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 Many well-known weather phenomena are directly related to 

flow over orography, such as  
 

• mountain waves  
• lee waves and clouds 
• rotors and rotor clouds 
• severe downslope windstorms 
• lee vortices 
• lee cyclogenesis 
• frontal distortion across mountains 
• cold-air damming 
• track deflection of midlatitude and tropical cyclones 
• coastally trapped disturbances 
• orographically induced rain and flash flooding 
• orographically influenced storm tracks.   
 

 A majority of these phenomena are mesocale and are induced 
by stably stratified flow over orography.  Thus, understanding 
the dynamics associated with stably stratified flow over a 
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mesoscale mountain is essential in improving the 
understanding of the above mentioned phenomena.   

 

 In addition, understanding the dynamics of orographically 
forced flow will also help on different aspects of meteorology, 
such as turbulence which affect aviation safety, wind-damage 
risk assessment, pollution dispersion in complex terrain, and 
subgrid-scale parameterization of mountain wave drag in 
general circulation models.  

 

5.1 Two-Dimensional Flow over Sinusoidal Mountains 
[ref: 5.1 of Lin (2007)] 

 Some fundamental properties of flow responses to orographic 
forcing can be understood by considering a two-dimensional, 
steady-state, adiabatic, inviscid, nonrotating, Boussinesq fluid 
flow over a small-amplitude mountain.  
 

 For a two-dimensional, steady-state, adiabatic, inviscid, 
nonrotating, Boussinesq fluid flow, the linear governing 
equations (2.2.14) - (2.2.18)  
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can be simplified to 
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 The above set of equations can be further reduced to Scorer’s 
equation (1954), 

 

  0')(  ' 22 =+∇ wzlw , (5.1.5) 

 
where 22222 // zx ∂∂+∂∂=∇  is the two-dimensional Laplacian 
operator, and l is the Boussinesq form of the Scorer 
parameter (Scorer 1949), which is defined as: 
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Equation (5.1.5) serves as a central tool for numerous 
theoretical studies of small-amplitude, two-dimensional 
mountain waves. 

 

It may also be interpreted as a vorticity equation upon being 
multiplied by U (Smith 1979).   
 

• The first term, )( ''
zzxx wwU + , is the rate of change of 

vorticity following a fluid particle.   
 

• The second term, UwN /'2 , is the rate of vorticity 
production by buoyancy forces.   
 

• The last term, 'wU zz− , represents the rate of vorticity 
production by the redistribution of the background 
vorticity ( zU ).   
 

In the extreme case of very small Scorer parameter, i.e. very 
weak stratification and/or basic wind has zero or constant 
shear, (5.1.5) reduces to the irrotational or potential flow [i.e., 
no vorticity production by buoyancy forces, UwN /'2  - the 2nd 
term of (5.1.5)]   

 
 

  0 '2 =∇ w . (5.1.7) 

 

As discussed in Chapter 3 [(3.5.22)], the buoyancy force is 
negligible in this extreme case.  If the forcing is symmetric in 
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the basic flow direction, such as a cylinder in an unbounded 
fluid or a bell-shaped mountain in a half-plane, then the flow 
is symmetric.  For this particular case, there is no drag 
produced on the mountain since the fluid is inviscid. 

 
 
 In order to simplify the mathematics of the steady state 

mountain wave problem, one may assume that )(zU and )(zN  
are independent of height, and a sinusoidal mountain  
 

  kxhxh m sin)( = , (5.1.8) 

where mh  is the mountain height and k  is the wave number of 

the terrain.  

 

For an inviscid fluid flow, the lower boundary condition 
requires the fluid particles to follow the mountain, so that the 
streamline slope equals the terrain slope locally, 
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 For a small-amplitude mountain, this leads to the linear lower 

boundary condition 
 

  dx
dhUw ='      at  0=z . (5.1.10) 
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 or 
 
  kxkhUxw m cos )0,(' =   at    0=z , (5.1.11) 

 
for flow over a sinusoidal mountain as described by (5.1.8).   
 
Due to the sinusoidal nature of the forcing, it is natural to look 
for solutions in terms of sinusoidal functions, 

  
  kxzwkxzwzxw sin )(cos )(),(' 21 += . (5.1.12) 
 

Substituting the above solution into (5.1.5) with a constant 
Scorer parameter leads to 
 

  0)( 22 =−+ iizz wklw ,    2 ,1=i . (5.1.13) 
 

As discussed in Chapter 3 [(3.5.7)], two cases are possible: (a) 
22 kl < and (b) 22 kl > .   

 
 
 Case 1: N/U < k or Na/U < 2π, where a is the terrain 

wavelength.  
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Physically, this means that the basic flow has relatively 
weaker stability and stronger wind, or that the mountain is 
narrower than a certain threshold.   

 
For example, to satisfy the criterion for a flow with U = 10 
ms-1 and N = 0.01 s-1, the wavelength of the mountain 
should be smaller than 6.3 km.   

 
In fact, this criterion can be rewritten as 

1)/2/()/( <NUa π .  The numerator, Ua / , represents the 
advection time of an air parcel passing over one 
wavelength of the terrain, while the denominator, 2 / Nπ , 
represents the period of buoyancy oscillation due to 
stratification.   

 
This means that the time an air parcel takes to pass over the 
terrain is less than it takes for vertical oscillation due to 
buoyancy force.  In other words, buoyancy force plays a 
smaller role than the horizontal advection.   

