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3.7 Wave reflection levels 

 Atmospheric waves may be reflected from the Earth’s 
surface, the surface of a fluid, or the internal interface at 
density discontinuity.  
 

 If the atmospheric structure, such as the Brunt-Vaisala 
frequency (N) and the basic wind velocity (U), varies with 
height, then gravity waves may be reflected from and/or 
transmitted through the interface at which rapid changes in 
atmospheric structure occur. 

 
 In order to help understand the basic properties of wave 

reflection and transmission, we consider a simple fluid system 
similar to that for pure gravity waves [(3.5.5)], except that the 
fluid is now comprised of two layers, each with different 
buoyancy frequencies ( 1N  and 2N  in the lower and upper 
layers, respectively; see Fig. 3.11).  
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Fig. 3.11: Examples of wave reflection in a stratified flow with a piecewise constant profile in 
Brunt-Vaisala frequency (N).  Case ω1 has wave solutions in both layers; Case ω2 has wave 
solutions in the lower layer, evanescent solutions in upper layer; and Case ω3 has evanescent 
solutions in both layers.  The forcing is assumed at z = 0. 
 
 We further assume that there is no basic flow ( 0=U ).  Under 

these constraints, the governing equations for the small-
amplitude vertical velocities '1w  and '2w  in each layer of this 
particular two-dimensional fluid system may be written as 
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 Applying the method of normal modes,  
 

)](exp[ )(ˆ' tkxizww ω−= ,  
to the above equations leads to the following equations for the 
vertical structure in each layer: 

 

 0ˆˆ
1

2
12

1
2

=+
∂
∂ wm

z
w

,   Hz <≤0 , (3.7.3) 

 0ˆˆ
2

2
22

2
2

=+
∂
∂ wm

z
w

,   zH ≤ ,  (3.7.4) 

 where 

 ( )2 2 2 2/ 1  i im k N ω= − ,    1,2i = . (3.7.5) 

 In fact, (3.7.5) represents the dispersion relationships in each 
layer, which are identical to (3.5.12) if m is replaced by im .   

 
Note that in the above equation (3.7.5), we have assumed that 
the wave frequencies (ω) and wavenumber (k) are identical in 
each layer.  This simple type of piecewise layered model is 
able to provide the fundamental wave dynamics.   

 

 It can be shown that the following solutions satisfy (3.7.3) and 
(3.7.4), 
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11   ˆ HzimHzim eBeAw −−− += ,    Hz <≤0   (3.7.6) 

 )()(
2

22   ˆ HzimHzim eDeCw −−− += ,   zH ≤ .  (3.7.7) 

 Similar to the one-layer theory discussed in the previous 
section, the flow response is quite different depending on 
whether mi,  i = 1, 2, is real or imaginary  (i.e. whether ω>N  
or ω<N ).   
 

 If we assume a less stable layer sitting on top of a more stable 
layer ( 12 NN < ), then this leads to three possible cases:  

 
(a)  for 1, 2iN iω> = ;  

(b) ω<iN  for i=1, 2; or  

(c) 12 NN <<ω  (as shown in Fig. 3.11).   
 
This situation 12 NN < may occur in the vicinity of a 
thunderstorm in which the lower layer is more stable due to 
the evaporative cooling associated with rainfall.   

 
The opposite situation, ( 12 NN > ), often occurs when a mixed 
boundary layer is produced by surface sensible heating during 
the day, or when the stratosphere is considered in the 
problem, when 2N is normally two to three times larger than 

1N . 
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 In the following, we will restrict our attention to the case with 
12 NN <<ω (i.e. Case ω2 of Fig. 3.11).  Solutions for other 

cases may be obtained in a similar manner.  The lower 
boundary condition for flow over a flat surface requires that 
the normal velocity component vanish, i.e. ' 0w =  at 0z = .
 Applying this lower boundary condition to (3.7.6) yields 

 
 [ ])(2)(

1
111ˆ HzimHimHzim eeeBw −−− −= ,   Hz <≤0 .  (3.7.8) 

 In the above equation, the first term inside the square bracket 
represents waves with upward energy propagation, while the 
second term represents waves with downward energy 
propagation, since z H−  is negative.  If the wave energy 
source is located at the surface, then the absolute value of 

)2exp( 1Him represents the reflection coefficient.  In the upper 
layer, since 2m is imaginary, (3.7.7) becomes 

 
 )()(

2
22   ˆ HznHzn eDeCw −−− += ,  zH ≤ ,  (3.7.9) 

 where 2 2
2 2 21 /n im k N ω= = −  is a real number.   

 For a wave energy source located in the lower layer, the upper 
boundary condition requires a bounded solution, which, in 
turn, requires that 0D = .  Thus, (3.7.7) reduces to 
 

 )(
2

2 ˆ HzneCw −−= , zH ≤ .  (3.7.10) 
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 The above equation represents evanescent waves, as described 
in Section 3.5.   

