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Chapter 5  Inertia-Gravity Waves  
(Based on Sec. 3.6 of “Mesoscale Dynamics” by Y.-L. Lin) 
 

When the Rossby number ( fLURo /= ) becomes smaller, rotational effects need to 
be considered. In this situation, buoyancy and Coriolis forces can act together as 
restoring forces and inertia-gravity waves can be generated.   
 
The governing equations are similar to (3.5.1)-(3.5.4), but with three-dimensional 
and rotational effects included,  
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The above set of equations can be combined into a single equation for w’,   
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Again, applying the method of normal modes to w' in (x, y, t), 
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  (3.6.7) 

and substituting it into (3.6.6) lead to 
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where K is the horizontal wave number ( 2 2k l= + ).   

Similar to the pure gravity wave solutions, the above equation has solutions of the 
form, 
 
 imzimz eBeAw −+=   ˆ ,  (3.6.9) 

where m, the vertical wave number, is defined as, 
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 It is clear from (3.6.9) that wave properties depend on the sign of 2m .  Based on 
the signs of the numerator and denominator in (3.6.10) and on typical values of 
basic state flow parameters observed for waves in both the atmosphere and ocean 
(N is normally greater than f), three different flow regimes may be identified.   
 

The approximated governing equations and dispersion relations for the different 
flow regimes are summarized in Table 3.2.   
 
Table 3.2: Dispersion relations and approximated equations of w’ for mesoscale waves 
in different flow regimes 

The governing equation for a linear, adiabatic, Boussinesq flow with a uniform basic 
state wind (U) and stratification (N) can be written:  
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The dispersion relation is 
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and three major flow regimes are 
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(I) High-frequency evanescent flow regime ( 222 fN >>Ω ; m imaginary)  
(i) Potential (irrotational) flow ( 222 fN >>>Ω ) 
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 (i) Nonrotating evanescent flow ( 2 2 2N fΩ > >>  and O(Ω)=O(N)) 
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(II) Vertically propagating wave regime ( 222 fN >Ω> ; m real) 
 (i) Pure gravity waves ( 222 fN >>Ω>  and O(N) =O(Ω)) 
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 (ii) Hydrostatic gravity waves ( 2 2 2N f>> Ω >> ) 
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 (iii) Hydrostatic inertia-gravity waves ( 222 fN >Ω>> and O(Ω) = O(f)) 
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(III) Low-frequency evanescent flow regime ( 222 Ω>> fN ; m imaginary)  
(i) Quasi-geostrophic flow ( 222 Ω>>> fN )  
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Their flow regime characteristics are described below.   
 

 (I) 222 fN >>Ω  

In this flow regime m is imaginary, so term A of (3.6.9) decays exponentially with 

height, while term B increases exponentially with height.   
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 imzimz eBeAw −+=   ˆ ,  (3.6.9) 
 
The flow behavior is similar to the evanescent waves, as discussed in (3.6.10) for 
the case of  2 2/ 1N Ω < , except that 2N  is required to be greater than 2f , and is 
referred to as the high-frequency evanescent flow regime.  
   

(Ia) 222 fN >>>Ω  

In this flow regime, (3.6.10) reduces to  

  )1/( 2222 −Ω≈ NKm  
In this extreme case, Coriolis force plays insignificant roles in the process of wave generation 
and propagation.  Thus the flow becomes the nonrotating (high frequency) evanescent waves, 
which have been described in Sec. 3.5.  

 
 In this flow regime, the governing equation becomes 
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(Ib) 222 fN >>>Ω  
In this flow regime, (3.6.10) reduces to 

  
  22 Km −≈ .  (3.6.11) 
 

In this extreme case, both the buoyancy and Coriolis forces play insignificant 
roles in the process of wave generation and propagation.   

 

The governing equation for the vertical velocity w’ reduces to what is 
essentially a three-dimensional version of (3.5.21), 
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Thus, this extreme flow regime is characterized by potential (irrotational) flow, 
as discussed in the previous section.  In this extreme case, for a steady state 
flow, the flow regime criterion becomes /   2 /   2 /L U N fπ π<< < .  
  

 (II) 222 fN >Ω>    
In this flow regime, m  is real and the waves are able to propagate freely in the 
vertical direction. Thus, the flow regime is referred to as the vertically propagating 
inertia-gravity wave regime.   
 

The two possible mathematical solutions of (3.6.9) represent either an upward or a 
downward propagation of energy.    
 

 imzimz eBeAw −+=   ˆ ,  (3.6.9) 
 

If the wave is generated by a low-level source such as stably stratified flow over a 
mountain, the radiation condition requires that the wave energy propagate away 
from the energy source, i.e., upward and away from the orographic forcing.   
 

This also applies to the boundary condition at    z = + ∞  for elevated thermal 
forcing. However, both terms in (3.6.9) must be retained in the heating layer 
(forcing region) and in the layer between the heating base and the lower boundary 
(the Earth’s surface).   
 

 imzimz eBeAw −+=   ˆ ,  (3.6.9) 
 

Above the forcing, either orographic forcing or elevated latent heating, term A 
should be retained to allow the energy to propagate upward, as required by the 
radiation boundary condition (Section 4.4). 
  

Since the ratio N/f is typically large in both the atmosphere and the ocean, this flow 
regime is applicable to a wide range of intrinsic wave frequencies.   
 

(IIa) 222 fN >>Ω>  and )()( Ω= ONO   
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The above equation, (3.6.10), reduces to 
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In this limit, rotational effects may be ignored, and the flow belongs 
to the nonrotating or pure gravity wave regime, as described in 
Section 3.5.   
 