 
 In this situation, (5.1.13) can be rewritten as 
 

   0)( 22 =−− iizz wlkw ,    2 ,1=i . (5.1.14) 
 

The solutions of the above second-order differential 
equation with constant coefficient may be obtained 
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  where  
 
   22 lk −=λ . (5.1.16) 
 

 
Similar to that described in Section 3.4, the upper 
boundedness condition requires 0=iA  because the energy 
source is located at 0=z .   

 
Applying the lower boundary condition, (5.1.11), and the 
upper boundary condition ( 0=iA ) to (5.1.15) yields 

  
   0    ; 21 == BkhUB m . (5.1.17) 
 
  This gives the solution, 
  

   kxkeUhkxzwzxw zlk
m coscos)(),('

22

1
−−== , (5.1.18) 

 
The vertical displacement (η ) is defined as ' /w D Dtη=  
which reduces to  
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  for a steady-state flow. 
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  Equation (5.1.18) can then be expressed in terms of η , 
 

   ∫ −−==
x zlk

m ekxhdxw
U 0

22

 sin'1η . (5.1.20) 
 
 The above solution is sketched in Fig. 5.1a.   
 
 

 
Fig. 5.1: The steady-state, inviscid flow over a two-dimensional sinusoidal mountain when (a) 

2 2l k<  (or N kU< ), where k is the terrain wavenumber (= 2 / aπ , where a is the terrain 
wavelength), or (b) 2 2l k>  (or kUN > ).  The dashed line in (b) denotes the constant phase line 
which tilts upstream with height.  The maxima and minima of 'u , 'p  (H and L), and 'θ  (W and 
C) are also denoted in the figures. 
 
The disturbance is symmetric with respect to the vertical axis 
and decays exponentially with height.  Thus, the flow belongs to 
the evanescent flow regime as discussed in Section 3.5.   
 
The buoyancy force plays a minor role compared to that of the 
advection effect.  The other variables can also be obtained by 
using the governing equations and (5.1.18), 
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  zlk
m ekxlkhUu

22

 sin ' 22 −−−= , (5.1.21) 
 

  zlk
mo ekxlkhUp

22

 sin ' 222 −−−−= ρ , (5.1.22) 
 

  zlk
mo ekxhgN

22

 sin )/(' 2 −−−= θθ . (5.1.23) 
 

The maxima and minima of ', ',  and 'u p  θ  are also denoted 
in Fig. 5.1a.  

 
• The coldest (warmest) air is produced at the mountain 

peak (valley) due to adiabatic cooling (warming).  
 

• The flow accelerates over the mountain peaks and 
decelerates over the valleys.  
 

• From the horizontal momentum equation, (5.1.1) with 
0=zU , or (5.1.22), a low (high) pressure is produced 

over the mountain peak (valley) where maximum 
(minimum) wind is produced.   

 
Note that (5.1.1) is also equivalent to the Bernoulli equation, 
which states that the pressure perturbation is out of phase with 
the horizontal velocity perturbation.   
 
Since no pressure difference exists between the upslope and 
downslope, this flow produces no net wave drag on the 
mountain (mountain drag).   
 



                          11 

The mountain drag can be computed either from the horizontal 
pressure force on the mountain over a wavelength, 
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or equivalently, as the negative of the vertical flux of horizontal 

momentum (momentum flux) in the wave motion, 
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Note that the Eliassen and Palm’s theorem, (4.4.10),  
 [Additional reading] Quote from Ch.4 (Lin 2007): 
  

 constantdxwuF o == ∫
∞

∞−
''  ρ ,   when 0≠U . (4.4.9) 

 
This is the Eliassen and Palm (1960) theorem, which states that the vertical flux of  
horizontal momentum does not change with height except possibly at levels where 0U = or 
in the layer of forcing.  If the integration of (4.4.8) is taken over one horizontal wavelength, 
we have 
 

 '''' wuUwp oρ−= . (4.4.10) 
 

Thus, the vertical flux of wave energy is negatively proportional to the vertical flux of  
horizontal momentum if 0>U .  For an energy source located in the lower troposphere, such 
as a mountain, the momentum flux is downward because the energy flux is upward.   
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indicates that the vertical flux of horizontal momentum in a 
steady-state flow is negatively proportional to the vertical 
energy flux, ''wp  (where the overbar denotes the average over a 
wavelength).    
  

 Case 2: 22 kl >   ( kUN >/ or / 2Na U π> )  
As discussed in Section 3.5, this means that the basic flow has 
relatively stronger stability and weaker wind or that the 
mountain is wider.   
 
For example, and as mentioned earlier, to satisfy the criterion for 
a flow with U = 10 ms-1and N = 0.01 s-1, the terrain wavelength 
should be larger than 6.3 km.  Since 1)/2/()/( >NUa π , the 
advection time is larger than the period of the vertical 
oscillation.   
 
In other words, buoyancy force plays a more dominant role than 
the horizontal advection.   
 
In this case, (5.1.13) can be written as 
 

 02 =+ iizz wmw ,    2 ,1   ,222 =−= iklm . (5.1.26) 
 
 
We look for solutions in the form 
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 2 ,1  ,cossin)( =+= imzBmzAzw iii . (5.1.27) 
 
Substituting (5.1.27) into (5.1.12) leads to  
 

 ).sin()cos(
)sin()cos(),('

mzkxFmzkxE
mzkxDmzkxCzxw

−+−
++++=

 (5.1.28) 

 
In the above equation, terms of (kx+mz) have an upstream phase 
tilt with height, while terms of (kx-mz) have a downstream phase 
tilt.   
 