 
However, for cases with real values of 2m , the upper 
boundary condition is governed by the radiation boundary 
condition, which will be discussed in Section 4.4. Therefore, 
the radiation condition requires that 0D =  if the wave energy 
source is located in the lower layer.   Coefficients B and C are 
determined by boundary conditions at the interface, i.e. by 
imposing the appropriate kinematic and dynamic boundary 
conditions at z = H.   
 
The kinematic boundary condition requires that 
 

  2211 nVnV ⋅=⋅ ,  (3.7.11) 

where the subscripts indicate the upper or lower layer; Vi is 
the total velocity in layer i; and ni is the unit vector normal to 
the boundary in each layer.  Note that ni in (3.7.11) is a 
vector, which should not be confused with the ni used in 
(3.7.9) and (3.7.10).   

 
For a small-amplitude (linear) perturbation, the unit normal 
vector is almost vertical since the wave amplitude is much 
smaller than the wavelength.  This then implies that 
 

 21 '' ww = .  (3.7.12) 
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Another interface boundary condition is the dynamic 
boundary condition specifying continuity of pressure at z = H, 
i.e. 1 22p p′ ′= , which leads to 
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 Applying (3.7.12) to (3.7.8) and (3.7.10) at z H= gives 
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 Applying the dynamic boundary condition, (3.7.13), to 
(3.7.14) and (3.7.10) yields the dispersion relationship for this 
two-layer fluid system, 
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This expression may also be used to find the eigenvalues, 
k and ω , which are needed for substitution into (3.7.15) in 

order to obtain the eigenfunctions that describe the vertical 
structure of the wave, 
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The reflection coefficient for a forcing located at the surface 
(z = 0) and the wave being reflected at z = H may be obtained 
by taking the absolute value of the ratio of the first term (term 
A) to the second term (term B) inside the square bracket of 
the above equation, which gives the reflection coefficient 

)/()( 2121 inminmr −+= .  Note that Hz − is negative in the lower 
layer.   

  
 In addition to interfacial discontinuities in stratification, wave 

reflection may also occur when the vertical profiles of the 
basic state wind and the stratification (Brunt-Vaisala 
frequency) vary continuously throughout the fluid (Fig. 3.12).   
 
 
 
 
 
 
 
 
 
 

Fig. 3.12: Wave reflection in a continuously stratified fluid.   N and T are the Brunt-Vaisala 
frequency and temperature of the sounding, respectively, and ω is the wave frequency.  Ray 
paths are reflected at the reflection level at which ω = N.  A wave packet is also depicted in the 
figure.  The short blunt arrows and long thin arrows denote the group and phase velocities, 
respectively, of the wave packet.  Particle motions are parallel to the constant phase lines or 
wave fronts, which become vertically oriented at the reflection level since α, defined in (3.5.13) 
and also illustrated in Fig. 3.9, approaches 0.  (After Lin 2007; Adapted after Hooke 1986) 
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 To elucidate this further, we consider a two-dimensional, linear, 
nonrotating, inviscid, Boussinesq fluid system governed by 
(3.5.1) - (3.5.4), but whose basic state is generalized, to allow 
for both the background wind and Brunt-Vaisala frequency to 
vary with height.  The equation governing this special type of 
fluid system may also be derived directly from the generalized 
linear equation set, (2.2.14) - (2.2.18) and is given by 
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 Equation (3.7.17) is a reduced form in the wave-number space 
of the Taylor-Goldstein equation, 
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Note that m in (3.7.18) can be viewed as the vertical wave 
number, and the solutions of (3.7.17) can be written in the form 

of )exp( imz± when U and N are constant.  If 2m changes sign 

from positive to negative at a certain level, then 2m  will change 
from a real to an imaginary number.  A transition from the 
vertically propagating wave regime to the evanescent flow 
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regime occurs based on an argument similar to that given for the 
solutions of (3.5.8) and (3.5.9).   
 
If a vertically propagating wave-like disturbance exists below 
that particular level, such as z H= for 2ω of Fig. 3.11, it will 
exponentially decay above that level.  In this situation, the wave 
energy is not able to freely propagate vertically above z H=  and 
is therefore forced to reflect back.  This level is called the wave 
reflection level.   
 
If such a reflection level exists above the lower, rigid, flat 
surface, this atmospheric layer then acts as a wave guide in 
trapping the wave energy between the reflection level and the 
surface and allows for the wave energy to effectively propagate 
far downstream horizontally.   
 

 One well-known example of gravity wave reflection in the 
atmosphere is the lee waves (Section 5.2) generated by stratified 
airflow over a two-dimensional mountain ridge when the 
stratification (wind speed) is much stronger (smaller)  in the 
lower layer compared to the upper layer.   
 
The idea of wave reflection in a slow-varying density gradient or 
stratification may also be traced by the paths of rays, whose 
directions (α ) are defined locally by (3.5.13), as shown by the 
long-thin arrows in Fig. 3.12.   
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Ray paths are defined as paths where the tangent at any one 
point is in the direction of the group velocity (relative to the 
ground) of the waves.  When a group of waves approaches the 
reflection level where N=ω , α  approaches 0, and the wave 
fronts are turned towards the vertical, reflecting the wave 
energy.   
    