Notice that for this extreme case, the flow regime criterion become 
2 / / 2 /  N L U fπ π< <<  or / 1/ 2   oU NL Rπ< <<  for a steady state flow. 
This implies that in order to generate pure gravity waves, the Rossby 
number of the basic state flow must be very large, normally much 
greater than 1.   
 

The governing equation for the vertical velocity 'w  in this extreme case 
becomes 
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(IIb) 222 fN >>Ω>>  
In this flow regime, (3.6.10) reduces to 
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This is identical to the nonrotating hydrostatic gravity wave regime, as 
discussed earlier.   
 
The governing equation for 'w  in this extreme case ( 222 fN >>Ω>> ) becomes 
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The flow regime criterion becomes 2 / / 2 /  N L U fπ π<< << for a 
steady state flow.  
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This implies that the fluid parcel advection time is much longer than 
the period of buoyancy oscillation allowing the disturbance to 
propagate vertically, but much shorter than the inertial oscillation 
period.  In this nonrotating hydrostatic wave regime, only vertically 
propagating waves are allowed.  
  
(IIc) 222 fN >Ω>>  and  )()( fOO =Ω  

In this flow regime, (3.6.10) reduces to 
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The flow response belongs to the hydrostatic inertia-gravity wave regime. 
Thus, the governing equation for w' becomes 
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For a basic flow with -10.01 sN = and 4 -110 sf −= , the horizontal scale of 
typical hydrostatic inertia-gravity waves is on the order of 100 km.   
  

 (III) 222 Ω>> fN  
In this flow regime, m is imaginary.  Similar to the first flow regime (

2 2 2N fΩ > > ), disturbances decay exponentially in the vertical away from the 
wave energy source.  However, the wave frequency is low, thus the flow 
response is referred to as the low-frequency evanescent flow regime.   

 
(IIIa) 222 Ω>>> fN  
In this flow regime, the inertial acceleration plays an insignificant role in wave 
generation and propagation.  The flow response is similar to a quasi-
geostrophic flow.   In this limiting case, (3.6.10) reduces to 
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 In this case, the fluid motion is quasi-horizontal and the governing equation for 

the vertical velocity w' becomes 
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 The horizontal scale for this type of quasi-geostrophic flow is on the order of 
1000 km for typical values of N = 0.01 s-1 and f = 10-4 s-1.  The Rossby number 
of the basic state flow in this case is much smaller than 1.  

  
In order to better understand the basic wave dynamics, we consider the case of 
hydrostatic inertia-gravity waves in a quiescent fluid (U = 0).  
 
Substituting ' exp( )kx ly mz tϕ ϕ ω= + + − , where , , , , oru v w pϕ θ= , into (3.6.1) - 
(3.6.5) and using the hydrostatic form of (3.6.3) lead to the following polarization 
relationships in wave number space, 
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The above relationships can be depicted in Fig. 3.10.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.10:  (a) Similar to Fig. 3.9, except for a hydrostatic inertia-gravity wave with m < 0, k > 0, 
l = 0, ω > 0, and f > 0.  Meridional (i.e. north-south) perturbation wind velocities (v’) are shown 
by arrows pointed into and out of the page.  (b) The projection of fluid particle motion associated 
with a hydrostatic inertia-gravity wave onto the horizontal plane is an ellipse with ω/f as the ratio 
of major and minor axes.  The velocity vector associated with a plane inertia-gravity wave 
rotates anticyclonically in the Northern Hemisphere with height for upward energy propagation.  
(Adapted after Hooke 1986) 
 
In the special case of two-dimensional flow ( 0/ =∂∂ y or l = 0), it can be shown that 
the following solutions satisfy the two-dimensional form of (3.6.6), 
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It can be easily shown from the above equations that the velocity vector associated 
with a plane inertia-gravity wave rotates anticyclonically with time in the Northern 
Hemisphere.   
 
The projection of the motion on the horizontal plane is an ellipse where ω /f is the 
ratio between the major and minor axes, as depicted in Fig. 3.10b.   
 
The velocity vector associated with an inertia-gravity wave rotates anticylonically 
with height for upward energy propagation.  The particle motion and phase 
relationship for a Poincaré wave propagating on the ocean surface is similar to that 
of a hydrostatic inertia-gravity wave.   
 

It can also be shown that the ratio of the vertical to horizontal components of the 
group velocity vector for a two-dimensional, hydrostatic inertia-gravity wave is 
given by 
  

 Nfmkcc gxgz /// 22 −== ω . (3.6.23) 
 

Therefore, the wave energy of a hydrostatic inertia-gravity wave propagates more 
horizontally than that of a pure gravity wave with the same wave frequency. 
   
Occasionally, it is observed that large-scale pressure gradients over the ocean are 
considerably smaller than those over the continents, which leads to a balance 
between Coriolis and centrifugal forces.   
 

Under this situation, fluid parcels follow circular paths, rotating in an anticyclonic 
sense in the horizontal plane, and that have an oscillation period of one pendulum 
day (2 / fπ ).  This type of flow is called inertial flow or inertial oscillation.   
 
The radius (R) of curvature of the oscillation can be shown to be /R V f= − , 
where V is the non-negative horizontal wind speed along the direction tangential to 
the local velocity in the natural coordinates.  The negative sign of R indicates the 
oscillation is anticyclonic (clockwise).  The inertial oscillation has been used to 
explain the formation of low-level jets over the Great Plains to the east of the US 
Rocky Mountains (Sec. 10.6). 
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It can be shown that for this particular example 

 0=⋅ kcg .  (3.6.24) 
This indicates that the group velocity vector for inertia-gravity waves is 
perpendicular to both the wave number vector and the phase velocity vector.   
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