It can be shown that terms of )( mzkx +  have a positive vertical 
energy flux and should be retained since the energy source in 
this case is located at the mountain surface.  This satisfies the 
Sommerfeld radiation boundary condition (Sommerfeld 1949), 
as discussed in Section 4.4 (HW5). Thus, the solution requires 

0== FE .  
 
This flow regime is characterized as the upward propagating 
wave regime, as discussed in Chapter 3.  As in the first case, the 
lower boundary condition requires  
 
 0   , == DkUhC m . (5.1.29) 
 
This leads to  
 

 )cos(),(' mzkxkUhzxw m += . (5.1.30) 
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Other variables can be obtained through definitions or the 
governing equations, 
 

 )sin(),( mzkxhzx m +=η , (5.1.31) 
 )cos(),(' mzkxmUhzxu m +−= , (5.1.32) 

 )cos(),(' 2 mzkxmhUzxp mo += ρ , and (5.1.33) 

 )sin(),(' 
2

mzkx
g

hNzx mo +−=
θθ . (5.1.34) 

The vertical displacement of the flow, and the maxima and 
minina of 'u , 'p , and ' θ  are depicted in Fig. 5.1b.  
 

 
Fig. 5.1: The steady-state, inviscid flow over a two-dimensional sinusoidal mountain when (a) 

2 2l k<  (or N kU< ), where k is the terrain wavenumber (= 2 / aπ , where a is the terrain 
wavelength), or (b) 2 2l k>  (or kUN > ).  The dashed line in (b) denotes the constant phase line 
which tilts upstream with height.  The maxima and minima of 'u , 'p  (H and L), and 'θ  (W and 
C) are also denoted in the figures. 

 
Note that the flow pattern is no longer symmetric.  The constant 
phase lines are tilted upstream (to the left) with height, thus 
producing a high pressure on the windward slope and a low 
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pressure on the lee slope.  Based on (5.1.32) or the Bernoulli 
equation (5.1.1), the flow decelerates over the windward slope 
and accelerates over the lee slope.  The coldest and warmest 
spots are still located over the mountain peaks and valleys, 
respectively. The mountain drag can be calculated either from 
(5.1.24) or (5.1.25)  
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  ∫−−=
k

k
o dxwuk /

/
''  

2
π

ππ
ρ

D . (5.1.25) 

to be 

  2 2 2 21
2 o mD U h k l kρ= − . (5.1.35) 

The positive wave drag on the mountain is produced by the high 
pressure on the windward slope and the low pressure on the lee 
slope.  This also can be understood through (5.1.25) and the out-
of-phase relationship of 'u  and 'w  over the windward and lee 
slopes, as shown in Fig. 5.1b. 
 

 Extreme Case: 22 kl >>  
This means that buoyancy effect dominates and the advection 
effect is totally negligible.  

 
In other words, the vertical pressure gradient force and the 
buoyancy force are roughly in balance and the vertical 
acceleration can be ignored.  
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Thus, the mountain waves become hydrostatic.  In this limiting 
case, the governing equation becomes 
 

 0'' 2 =+ wlw zz .  (5.1.36) 
 

The flow pattern repeats itself in the vertical with a wavelength 
of NUlz /2/2 ππλ == , which is also referred to as the 
hydrostatic vertical wavelength.   
 

The regime boundary between the regimes of vertically 
propagating waves and evanescent waves can be found by 
letting kl = , which leads to NUa /2π= .   
 

The relation among the mountain waves discussed in this 
subsection is sketched in Fig. 5.2.  
 

 
 

Fig. 5.2: Relations among different mountain wave regimes as determined by kl / , where l  is 
the Scorer parameter and k is the wave number. 
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5.2 Two-Dimensional Flow over Isolated Mountains 
(5.2 Flows over two-dimensional isolated mountains – Lin 2007) 
(Classical equation editor: )(kfcp ≠ ) 

5.2.1 Uniform basic flow 
 
The mountain wave problem in Section 5.1 may be extended to 
be more realistic by assuming an isolated mountain.   
 
Taking the one-sided Fourier transform (Appendix 5.1) of 
(5.1.5) 
 

 0')(  ' 22 =+∇ wzlw , (5.1.5) 

 
where 22222 // zx ∂∂+∂∂=∇  and 

 

 U
U

U
Nzl zz−= 2

2
2 )( . (5.1.6) 

[Note that 222 /UNl = is constant for a uniform flow, as 
assumed in Sec. 5.2.1]  
 
Appendix 5.1:  Some mathematical techniques and relations  
(a) Fourier Transform 
The Fourier transform of )(xf  is defined as  

 ∫
∞

∞−
−= dxexfkf ikx )(

2
1)(ˆ
π

 and (A5.1.1a) 

 .  (A5.1.1b) 

One of the advantages of the Fourier transform is that it can distinguish the upward- and 
downward propagation of wave energy.   
 
An alternative Fourier transform pair may be defined as 

 ∫
∞

∞−
−= dxexfkf ikx )(

2
1)(ˆ
π

 and  (A5.1.2a) 

∫
∞

∞−
= dke kfxf ikx)(ˆ)(

https://en.wikipedia.org/wiki/Fourier_transform
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 ∫
∞

=
0

 )(ˆRe2)( dkekfxf ikx ,  (A5.1.2b) 

for real function f.  This is also called the one-sided Fourier transform (Queney et al. 1960).   
 