  



                          12 

3.8 Critical levels 
 
 Another important phenomenon associated with gravity 

waves is the change in wave properties across a critical level.   
 
 Note that the equation governing the vertical structure 

(3.7.17)  
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 has a singularity when U=c.    

 A critical level (zc) is defined as the level at which the 
vertically sheared basic flow U(z) is equal to the horizontal 
phase speed (c) of the wave or disturbance, i.e. U(zc) = c.   

 
From an observational analysis of the Oklahoma squall line as 
depicted in Fig. 6.12 (Chapter 6), there exists a critical level 
near 6 km.  Climatological studies indicate that most 
midlatitude squall lines exhibit a critical level in the mid-
troposphere (Bluestein and Jain 1985; Wyss and Emanuel 
1988).   
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Fig. 6.12: Streamlines relative to a midlatitude squall line observed on 22 May 1976 in the 
vertical plane with x representing distance ahead of the leading edge of the squall line.  Three 
important features are shown: (a) upshear tilt of the updraft, (b) downdraft fed by the front-to-
rear flow, and (c) flow overturning in the middle layer.  (From Ogura and Liou 1980)  

 

 Nonlinear numerical simulations indicate that a high-drag or 
severe-wind state may be established after the upward 
propagating wave breaks above the mountain.   

 
The wave-breaking region is characterized by strong turbulent 
mixing with a local wind reversal on top of it.   

 
Note that the critical level coincides with the wind reversal 
level for a stationary mountain wave because the phase speed 
there is zero.   

 

The wave breaking region aloft might act as an internal 
boundary that reflects the upward propagating waves back to 
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the ground and produces a high-drag state through partial 
resonance with the upward propagating mountain waves, as 
will be discussed in Ch. 5.   

 

One example of the wave-induced critical level simulated by 
a numerical model is given in Figs. 5.9 and 5.10 (Chapter 5).   

   

              
Fig. 5.9: (a) Streamlines for Long’s model solution over a bell-shaped mountain with U = 5 ms-1, 
N = 0.01 s-1, hm = 500 m and a = 3 km; and (b) same as (a) except with a = 1 km.  An iterative 
method is adopted in solving the nonlinear equation (5.3.2) with the nonlinear lower boundary 
condition (5.3.3) applied.  Note that the dispersive tail of the nonhydrostatic waves is present in 
the narrower mountain (case (b)). (Adapted from Laprise and Peltier 1989a) 
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Fig. 5.10: Nonlinear flow regimes for a two-dimensional, hydrostatic, uniform flow over a bell-
shaped mountain as simulated by a numerical model, based on the Froude number ( /F U Nh= ). 
F varies from 0.5 to 1.3, which gives four different flow regimes as discussed in the text.  
Displayed are the θ fields (left two columns) and the 'u fields (right two columns) for two 
nondimensional times / 12.6Ut a =  and 50.4.  The dimensional parameters are: N = 0.01 ms-1, h 
= 1 km, a = 10 km, and U = 5, 7, 11, and 13 ms-1 correspondig to F = 0.5, 0.7, 1.1, and 1.3, 
respectively.  A constant nondimensional physical domain height of zλ7.1 (where 2 /z U Nλ π= ) 
is used.  Both the abscissa and ordinate in the small panels are labeled in km.  (Adapted after Lin 
and Wang 1996) 
 
 

 Using an asymptotic method, such as the WKBJ method (e.g., 
Olver 1997), it is found that an upward propagating internal 
gravity wave packet in a nonrotating stably stratified fluid 
would approach the critical level for the dominant frequency 
and wave number of the packet, but it would not reach the 
critical level in any finite period of time since along a ray 
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path, 2)(/ czzdtdz −∝ as czz → , which gives 
)/(1)( co zztt −∝−  as czz →  (Bretherton 1966).   

 

This means that it will take an infinite amount of time for a 
gravity wave packet to reach the critical level.   

 
Thus, the internal wave is physically absorbed at the critical 
level, instead of being either transmitted or reflected, as 
discussed in the previous section.   

 
In the real atmosphere, a gravity wave is composed by a 
number of different wave modes which propagate at different 
phase speeds.  This will form a layer of critical levels, i.e. a 
critical layer.  This particular type of internal wave behavior 
in a stratified fluid is illustrated in Fig. 3.13.   

 

 

 

 

 

 
 
Fig. 3.13: The propagation of a wave packet upward toward a critical level located at z = zc.  The 
particle motions are parallel to the wave crests, which are denoted by straight lines.  Note that the 
vertical wavelength decreases as the wave packet approaches the critical level. The phase lines 
are horizontally oriented at the critical level in this case.   (Adapted after Bretherton 1966) 
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 When the wave energy associated with a wave packet 
propagates toward the critical level, the group velocity 
becomes more horizontal and eventually is oriented 
completely horizontally in the vicinity of the critical level.   

 
Near the critical level, the phase velocity is oriented 
downward since it is itself perpendicular to the group 
velocity, and fluid parcel motions become horizontal.  The 
vertical wavelength also decreases as the wave packet 
approaches the critical level.   

