).   
  

  )(),( xhzx =δ    at )(xhz = , (5.3.3) 

 
By assuming no disturbance above the upper dividing 
streamline (Ho), the pressure at oHz =  is constant, i.e

*( , )op x H p= .   
 
If the air in the turbulent region is hydrostatic in the mean and 
well mixed with a density of cρ , the pressure along the lower 
branch of the dividing streamline is *( , )o c c cp x H p gδ ρ δ+ = −

, where cδ is the vertical displacement of the lower dividing 
streamline ( 1H ).   
 
For a steady-state flow, the Bernoulli equation along 

o cz H δ= +  can be written 
 

 constantgzup c =++ ρρ 2)2/1( . (5.3.10) 
 
 At coHz δ+= , we have  
  
 0zδ = . (5.3.11) 
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 By assuming a wave-like solution in the vertical,  
 lzxBlzxAzx sin)(cos)(),( +=δ , (5.3.12) 
  
 the nonlinear solution for high-drag state can be obtained, 
 
 )]~~~[cos(~~ hHh coc −+= δδ , (5.3.13a) 

 )~~cos(~~
coc HA δδ += , and (5.3.13b) 

 )~~sin(~~
coc HB δδ += , (5.3.13c) 

  
where h(x) is the terrain height function and all coefficients 
and parameters are nondimensionalized by l (= N/U) and 
denoted by tilde’s (“  ~ ”).  The above solution can be solved 
graphically or numerically as long as h~  and oH~  are known.   

  
Figure 5.15 shows an example of a severe downslope 
windstorm simulated by a hydraulic theory with 1.0F = .   
 
 
 
 
 

 
 Fig. 5.15  
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The descent of the lower dividing streamline begins over the 
point where the mountain begins to rise and becomes more 
rapid over the mountain peak.  
 
The final downward displacement of the dividing streamline 
is a large fraction of the initial layer depth.  The flow speed 
after transition to supercritical flow over the lee slope from 
subcritical flow over the upslope is greatest near the surface 
and is several times the upstream value.  The flow shown in 
Fig. 5.15b is qualitatively similar to the 1972 Boulder 
windstorm observations (Fig. 3.4a).   
 
In addition to the above solution, the strength of the 
transitional flow can be measured by the pressure drag on the 
mountain per unit length,  

  

  3
1

2
)(

6
HHND o

o −=
ρ

. (5.3.14) 
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Fig. 5.16: The dependence of high-drag states on the lower-layer depth, as revealed by the 
isentropes for airflow in a two-layer atmosphere at 25/ =aUt , when 5.0/1 =UhN , where 1N is 
the Brunt-Vaisala frequency of the lower layer, and the depth of the lowest, most stable layer (

1/ NU ) is: (a) 1, (b) 2.5, (c) 3.5, and (d) 4.  The lower layer resembles: (a) supercritical flow, (b) 
a propagating hydraulic jump, (c) a stationary jump, and (d) subcritical flow.  (Lin 2007; After 
Durran 1986a)  

 
The hydraulic theory of severe downslope winds was 
confirmed by numerical experiments of stratified fluid flow 
(e.g., Durran and Klemp 1987; Bacmeister and Pierrehumbert 
1988) and laboratory tank experiments (e.g., Rottman and 
Smith 1989).   
 
Note that in order to apply the hydraulic theory to the 
prediction of the steady-state flow over a mountain, it is 
necessary to specify the initial height of the dividing 
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streamline line.  Thus, the dividing streamline height cannot 
be determined a priori if the critical level is induced by wave 
breaking.   
 
This, in turn, implies that the hydraulic model is limited to the 
consistent check of a severe wind state and cannot be used for 
prediction (Wang and Lin 1999; Lin 2007).   

 

  Discussion about Applications of resonant amplification 
and hydraulic theories (Wang and  Lin 1999, Lin 2007) 

 
Some discrepancies have been found between the resonant 
amplification and hydraulic theories of severe downslope 
windstorms.   

 
One discrepancy is the different critical level heights for high-
drag (severe wind) states predicted by these two theories.  The 
resonant amplification theory predicts the wave-induced 
critical (wave breaking) level at a height of / 3/ 4zz nλ = + , 
where n is an integer, which helps produce severe downslope 
winds at later times.   