Occasionally, the following pair of Fourier transform has been adopted in the literature, 

  and                                                            (A5.1.3a) 

 
.                                                            (A5.1.3b) 

Other variations of Fourier transform pairs, such as using ikxe  ( ikxe− ) in the forward (inverse 
or backward) Fourier transform, have also been used in the literature.  No matter which form 
of the Fourier transform is used, the Fourier transform pair should be able to transform the 
original function back to itself after performing the forward and inverse transforms. 
 
Fourier transform is useful in helping solve differential equations.  For example, see 
http://www.physics.ucf.edu/~schellin/teaching/phz3113/lec9-3.pdf 
 
 

It yields 
 
 0ˆ)(ˆ 22 =−+ wklwzz .  (5.2.1) 
 
The Fourier transform of the linear lower boundary condition 
(homework), (5.1.10), is   
 
 )(ˆ )0,(ˆ khikUzkw == .  (5.2.2) 
 
For constant Scorer parameter, the solution of (5.2.1) can be 
written into two parts, 
 

 zkliekwzkw
22

 )0,(ˆ),(ˆ −=      for  22 kl >  and (5.2.3a) 
 

 zlkekwzkw
22

 )0,(ˆ),(ˆ −−=     for  22 kl < .  (5.2.3b) 
 

∫
∞

∞−
−= dxe xfkf ikx)(1)(ˆ

π

∫
∞

=
0

)(ˆRe)( dke kfxf ikx

http://demonstrations.wolfram.com/OneSidedFourierTransformApplicationToLinearAbsorptionAndEmis/
http://www.physics.ucf.edu/%7Eschellin/teaching/phz3113/lec9-3.pdf
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Taking the inverse one-sided Fourier transform (Appendix 5.1)  
 
 
 
 
 
 
 
of (5.2.3) yields the solution in the physical space, 
 
 

2 2 2 2

0
ˆ ˆ'( , ) 2 Re   ( )  ( ) 

l i l k z ikx k l z ikx

l
w x z ikU h k e e dk ikU h k e e dk

∞− − − = +  ∫ ∫ ,      
    (5.2.4) 
 
where Re represents the real part.   
 
The first integration on the right hand side of (5.2.4) represents 
the upward propagating wave which satisfies the upper radiation 
boundary condition, while the second integration represents the 
evanescent wave which satisfies the boundedness upper 
boundary condition.   
 
Note that (5.2.4) is for a continuous spectrum of Fourier modes, 
instead of just one single mode as considered in Sec. 5.1.   
 
 
For simplicity, let us consider a bell-shaped mountain or the 
Witch of Agnesi mountain profile, 
 

 22

2
)(

ax
ahxh m

+
= ,  (5.2.5) 

A reminder: The one-sided Fourier transform 
pair is defined as 

 ∫
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−= dxexfkf ikx )(

2
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       (A5.1.2a) 

 ∫
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=
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 )(ˆRe2)( dkekfxf ikx         (A5.1.2b) 

 

http://en.wikipedia.org/wiki/Witch_of_Agnesi
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where mh  is the mountain height and a  is the half-width where 
the mountain height is 2/mh .   
 
The advantage of using a bell-shaped mountain lies in that its 
one-sided Fourier transform (Appendix 5.1)  
 
 
 
 
 
 
is in a simple form,  
 

 kam eahkh −=
2

)(ˆ ,   for 0>k .  (5.2.6) 
 
The Fourier transform for any k  is )exp()2/( akahm − .  (10/7/14) 
 
 
 
Case 1: 22 kl <<  (i.e., 1al <<  or UNa << )   
 
Note that for bell-shaped mountains, we assume 1/k a≈ , instead 
of k = 2π/a for sinusoidal mountains.    
 
As discussed earlier, the flow becomes a potential flow in which 
the buoyancy plays a negligible role.  In this case, (5.2.4)  
 
 2 2 2 2

0
ˆ ˆ'( , ) 2 Re   ( )  ( ) 

l i l k z ikx k l z ikx

l
w x z ikU h k e e dk ikU h k e e dk

∞− − − = +  ∫ ∫ , (5.2.4) 

Again, the one-sided Fourier transform pair is 
defined as 

 ∫
∞

∞−
−= dxexfkf ikx )(

2
1)(ˆ
π

 and   

 ∫
∞

=
0

 )(ˆRe2)( dkekfxf ikx ,   
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can be approximated by 
 

 













=



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∞ −−∞ − dkee eah ikU dkee kh ikU zxw ikxkzkamikxkz
00 2

Re2)(ˆRe2),(' . 