 

 In the following discussion for obtaining the solution for 
(3.7.17), we will assume that the Richardson number, Ri (

2 2/ zN U= ) is always greater than 1/4.   Ri is also known as the 
gradient Richardson number. 

  
Near z = zc, U(z) and N(z) may be expanded in power series 

 
( ) ( ) ...c cU z c U z z′= + − +  

  ( ) ( ) ...c c cN z N N z z′= + − +  (3.8.1) 

 

where the prime denotes differentiation with respect to z and 

the subscript “c” denotes the function value at the critical 

level ( cz ).   
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We assume that cz  is a regular singularity which requires 
0)(' ≠czU .  Hence, we seek a solution for (3.7.17) of the form, 
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, n is an integer. (3.8.2) 

Substituting the above expression into the Taylor-Goldstein 
equation, (3.7.17), leads to the indicial equation, 

 

 2 0cRiα α− + =  (3.8.3) 

where ( )2/c c cRi N U ′= .  The above indicial equation has the 

following solutions, 
 

 1/ 2 ;     1/ 4ci Riα µ µ= ± = −  (3.8.4) 
  

 Thus, near czz = , a series solution may be found, 

 

( ) ( ) ( ) ( )

1/ 2 1/ 2

c c

ˆ ( ) ( ) ( )

         exp 1/ 2 ln  arg(z-z ) exp 1/ 2 ln  arg(z-z )

  

i i
c c
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w z A z z B z z

A i z z i B i z z i

µ µ

µ µ

+ −≈ − + −

   = + − + + − − +   

 (3.8.5) 

 where “arg” denotes the argument of a complex number.  

Both BA ww ˆ and ˆ  (i.e., terms in (3.8.5) with coefficients A and B, 
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respectively) have a branch point at czz = .  In other words, both 

BA ww ˆ and ˆ  are not single-valued functions when one winds a circle 

counterclockwise once around cz .   

 

For the sake of definiteness, we may choose that branch of the 

natural logarithm (ln) function for which 0)arg( =− czz when 

czz >  and introduce the branch cut from czz =  along the 

negative x-axis.   

 

Therefore, we obtain 

 

 )]ln( exp[z-z )(ˆ c cA zziAzw −=+ µ ,  and 

 )]ln( exp[z-z )(ˆ c cB zziBzw −−=+ µ ,   for  czz > . (3.8.6)   

 

In order to determine the appropriate argument, a small  

Rayleigh friction term to the x-momentum equation (3.5.1) and a 

small Newtonian cooling term can be added to the 

thermodynamic energy equation (3.5.4). This gives 

arg( ) sgn( )c cz z Uπ ′− = −  when czz < .   
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Substituting the above expression into (3.8.5) yields 

 cˆ   z-z exp  ln (1/ 2)  sgn   sgn A c c cw A i z z i U Uµ π µπ− ′ ′= − − +   , 

 cˆ   z-z exp  ln (1/ 2)  sgn   sgn B c c cw B i z z i U Uµ π µπ− ′ ′= − − − −   , for czz < .  

  (3.8.7) 

   

 Both solutions Aŵ and Bŵ  in (3.8.6) and (3.8.7) satisfy (3.7.17)  

mathematically; however, they have different physical meanings 

and need to be properly determined.  From (3.8.6) and (3.8.7), 

we have 

 

 ˆ ˆ
exp(  sgn  );      exp(  sgn  )
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A B
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A B

w wU U
w w

µπ µπ
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− −
′ ′= − = . (3.8.8) 

 

For 0'>cU  and low-level forcing, the amplitude of the  

disturbance generated in the lower layer should decrease as it 

passes across the critical level into the upper layer.  Thus, we 

must choose Aŵ .    

 

The proper solution can be found for other situations as well. 

Note that the above equation also indicates that the wave energy 
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is exponentially attenuated through the critical level (Booker and 

Bretherton 1967).   

 

As mentioned earlier, the vertical wave number increases, and 

the perturbation velocity becomes increasingly horizontal as one 

approaches the critical level, because 

 

 
( )2

2
2 )(

cU
Nzm
−

≈ . (3.8.9) 

  

 This implies that ∞→m as czz → .  Thus, the vertical  

 Wavelength approaches zero near the critical level.  This  

property is also depicted by Fig. 3.13.  In the real atmosphere, a 

localized disturbance is often composed of many Fourier wave 

components, each with a different wavelength.  Since each 

Fourier wave component has its own critical level, where 

/U c kω= = , an atmospheric layer of finite thickness composed of 

these critical levels, referred to as the critical layer, is often 

associated with a localized disturbance.   

  

The flow near a critical level is highly nonlinear, since  
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a small perturbation in the horizontal velocity field will 

necessarily exceed the basic horizontal flow velocity in the 

vicinity of the critical level, in a reference frame moving with 

the phase speed of the wave.   

 

Thus, linear theories are not accurate in the vicinity of a critical 

level.  Based on numerical simulations of varying the 

Richardson number, three flow regimes have been found 

(Breeding 1971).    