 
On the other hand, the hydraulic theory predicts critical level 
heights falling within the range of / 1/ 4zz nλ = + to 3/ 4 n+  
during a high-drag state. This discrepancy appears to be 
caused by different stages of the severe downslope wind state 
being used for prediction (Wang and Lin 1999; Lin 2007).    
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In fact, in earlier stages of a high-drag state, the resonant 
amplification theory is consistent with weakly nonlinear 
theories which indicate that the initiation of a high-drag 
transitional flow begins with linear resonance (Grimshaw and 
Smyth 1986), and with nonlinear numerical simulations which 
indicate that the lowest initial wave-induced critical level is 
near 3/4 (Lin and Wang 1996).   

 
It can also be seen clearly from Fig. 5.10 that the wave-
induced critical level for a severe-wind state is shifted to a 
lower level at later time.   Therefore, it appears that the 
resonant amplification theory focuses on the earlier stage of 
severe downslope wind development, while the hydraulic 
theory focuses on the later stage.  

 
Part of the discrepancies may be related to the usage of 
critical level height as the control parameter to determine a 
high-drag state, as often adopted in many previous studies.  
Based on some numerical experiments, the lower uniform 
flow layer depth appears to be a more appropriate scale to use 
(Wang and Lin 1999).  

 
Figure 5.16 indicates that the high-drag state is sensitive to 
the lower stable layer depth (Durran 1986a).  Using the lower 
layer depth as the control parameter, predictions of both high- 
and low-drag states from several previous numerical studies 
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are shown to be consistent, and the high-drag state does 
depend on the mountain height, which is consistent with the 
hydraulic theory (Wang and Lin 1999).   

 
In addition, some discrepancies among previous studies result 
from the choice of different Richardson numbers and basic 
flow velocity profiles (e.g., Teixeira et al. 2005).    

 
 
Appendix 5.1:  Some mathematical techniques and relations  
(a) Fourier Transform 
The Fourier transform of )(xf  is defined as  

 ∫
∞

∞−
−= dxexfkf ikx )(

2
1)(ˆ
π

 and (A5.1.1a) 

 .  (A5.1.1b) 

One of the advantages of the Fourier transform is that it is able to distinguish the up- and down-
going waves.  An alternative Fourier transform pair may be defined as 

 ∫
∞

∞−
−= dxexfkf ikx )(

2
1)(ˆ
π

 and  (A5.1.2a) 

 ∫
∞

=
0

 )(ˆRe2)( dkekfxf ikx ,  (A5.1.2b) 

for real function f.  This is also called the one-sided Fourier transform (Queney et al. 1960).  
Occasionally, the following pair of Fourier transform has been adopted in the literature, 

  and                                                                         (A5.1.3a) 

 
.                                                                                (A5.1.3b) 

Other variations of Fourier transform pairs, such as using ikxe  ( ikxe− ) in the forward (inverse or 
backward) Fourier transform, have also been used in the literature.  No matter which form of the 
Fourier transform is used, the Fourier transform pair should be able to transform the original 
function back to itself after performing the forward and inverse transforms. 

 
(b) Jordan’s Lemma 
 If 

∫
∞

∞−
= dke kfxf ikx)(ˆ)(

∫
∞

∞−
−= dxe xfkf ikx)(1)(ˆ

π

∫
∞

=
0

)(ˆRe)( dke kfxf ikx
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 ,0)(
lim

=
∞→

zf
R

 

then 

 ∫Γ =
∞→ R

dzezf
R

ikz 0)(
lim

,  (A5.1.4) 

for 0>k and where RΓ  is an anticlockwise contour of a semicircle above the zRe axis with radius 
R .   Jordan’s Lemma is very useful for converting a line integral to a contour integral. 

 
(c) Riemann-Lebesgue Lemma 
 

 ∫
∞

∞−
=

∞→
0)(ˆlim

dkekf
x

ikx   if  )(ˆ kf is smooth.  (A5.1.5) 

A smooth function here means that the function is ordinary and absolutely integrable.  The above 
conclusion is reached by the reasoning of cancellation. 
 
(d) Parseval Theorem 
 

 ∫∫
∞

∞−

∞

∞−
= dkkgkfdxxgxf )(*ˆ)(ˆ)(*)(

2
1
π

,  (A5.1.6) 

where “^” indicates the Fourier transformed functions.  The Parseval theorem is useful for 
computing wave energy and momentum flux. 
 

 

 
 


	Fig. 3.4: (a) Analysis of potential temperature from aircraft flight data and rawinsondes for the 11 January 1972 Boulder windstorm.  Aircraft tracks are shown by dashed lines with locations of significant turbulence shown by plus signs.  The heavy da...