      (5.2.7) 
 
Since xUw ∂∂= /' η , the Fourier transform of η  can be obtained 
from that of ŵ , 
 

 ikU
zkwzk ),(ˆ

),(ˆ =η . (5.2.8) 
 
Substituting (5.2.7) into (5.2.8) leads to 
 

 ( )
2 20

( )( , ) Re
( )

k z a ix m
m

h a z ax z h a e dk
x z a

η
∞ − + − +

= =
+ +∫ . (5.2.9) 

 
Therefore, similar to the sinusoidal mountain case, the flow 
pattern is symmetric with respect to the center of the mountain 
ridge ( 0=x ).  However, the amplitude decreases with height 
linearly, instead of exponentially.  The flow pattern is depicted 
in Fig. 5.3a.   
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Fig. 5.3: Streamlines of steady state flow over an isolated, bell-shaped mountain when (a) 

2 2l k<<  (or UNa << ), where a  is the half-width of the mountain, or (b) 2 2l k>>  (or UNa >>
).    (Lin 2007; Adapted after Durran 1990) 
 
 
Case 2:  (i.e.,  or ) 
 
As discussed in the previous section, the vertical acceleration 
due to the buoyancy force plays a dominant role.  
 
In this case, the solution (5.2.4)  
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l
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can be approximated by 
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Similarly, the vertical displacement can be obtained, 
 

 
( )

2 20

( cos sin )( , ) 2 Re
2

ka i kx lzm mh a h a a lz x lzx z e e dk
x a

η
∞ − + −

= ==
+∫ . (5.2.11) 

This type of flow is characterized as a hydrostatic mountain 
wave.  
 
The disturbance confines itself over the mountain in horizontal, 
but repeats itself in vertical with a wavelength of .   
 
Without the Boussinesq approximation, the above solution 
becomes 
 

 
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
= 22
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lzxlzaah

z
zx ms

ρ
ρη , (5.2.12) 

 
where is the air density near surface.   
 
Equation (5.2.12) indicates that the wave amplitude will increase 
with a decreased air density of the basic flow.  That is, the wave 
amplitude will increase at higher altitudes since air density 
decreases with height in a stably stratified flow.   
 
This helps explain the wave amplification in the higher 
atmosphere, such as large-amplitude gravity waves in the 
stratosphere, which causes aviation turbulence leading to 
aviation hazards.  
 

NU /2π

sρ
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As described in the previous section, other fields can be 
obtained by the governing equations, (5.1.1)-(5.1.4) with  
(no basic wind shear).  
 
The wave drag on the mountain surface in this hydrostatic limit 
can be obtained by applying the Parseval theorem (Appendix 
5.1), 
 

 
*

2'( , 0) '( ,0)
4 o m

dh dhD p x z dx p x dx UNh
dx dx

π ρ
∞ ∞

−∞ −∞
= = = =∫ ∫ ,  

    (5.2.13) 
 
where *h  is the complex conjugate of h.  The momentum is 
transferred to a level where the wave breaks down, which is not 
included in the linear theory. 
 
 
Case 3: (i.e.,  or ) 
 
An asymptotic solution can be obtained for this case.  In this 
case, all terms of the vertical momentum equation, (5.1.2) are 
equally important.  Both asymptotic methods and numerical 
methods have been applied to solve the problem.   
 
In the following, we apply the stationary phase method to this 
particular problem.  We look for solutions far downstream, 

 in (5.2.4).  In this limit, the second term on the right side 
of (5.2.4) 
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approaches 0 due to fast oscillation of , according to the 
Riemann-Lebesgue Lemma (Appendix 5.1). 
   
 
 
 
 
 
 
Thus, for large x, we have 
 

 ∫≈
l ki dkekhzx
0

)()(ˆRe2),( φη , (5.2.14) 
 
where 
 

 kxzklk +−= 22)(φ  (5.2.15) 
 
is a phase function.  Based on the stationary phase method, we 
will look for a particular such that 
 

 
*0   at  d k k

dk
φ
= = , (5.2.16) 

 
where is called the point of stationary phase.  
 
With large x or z,  will oscillate rapidly and, therefore,  
will approach 0, according to Riemann-Lebesgue Lemma.  

)exp(ikx

*k

*k

)exp( φi η
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However, near *k , the contribution to the integration by  
still remains because  is approximately constant.   
 
Substituting the phase function (5.2.15) into (5.2.16) leads to the 
influence function, 
 

 
2 *2

*
z l k
x k

−
= , (5.2.17) 

 
in the region near *k .   
 
Taking the Taylor’s series expansion of near *k gives 
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  , (5.2.18) 

 
where *k k k= − .   
 
The second term on the right side of the above equation 
disappears due to the definition of *k  in (5.2.16).  Thus, (5.2.14) 
becomes  
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0
ˆ( , ) 2 Re ( ) kk
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 .  (5.2.19) 

 
For a bell-shaped mountain, 
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where 
 

 *
2( / ) 1

lk
z x

=
+

.  (5.2.21) 

 
Figure 5.4 shows an example of a flow over a ridge of 
intermediate width ( 2 2l k≈ ) where the buoyancy force is 
important, but not so dominant that the flow becomes 
hydrostatic.  The nearly periodic waves located to the upper 
right of the mountain are the dispersive tail of nonhydrostatic 
waves with k  less than, but not much less than l .   
 
 

 
Fig. 5.4: Flow over a two-dimensional ridge of intermediate width ( 2 2l k≈ , or / 1al Na U= = ) 
where the buoyancy force is important, but not so dominant that the flow is hydrostatic.  The 
zero phase lines are denoted by dotted curves.  The waves on the lee aloft are the dispersive tail 
of the nonhydrostatic waves ( ,   but not k l k l< << ).  The flow and orographic parameters are: U 
= 10 ms-1, N = 0.01 s-1, hm = 1 km, and a = 1 km.  (Lin 2007; Adapted after Queney 1948) 
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In fact, the influence function, (5.2.17), is related to the energy 
propagation associated with the mountain waves. The group 
velocity (cgm) in the frame of reference fixed with the mountain 
can be obtained from (3.5.11), 
  
   

 
 

    gm U
k m
ω ω∂ ∂ = + + ∂ ∂ 

c i k,   (5.2.22) 

 
where m in gm stands for mountain and  
 

 2 2
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k m

ω −
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+
.  (5.2.23) 

 
Substituting (5.2.23) into (5.2.22) leads to 
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c i c i k,  (5.2.24) 

 
where gac  is the group velocity relative to the air.   
 