 

For Ri > 2.0, the interaction between the incident wave and the 
mean flow is largely similar to that predicted by the linear 
theory as outlined above.  That is, very little of the incident 
wave energy penetrates through the critical level.   
 

For 0.25 < Ri < 2.0, a significant amount of the wave energy is 
reflected, part of which can be predicted by linear theory.  This 
condition represents a balance between the outward diffusion of 
the added momentum from the incident wave and the rate at 
which it is absorbed at the critical level.  
 

When Ri falls into this range, some wave energy is also 

transmitted through the critical level.   
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For Ri < 0.25, wave overreflection is predicted.  Note that these 

regime boundaries could be more accurately defined with more 

recent and sophisticated numerical models.   

 

When wave overreflection occurs, more energy than that 

associated with the incident wave is reflected back from the 

critical level, because the flow possesses shear instability 

(Lindzen and Rosenthal 1983).   

 

In this situation, the wave is able to extract energy and 

momentum from the basic flow during the reflection process.  

 

If the overreflected waves are in phase with the incident waves, 
waves may grow exponentially with time by resonance, i.e. the 
normal mode instability exists.   
 
If the overreflected waves are partially in phase with the incident 
waves, waves may grow algebraically with time by partial 
resonance, i.e., the algebraic mode instability exists.   
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Under certain conditions, such as an unstable layer containing a 

critical level and capping a stable layer, a wave duct can exist 

for mesoscale gravity waves, and wave absorption, transmission, 

and overreflection may occur at different ranges of Ri (see Fig. 

4.13 and relevant discussions).   

  

 Figure 3.14 shows the linear, steady state responses to a 

prescribed heating in the layer below the critical level ( 0=cz ) 

of a stably stratified flow with 10=Ri and 1=Ri .   
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Fig. 3.14:  (a) Streamlines for a linear, steady-state stratified airflow over an isolated heat source.  
The concentrated heating region is shaded. The basic flow has a linear shear (Uz = constant) and 
its Richardson number ( Ri ) is 10.  (b) Same as (a) except for Ri = 1.  All contour values are 
nondimensionalized.  The streamfunction (ψ ) used for constructing the streamlines is defined as 

/u zψ= ∂ ∂  and /w xψ= −∂ ∂ . (After Lin 1987) 

 

Again, for steady state flow, the critical level coincides with the 

wind reversal level ( 0=U ).    
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Upward motion is induced in the vicinity of the heat source, 

while two regions of very weak compensated downdrafts are 

produced upstream and downstream from the heat source.   

 

For the case with 10=Ri (Fig. 3.14a), the flow above the critical 

level is almost undisturbed due to the exponential attenuation 

associated with critical level absorption.   

 

With 1=Ri  (Fig. 3.14b), upstream of the heat source is occupied 

by subsidence, while downstream of the heat source is occupied 

by ascending motion.  This subsidence occurs due to strong 

advection (Section 6.2).  The disturbance above the critical level 

is more pronounced because more energy is transmitted through 

the critical level into the upper layer.   

  

 The critical level dynamics can be extended to a rotating fluid 

flow.   

In a rotating fluid system, the governing equation for the small-

amplitude vertical velocity ),,(' zxtw  for a two-dimensional, 

inviscid, Boussinesq flow on an f plane, can be derived (e.g., 

Smith 1986) and is given by  
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Taking a normal mode approach, substitution of  

)](exp[)(ˆ' ctxikzww −= , leads to the following vertical structure 

equation: 
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The above equation indicates that in addition to the  

singularity at cU = , there are two additional singularities, 

kfcU /±= .  These additional levels are called inertial critical 

levels (Jones 1967).  For incident monochromatic (single 

wavelength) waves, the inertial critical levels can absorb wave 

energy in linear flow but tend to reflect wave energy in 

nonlinear flow (Wurtele et al. 1996).   

 

Based on the Richardson number ( 2 2/ zRi N U= ) and the Rossby 

number ( /oR U fa= , where a is the mountain scale, such as the 
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half-width of a bell-shaped mountain), four flow regimes for 

two-dimensional back-sheared flow over an isolated mountain 

ridge on an f-plane can be identified (Shen and Lin 1999):  

 

(I) inertia-gravity wave regime,  
(II) mixed inertia-gravity waves and trapped baroclinic lee wave 

regime,  
(III) mixed evanescent wave and trapped baroclinic lee wave regime, 

and  
(IV) transient wave regime with possible nongeostrophic baroclinic 

instability.   
 

The baroclinic lee wave theory of lee cyclogenesis (Section 5.5) 

belongs to regime II of moderate oR  and moderate Ri  (~ 6.25), 

or small oR ( 8.04.0~ − ) and moderate (large) Ri ( 25≥ ).  It is also 

found that three-dimensionality, directional wind shear, and 

rotation promote horizontal energy dispersion (Shutts 2003). 
 