Furthermore, the requirement of stationary waves, 0=+Uc px , 
implies 
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 NU 

k m
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+
.  (5.2.25) 

 

Eq. (3.5.11) 
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In (5.2.23), the negative sign is chosen in order to obtain 
positive gzc by assuming positive k and m due to the use of one-
sided Fourier transform.   
 
The relationship among ipxc , gmc  and gac  is sketched in Fig. 5.5.  
 

 
Fig. 5.5: A schematic illustrating the relationship among the group velocity with respect to (w.r.t) 
to the air ( gac ), group velocity w.r.t. to the mountain ( gmc ), horizontal phase speed ( pxc i ) and the 
basic wind.  The horizontal phase speed of the wave is exactly equal and opposite to the basic 
wind speed.  The wave energy propagates upward and upstream relative to the air, but is 
advected downstream by the basic wind.  The energy associated with the mountain waves 
propagates upward and downstream relative to the mountain. (Lin 2007; After Smith 1979, 
reproduced with the permission from Elsvier.) 
 
The upstream phase speed of the mountain wave is exactly equal 
to and opposite of the basic wind speed.  The wave energy 
propagates upward and upstream relative to the air, but is 
advected downstream by the basic wind.   
 
Thus, relative to the mountain, the energy associated with the 
mountain waves propagates upward and downstream.  The slope 
of the group velocity can be obtained by substituting U of 
(5.2.25) into (5.2.24) and then calculating the slope, 
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In deriving the second equality, we have used (5.2.25), while in 
deriving the last equality, we have used (5.2.17) near the point of 
stationary phase, i.e. *k k= .   
 
Therefore, the point of stationary phase is the value of k
corresponding to a wave with a group velocity beam as shown in 
Fig. 5.5. Waves are found downstream since the horizontal 
group velocity is less than the phase speed. 
 
For general cases, such as 22 kl < or 22 kl > , it is not easy to 
obtain analytical solutions from (5.2.4). With the advancement 
of numerical techniques, such as the Fast Fourier Transform 
(FFT) and computers, solutions can be approximately obtained 
numerically with the implementation of proper boundary 
conditions. 
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5.2.2 Basic flow with variable Scorer parameter 
 
In the real atmosphere, the basic wind and stratification 
normally vary with height.  To study the mountain waves 
produced by this type of basic flow, we assume that the Scorer 
parameter, (5.1.6), is a slowly-varying function of z .   
 
In this situation, we expect to find a solution of (5.2.1)  
 
 
 
 
 
in form of,   
 
 ( , )ˆ ( , ) ( , ) i k zw k z k z e φ= A ,  (5.2.27) 
 
where ( , )k zA  is a slowly varying amplitude function, and ),( zkφ  
is the slow-varying phase function.  Substituting (5.2.27) into 
(5.2.1) yields  
 
 2 2 2( ) ( 2 ) 0.z zz z z zzl k iφ φ φ − + − + + + = A A A A A   (5.2.28) 
 
The last term makes a minor contribution and can be neglected, 
since ( , )A k z  is a slow-varying function of z.  Thus, the above 
equation reduces to 
 
 2 2

z l kφ = − , and  (5.2.29) 
 

0ˆ)(ˆ 22 =−+ wklwzz .  (5.2.1) 
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2( ) 0zz
φ∂

=
∂

A .  (5.2.30) 
 
 
Combining the above two equations leads to 
 
 2 2 2l k constant− =A .  (5.2.31) 
 
For long (hydrostatic) waves ( 22 kl >> ), the above equation 
reduces to  
 
 2l constant=A .  (5.2.32) 
 
This implies that the amplitude of the vertical velocity increases 
(decreases) significantly in regions of weak (strong) 
stratification or strong (weak) wind.  
 
For example, the mountain wave tends to steepen when it 
propagates to the region below a jet stream or a jet streak since 
the basic wind speed increases there.   
 
Note that in applying (5.2.27) to solve the problem, and in 
neglecting the last term of (5.2.28), we have implicitly adopted a 
first-order WKBJ approximation.   
 
A second-order WKBJ approximation has been used to calculate 
wind profile effects on mountain wave drag (e.g., Teixeira and 
Miranda 2006).  It is necessary to extend the WKBJ 
approximation to second order for these effects to be taken into 
account.   
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Based on (5.2.32) and previous discussions, waves may amplify 
in certain layers due to: (a) weaker stratification, (b) stronger 
wind, such as a jet stream or jet streak, (c) nonlinear steepening, 
and (d) abrupt decrease in the mean density, leading to an 
increase of )(/ zs ρρ , in (5.2.12).  10/15/14 
 

 
5.2.3 Trapped lee waves 
 
One of the most prominent features of mountain waves is the 
long train of wave clouds over the lee of mountain ridges in the 
lower atmosphere, such as those shown in Fig. 5.6.   
 

 
Fig. 5.6: Satellite imagery for lee wave clouds observed at 1431 UTC, 22 October 2003, over 
western Virginia.  Clouds originate at the Appalachian Mountains. (Courtesy of NASA) 
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               A schematic for lee waves and rotors 
 
More pictures: 
http://images.google.com/images?hl=en&q=lee+waves&um=1&ie=UTF-8&ei=dB-
yS4f0OIWClAeF26HtBA&sa=X&oi=image_result_group&ct=title&resnum=4&ved=0CDYQs
AQwAw 
 
This type of wave differs from the dispersive tails in Fig. 5.4 in 
that it is located in the lower atmosphere and there is no vertical 
phase tilt.   
 
It will be shown below that this type of trapped lee waves, or 
resonance waves, occurs when the Scorer parameter decreases 
rapidly with height (Scorer 1949). 
 
The dynamics of trapped lee waves may be understood by 
considering a two-layer stratified fluid system.  The wave 
equations for the vertical displacement in Fourier space may be 
written in a form similar to (5.2.1),  
 
 
 
      
 0ˆ ][ˆ 22

1 =−+ ηη klzz    for  0<≤− zH  and  (5.2.33a) 
 
 0ˆ ][ˆ 2

2
2 =−− ηη lkzz    for   z≤0 .  (5.2.33b) 

 
In this two-layer fluid system, we have assumed that 2

1
22

2 lkl <<
.   

0ˆ)(ˆ 22 =−+ wklwzz .  (5.2.1) 
 

https://www.google.com/search?q=trapped+mountain+lee+wave+pictures&es_sm=93&biw=1350&bih=790&tbm=isch&imgil=bPBf4J2aZGzL5M%253A%253BI3opPRqKtEqlhM%253Bhttp%25253A%25252F%25252Fwww.pilotworkshop.com%25252Ftips%25252Fpilot_weather_waves.htm&source=iu&pf=m&fir=bPBf4J2aZGzL5M%253A%252CI3opPRqKtEqlhM%252C_&usg=__NvWC8M9_K3SV32eMEyqt1J0V6VM%3D&ved=0CDEQyjc&ei=_3k-VOrDOMLwgwTSzYHAAQ#facrc=_&imgdii=_&imgrc=bPBf4J2aZGzL5M%253A%3BI3opPRqKtEqlhM%3Bhttp%253A%252F%252Fwww.pilotworkshop.com%252Ftips%252Fimages%252Fpilot_mwave.gif%3Bhttp%253A%252F%252Fwww.pilotworkshop.com%252Ftips%252Fpilot_weather_waves.htm%3B587%3B421
http://images.google.com/images?hl=en&q=lee+waves&um=1&ie=UTF-8&ei=dB-yS4f0OIWClAeF26HtBA&sa=X&oi=image_result_group&ct=title&resnum=4&ved=0CDYQsAQwAw
http://images.google.com/images?hl=en&q=lee+waves&um=1&ie=UTF-8&ei=dB-yS4f0OIWClAeF26HtBA&sa=X&oi=image_result_group&ct=title&resnum=4&ved=0CDYQsAQwAw
http://images.google.com/images?hl=en&q=lee+waves&um=1&ie=UTF-8&ei=dB-yS4f0OIWClAeF26HtBA&sa=X&oi=image_result_group&ct=title&resnum=4&ved=0CDYQsAQwAw
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For convenience, the ground and the interface of the lower and 
upper layers are assumed to be located at Hz −= and 0=z , 
respectively.   
 
The free wave solutions may be written as 
 

 1̂( , )  cos  sink z C z zλη µ µ
µ

 
= − 

 
 and  (5.2.34a) 

 
  

2ˆ ( , )  zk z C e λη −= ,  (5.2.34b) 
 
where 22

1 kl −=µ , 2
2

2 lk −=λ  and C is a constant coefficient to 
be determined by the lower boundary condition.   
 
The boundedness upper boundary condition has been applied to 
exclude the exp( )zλ term, and the kinematic and dynamic 
boundary conditions at the interface, i.e. the continuities of ŵ
and zŵ at 0=z , have also been applied.  
 
In order to obtain a complete solution of the boundary value 
problem for a specific obstacle, we may apply the linear lower 
boundary condition, 
 
 1

ˆˆ ( , ) ( )k H h kη − = .  (5.2.38) 
 
Substituting the above equation into (5.2.34) and taking the 
inverse Fourier transform of ),(ˆ zkη  leads to the forced wave 
solution in the lower layer, 
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 1 0

ˆ( )(cos ( / )sin )( , ) 2 Re
(cos ( / )sin )

ikxh k z z ex z dk
H H
µ λ µ µη

µ λ µ µ
∞ −

=
+∫ . (5.2.39) 

 
The singularity in the denominator of the above equation 
corresponds to the resonance mode that will produce lee waves.   
 
Equation (5.2.39) can be solved asymptotically or numerically 
with a given mountain-shape function (Scorer 1949; Smith 
1979).   Without enforcing a lower boundary condition, (5.2.34) 
represents free waves associated with this two-layer fluid 
system.  
 
The resonance waves are obtained by seeking the zeros of 
(5.2.34a) with Hz −= , 
 
 µλµ /cot −=H . (5.2.35) 
 
The resonance wave number ( *

rk ) may be obtained by solving 
the above equation either numerically or graphically.   
 