Appendix 3.1 Derivations of shallow-water equations 

 Consider a non-rotating, hydrostatic, two-layer fluid system with constant densities 1ρ  and 

oρ  in the upper and lower layers, respectively, and assume that oρρ <1 .  Note that the 

horizontal pressure gradients, xp ∂∂ / and yp ∂∂ / , are independent of height in each layer if the 

fluid system is in hydrostatic balance because  
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because the density is constant in each layer.  We also assume that no horizontal pressure 

gradients exist in the upper layer.  At point A in Fig. 3.2, we have 
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according to the hydrostatic equation.  The above equation leads to 
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where H is the undisturbed upstream fluid depth and h’ the perturbation or the vertical 

displacement from H, and ( ') /H h x∂ + ∂  is the slope of the interface.  Similarly, we may derive 

the pressure at point B, 
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Thus, the horizontal pressure gradient in the x-direction, xp ∂∂ / , at the interface can be 

approximated by 
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where 1ρρρ −=∆ o .  In deriving (A3.1.5), we have used h+hs=H+h’, where h is the 

instantaneous depth of the fluid, and hs is the height of the bottom topography (Fig. 3.2).  

Similarly, we may derive the horizontal pressure gradient in the y-direction 
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Therefore, the horizontal momentum equations become 
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where ogg ρρ /' ∆= is called reduced gravity.  Assuming that initially there is no vertical shear of 

the horizontal wind velocity ( 0// =∂∂=∂∂ zvzu ), it can be shown that u and v will be 

independent of z at any subsequent time.  Under this constraint, (A3.1.7) and (A3.1.8) reduce to 

 
x

hhg
y
uv

x
uu

t
u s

∂
+∂

−=
∂
∂

+
∂
∂

+
∂
∂ )(' , (A3.1.9) 

 
y

hhg
y
vv

x
vu

t
v s

∂
+∂

−=
∂
∂

+
∂
∂

+
∂
∂ )(' . (A3.1.10) 

The above equations give (3.4.1) and (3.4.2) respectively. 

 Integrating the continuity equation, (2.2.4), from the surface of the bottom topography (z = 

hs) to the interface ( 'hHhhz s +=+= ) with respect to z leads to 
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because / 0D Dtρ =  in each layer of the fluid.  Since u and v are assumed to be independent of z 

initially, then both xu ∂∂ / and yv ∂∂ / will be independent of z for all time afterwards.  Thus, the 

vertically integrated mass continuity equation, (A3.1.11), reduces to  
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The vertical velocity is just the rate at which the height is changing: 

yhvxhuthDtDzw ∂∂+∂∂+∂∂== //// .  Substituting w into (A3.1.12) leads to 
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This can be further reduced to the expression  
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because hs, the height of the bottom topography, is generally assumed to be independent of time.   

Equation (A3.1.14) gives (3.4.3).  

 

References 

Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 482pp. 

Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall 

lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711-1732. 

Booker, J. R., and F. P. Bretherton, 1967:  The critical layer for internal gravity waves in a shear 

flow.  J. Fluid Mech., 27, 513-539. 

Breeding, R. J., 1971: A nonlinear investigation of critical levels for internal atmospheric gravity 

waves. J. Fluid Mech., 50, 545-563. 

Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow.  Quart. 

J. Roy. Meteor. Soc., 92, 466-480. 

Durran, D. R., 1990:  Mountain waves and downslope winds.  Atmospheric Processes over Complex 

Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59-81. 

Emanuel, K., and D. J. Raymond, 1984: Dynamics of Mesoscale Weather Systems.  Ed. J. B. Klemp, 

NCAR, 1984. 

Hooke, 1986: Gravity waves, in Mesoscale Meteorology and Forecasting (P.S. Ray, Ed.), Boston, 

Amer. Meteor. Soc., 272-288. 



                          32 

Houghton, D. D., and A. Kasahara, 1968: Non-linear shallow fluid flow over an isolated ridge. 

Comm. Pure Appl. Math., 21, 1-23. 

Jones, W. L., 1967: Propagation of internal gravity wave in fluids with shear and rotation. J. Fluid 

Mech., 30, 439-448. 

Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. 

Sci., 32, 320-339. 

Lin, Y.-L., 1987: Two-dimensional response of a stably stratified flow to diabatic heating. J. Atmos. 

Sci., 44, 1375-1393. 

Lindzen, R. S., and A. J. Rosenthal, 1983: Instabilities in a stratified fluid having one critical level. 

Part III: Kelvin-Helmholtz instabilities as overreflected waves. J. Atmos. Sci., 40, 530-542. 

Long, R. R., 1970:  Blocking effects in flow over obstacles. Tellus, 22, 471-480. 

Mowbray, D. E., and B. S. H. Rarity, 1967: A theoretical and experimental investigation of the phase 

configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 

28, 1-16. 

Nicholls, M. E., and R. A. Pielke Sr., 2000: Thermally induced compression waves and gravity 

waves generated by convective storms. J. Atmos. Sci., 57, 3251-3271. 

Olver, F. W. J., 1997: Asymptotics and Special Functions. A. K. Peters, Ltd., 592pp. 

Shen, B.-W., and Y.-L. Lin, 1999: Effects of critical levels on two-dimensional back-sheared flow 

over an isolated mountain ridge on an f plane. J. Atmos. Sci., 56, 3286-3302. 

Shutts, G., 2003: Inertia-gravity wave and neutral Eady wave trains forced by directionally sheared 

flow over isolated hills.  J. Atmos. Sci., 60, 593-606. 

Smith, R. B., 1979: The influence of mountains on the atmosphere.  Adv. in Geophys., 21, Ed. B. 

Saltzman, Academic Press, NY, 87-230. 



                          33 

Smith, R. B., 1986: Further development of a theory of lee cyclogenesis. J. Atmos. Sci., 43, 1582-

1602. 

Sommerfeld, A., 1949: Partial Differential Equations in Physics.  Academic Press, 335pp. 

Turner, J. S., 1973 Buoyancy Effects in Fluids. Cambridge University Press, 368 pp. 

Wurtele, M. G., A. Data, and R. D. Sharman, 1996: The propagation of gravity-inertia waves and lee 

waves under a critical level. J. Atmos. Sci., 53, 1505-1523. 

Wyss, J. and K. A. Emanuel, 1988: The pre-storm environment of midlatitude prefrontal squall lines. 

Mon. Wea. Rev., 116, 790–794. 

 

Problems 

3.1 Using the normal mode approach, derive the Lamb wave solution from (3.3.1), (3.3.2), (3.3.7) 

and (3.3.8).  

3.2 (a) Derive (3.4.10) from (3.4.7)-(3.4.9).  (b) Find the dispersion relation for linear, three-

dimensional (x, y, t) shallow water waves.  Are the waves dispersive or not?  (c) From (b), find 

the group velocities, gxc  and gyc . 

3.3 Consider a two-dimensional, one-layer fluid flow over an obstacle.  Estimate the Froude number 

(F) and nondimensional mountain height (M), assuming H = 1000 m, U = 4 ms-1, hm = 200 m.  

What is the flow regime, based on the flow regime diagram for one-layer shallow-water system 

(Fig. 3.3)?   Change flow and/or orographic parameters to shift the above flow regime to the 

other four flow regimes.   

3.4 Show that in the flow regime with 22 Ω>>N  the vertical momentum equation reduces to the 

hydrostatic equation, (3.5.18).  Show that the vertical wavelength is 2πU/N for a steady state 

flow. 
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3.5 (a) Assuming 22 Ω<<N , prove that the vertical momentum equation, (3.5.2), reduces to 

(3.5.20). 

 (b) Show that (3.5.21) reduces to (3.5.22) for a flow starting with no vorticity at t = 0 (i.e. assume 

that the flow is initially irrotational). 

3.6 Derive (3.6.6) from (3.6.1)-(3.6.5). 

3.7 Consider a uniform basic flow, which has a uniform buoyancy frequency N = 0.012 s-1, passing 

over a mountain with a horizontal scale of 20 km.  What is the critical basic flow speed that 

separates the upward propagating waves and evanescent waves, assuming the Earth’s rotation 

can be ignored?  

3.8 (a) Derive the group velocities for inertia-gravity waves for 0U = . 

 (b) Derive (3.6.23) for the ratio of gxgz cc / . 

3.9 Derive the dynamic interface boundary condition (3.7.13). 

3.10 Derive (3.7.17) from (2.2.14)-(2.2.18) by assuming a two-dimensional ( 0,0/ ==∂∂ Vy ), 

nonrotating, adiabatic, and Boussinesq flow.   

 

Table captions 

Table 3.1: A summary of atmospheric waves 

Table 3.2: Dispersion relations and approximated equations of w’ for mesoscale waves in different 

flow regimes 

 

Figure captions 

Fig. 3.1: Propagation of a wave group and an individual wave.  The solid and dashed lines denote the 

group velocity (cg) and phase velocity (cp), respectively.  Shaded oval denotes the concentration 
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of wave energy which propagates with the group velocity.  The phase speed cp equals  /i ix t , 

where i = 1, 2, or 3.  (Adapted after Holton 2004) 

Fig. 3.2: A two-layer system of homogeneous fluids.  Symbols H, h, hs, and h’ denote the 

undisturbed fluid depth, actual fluid depth, bottom topography, and perturbation (vertical 

displacement) from the undisturbed fluid depth, respectively.  The densities of the upper and 

lower layers are 1ρ and oρ , respectively.  The pressure perturbations at A and B from p in the 

upper layer are denoted by 1p pδ+ and 2p pδ+ , respectively. 

Fig. 3.3: Five flow regimes of the transient one-layer shallow water system, based on the two 

nondimensional control parameters ( / ,   /mF U gH M h H= = ).  (a) Regime A: supercritical 

flow, (b) Regime B:  flow with both upstream and downstream propagating hydraulic jump, (c) 

Regime C: flow with upstream propagating jump and downstream stationary jump, (d) Regime 

D: completely blocked flow, and (e) Regime E: subcritical flow.  The dashed lines in (b) and (c) 

denote transient water surface.  In regimes B and C, upstream flow is partially blocked.  