The criterion for the existence of one or more resonance waves 
may be obtained (Scorer 1949): 
 

 2

2
2
2

2
1 4H

ll π
≥− .  (5.2.36) 

 
A more general criterion for resonance waves of the nth mode is 
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2 2

2 2
1 2

(2 1) (2 1)( )
2 2

n nl l
H H

π π+ −   ≥ − ≥      
. (5.2.37) 

 
The above criterion implies that in order to have resonance (lee) 
waves, the Scorer parameter in the lower layer must be much 
greater than that in the upper layer.   
 
In other words, the lower layer must be more stable or with a 
much slower basic wind speed than the upper layer. 
  
  
 
Figure 5.7 shows lee waves simulated by a nonlinear numerical 
model for two-layer airflow over a bell-shaped mountain.  Due 
to the co-existence of the upward propagating waves and 
downward propagating waves, there exists no phase tilt in the 
lee waves.  
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Fig. 5.7:  Lee waves simulated by a nonlinear numerical model for a two-layer airflow over a 
bell-shaped mountain.  Displayed are the quasi-steady state streamlines.  In the lower layer 
(below 5 km approximately), 2 79 10l x −= m-2,  while in the upper layer, 2 72 10l x −=  m-2.  (Lin 
2007; Adapted after Durran 1986b)   
 
 
Once lee waves form, regions of reversed cross-mountain winds 
near the surface beneath the crests of the lee waves may develop 
due to the presence of a reversed pressure gradient force.   
 
In the presence of surface friction, a sheet of vorticity parallel to 
the mountain range forms along the lee slopes, which originates 
in the region of high shear within the boundary layer.  
 
The vortex sheet separates from the surface, ascends into the 
crest of the first lee wave, and remains aloft as it is advected 
downstream by the undulating flow in the lee waves (Doyle and 
Durran 2004).   
 
The vortex with recirculated air is known as rotor and the 
process that forms it is known as boundary layer separation, 
which will be further discussed in subsection 5.4.2 along with 
lee vortices.   
 
These rotors are often observed to the lee of steep mountain 
ranges such as over the Owens Valley, California, on the eastern 
slope of Sierra Nevada (e.g., Grubišić and Lewis 2004). 
Occasionally, a turbulent, altocumulus cloud forms with the 
rotor and is referred to as rotor cloud.   
 
 
 



                          39 

 
 
 
 
 
 
 
 
 
 
Some useful pictures of rotor clouds can be found at the 
following website: 
 

• rotor clouds 
• https://www.eol.ucar.edu/field_projects/t-rex (T-REX Field Experiment) 
• http://opensky.library.ucar.edu/collections/OSGC-000-000-011-085 (T-REX mountain 

wave model intercomparison) 
  

https://www.google.com/search?q=mountain+rotor+pictures&es_sm=93&biw=1350&bih=790&tbm=isch&imgil=TXispswXcNRcHM%253A%253BlTmQWYmc3_dSCM%253Bhttp%25253A%25252F%25252Fwww.meted.ucar.edu%25252Fmesoprim%25252Fmtnwave%25252Fprint.htm&source=iu&pf=m&fir=TXispswXcNRcHM%253A%252ClTmQWYmc3_dSCM%252C_&usg=__9x9nXeQJWN6xf8Axuq0iVsB4KZo%3D&ved=0CDEQyjc&ei=y4E-VI62HsnIggTe_ICIBg#facrc=_&imgdii=_&imgrc=TXispswXcNRcHM%253A%3BlTmQWYmc3_dSCM%3Bhttp%253A%252F%252Fwww.meted.ucar.edu%252Fmesoprim%252Fmtnwave%252Fmedia%252Fgraphics%252Fmtnwave1d.jpg%3Bhttp%253A%252F%252Fwww.meted.ucar.edu%252Fmesoprim%252Fmtnwave%252Fprint.htm%3B500%3B35
https://www.eol.ucar.edu/field_projects/t-rex
http://www.google.com/imgres?imgurl=http://img2.wikia.nocookie.net/__cb20080319171218/dinocrisis/images/7/7f/Tyrannosaurus.jpg&imgrefurl=http://dinocrisis.wikia.com/wiki/Tyrannosaurus&h=223&w=226&tbnid=jP_s42anLggpsM:&zoom=1&tbnh=186&tbnw=188&usg=__yh6_clDK1wVosiBb0QwYiUT-cvk=&docid=lfw0imXc70oq4M&itg=1&ved=0CI4BEMo3&ei=r4I-VIi1FMbNggT5j4G4Bg
http://opensky.library.ucar.edu/collections/OSGC-000-000-011-085
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5.2.4 Bore [Lin 2007, Sec. 3.4, Figs. 3.3 & 3.4] 
 

 
Fig. 3.3: Five flow regimes of the transient one-layer shallow water 
system, based on the two nondimensional control parameters (

/ ,   /mF U gH M h H= = ).   
(a) Regime A: supercritical flow 
(b) Regime B:  flow with both upstream and downstream propagating 

hydraulic jump 
(c) Regime C: flow with upstream propagating jump and downstream 

stationary jump 
(d) Regime D: completely blocked flow 
(e) Regime E: subcritical flow.  The dashed lines in (b) and (c) denote 

transient water surface.  In regimes B and C, upstream flow is partially 
blocked.  (Adapted after Baines 1995 and Durran 1990) 
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