(Adapted after Baines 1995 and Durran 1990) 

Fig. 3.4: (a) Analysis of potential temperature from aircraft flight data and rawinsondes for the 11 

January 1972 Boulder windstorm.  The bold dashed line separates data taken from the Queen Air 

aircraft (before 2200 UTC) and from the Saberliner aircraft (after 0000 UTC) (Adapted after 

Klemp and Lilly 1975).  The severe downslope wind reached a speed greater than 60 ms-1.  (b) A 

sketch of flow Regime C of Fig. 3.3(c), which may be used to explain the phenomenon 

associated with (a).  Q is the volume flux per unit width.  (Adapted after Turner 1973) 

Fig. 3.5: An internal hydraulic jump associated with a severe downslope windstorm formed along 

the eastern Sierra Nevada (to the right) and Owens Valley, California.  The hydraulic jump was 
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made visible by the formation of clouds and by dust raised from the ground in the turbulent flow 

behind the jump.  (Photographed by Robert Symons) 

Fig. 3.6: The evolution of an initial symmetric wave, which is imagined to be composed of three 

rectangular blocks with shorter blocks on top of longer blocks.  The wave speeds of these fluid 

blocks are approximately equal to ( )nc g H nh= + , based on shallow-water theory, where n = 

1, 2, and 3, H is the shallow-water layer depth, and h is the height of an individual fluid block.  

The wave steepening in (b) and wave overturning in (c) are interpreted by the different wave 

speeds of different fluid blocks because 3 2 1c c c> > . 

Fig. 3.7: Vertical oscillation of an air parcel in a stably stratified atmosphere when the Brunt-Vaisala 

frequency is N.  The oscillation period of the air parcel is 2 /b Nτ π=  and the volume of the air 

parcel is proportional to the area of the circle.  (Adapted after Hooke 1986) 

Fig. 3.8: (a) Vertically propagating waves and (b) evanescent waves for a linear, two-dimensional, 

inviscid flow over sinusoidal topography. (Adapted after Smith 1979) 

Fig. 3.9: Basic properties of a vertically propagating gravity wave with 0 and ,0 ,0 ><> ωmk .  The 

energy of the wave group propagates with the group velocity (cg, thick blunt arrow), while the 

phase of the wave propagates with the phase speed ( pc ).  Relations between w’, u’, p’, and 'θ  as 

expressed by (3.5.16) and (3.5.17) are also sketched.  Symbols H and L denote the perturbation 

high and low pressures, respectively, while W and C denote the warmest and coldest regions, 

respectively, for the wave at t1.  Symbol α  defined in (3.5.13) represents the angle of the wave 

number vector k from the horizontal axis or the wave front (line of constant phase) from the 

vertical axis.  (Adapted after Hooke 1986) 

Fig. 3.10:  (a) Similar to Fig. 3.9, except for a hydrostatic inertia-gravity wave with m < 0, k > 0, l = 

0, ω > 0, and f > 0.  Meridional (i.e. north-south) perturbation wind velocities (v’) are shown by 
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arrows pointed into and out of the page.  (b) The projection of fluid particle motion associated 

with a hydrostatic inertia-gravity wave onto the horizontal plane is an ellipse with ω/f as the ratio 

of major and minor axes.  The velocity vector associated with a plane inertia-gravity wave 

rotates anticyclonically in the Northern Hemisphere with height for upward energy propagation.  

(Adapted after Hooke 1986) 

Fig. 3.11: Examples of wave reflection in a stratified flow with a piecewise constant profile in Brunt-

Vaisala frequency (N).  Case ω1 has wave solutions in both layers; Case ω2 (wave reflection 

case) has wave solutions in the lower layer, evanescent solutions in upper layer; and Case ω3 has 

evanescent solutions in both layers. 

Fig. 3.12: Wave reflection in a continuously stratified fluid.   N and T are the Brunt-Vaisala 

frequency and temperature of the sounding, respectively, and ω is the wave frequency.  Ray 

paths are reflected at the reflection level at which ω = N.  A wave packet is also depicted in the 

figure.  The short blunt arrows and long thin arrows denote the group and phase velocities, 

respectively, of the wave packet.  Particle motions are parallel to the constant phase lines or 

wave fronts, which become vertically oriented at the reflection level since α, defined in (3.5.13) 

and also illustrated in Fig. 3.9, approaches 0.  (Adapted after Hooke 1986) 

Fig. 3.13: The propagation of a wave packet upward toward a critical level located at z = zc.  The 

particle motions are parallel to the wave crests, which are denoted by straight lines.  Note that the 

vertical wavelength decreases as the wave packet approaches the critical level. The phase lines 

are horizontally oriented at the critical level in this case.   (Adapted after Bretherton 1966) 

Fig. 3.14:  (a) Streamlines for a linear, steady-state stratified airflow over an isolated heat source.  

The concentrated heating region is shaded. The basic flow has a linear shear (Uz = constant) and 

its Richardson number ( Ri ) is 10.  (b) Same as (a) except for Ri = 1.  All contour values are 
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nondimensionalized.  The streamfunction (ψ ) used for constructing the streamlines is defined as 

/u zψ= ∂ ∂  and /w xψ= −∂ ∂ . (After Lin 1987) 
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