
                          1 

Applied Science & Technology (AST) Ph.D. Program, North Carolina A&T State University AST 885 

 

Orographic Precipitating Systems 
 

Dr. Yuh-Lang Lin, ylin@cat.edu; http://mesolab.org    

Department of Physics/AST Ph.D. Program 

North Carolina A&T State University 

(Ref.: Mesoscale Dynamics, Y.-L. Lin, Cambridge, 2007) 
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➢ For small-amplitude (linear) perturbations in a 2D ( ), 

inviscid, nonrotating, adiabatic, Boussinesq, uniform basic state flow 

with uniform stratification, the governing Eqs. (2.2.14) – (2.2.18)  
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reduce to  
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where 𝜃𝑜: a constant reference 𝜃 (potential temperature) 

   : square of the Boussinesq Brunt-Vaisala 

          (buoyancy) frequency.    
 

Note: For a two-dimensional, nonrotating fluid flow, there is no need to retain the 

meridional (y-) momentum equation in our system of equations, because v’ will 

keep its initial value for all time, as required by the reduced form of the y-

momentum equation, namely, 0/'/' =+ xvUtv .   
 

However, the y-momentum equation needs to be kept if the fluid is two-

dimensional and rotating (f ≠ 0) since the initial 'v  will vary with time, although 

independent of y, due to the presence of Coriolis force. 
 

Figure 3.7 illustrates the vertical oscillation of an air parcel in a stratified 

atmosphere with a Brunt-Vaisala frequency N.  The total oscillation period is 2/N 

(b in the figure).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7: Vertical oscillation of an air parcel in a stably stratified atmosphere when the 

Brunt-Vaisala frequency is N.  The oscillation period of the air parcel is 2 /b N =  

and the volume of the air parcel is proportional to the area of the circle.  (Adapted after 

Hooke 1986; quoted in Lin 2007) 

2 [ ( / ) / ]oN g z   

z = 0 
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➢ The air parcel goes through the following processes: 

(a) The air parcel expands and cools while it ascends, and reaches its maximum 

expansion and coolest state (highest ’) at t = b/4.   
 

(b) It then starts to descend back to its original level due to negative buoyancy, 

which overshoots passing its original level (z = 0) at t = b/2.   
 

(c) The air parcel compresses and warms adiabatically while it descends 

passing the original level (z = 0), and reaches its maximum compression 

and warmest state at t = 3b/4.   
 

(d) At this level (at t = 3b/4), the air parcel reaches its lowest ’, which then 

ascends due to positive buoyancy, and returns to its original level at t = b.   
                                                                                                                        

➢ Equations (3.5.1) – (3.5.4) may be combined into a single equation for the 

vertical velocity , which is a simplified form of the Taylor-Goldstein 

equation [(3.7.19)] in the absence of vertical wind shear, 
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➢ Assuming a traveling sinusoidal plane wave solution of the form, 

    
)(  )(ˆ' tkxiezww −= , (3.5.6) 

 and substituting it into (3.5.5) yields the following linear partial differential  

 equation with constant coefficients, which governs the vertical structure of w’, 
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 In the above equation, kUωΩ − is the intrinsic (Doppler-shifted) 

 frequency of the wave relative to the uniform basic state flow.   
    

[How to solve a homogeneous 2nd order ODE with constant coefficients: Eq. (3.5.7) is 

analogous to a general ODE: y’’ + py’ + qy = 0, y’=dy/dx, which has a characteristic (auxiliary) 

equation: k2 + pk + q = 0 having 2 roots, k1 & k2, and a solution of y(x) = C1e
k1x + C2e

k2x.]  

'w

https://www.math24.net/second-order-linear-homogeneous-differential-equations-constant-coefficients/
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➢ Equation (3.5.7) has the following two solutions: 

  
z1/Nik-z1/ΩNik 2222

e Be Aw  Ω ˆ −− += ,    for 1/ΩN 22  , (3.5.8) 

 and 

  
z/N-1k-z/N-1k 2222

e De Cw  Ω Ωˆ += ,    for 1/ΩN 22  . (3.5.9) 
 

➢ Note that the above 2 equations may also be written together as  

 
imzimz eBeAw −+=   ˆ  

 where m, the vertical wave number, is defined as 
 

  )( 1-/ΩNkm 2222 =    

Equation (3.5.8) represents a vertically propagating wave because it is 

sinusoidal with height.  As will be discussed in Section 4.4, term A represents a 

wave with upward energy propagation, while term B represents a wave with 

downward energy propagation.   
 

Thus, for waves generated by orography, term B is unphysical and has to be 

removed because the wave energy source is located at the surface, as required 

by the radiation boundary condition.   
 

➢ On the other hand, term C of (3.5.9) represents wave amplitude increasing 

exponentially with height, while term D represents a wave whose amplitude 

decreases exponentially from the level of wave generation.   
 

Thus, for waves or disturbances generated by orography, term C is unphysical.  

This is also called the boundedness condition.   Under this situation, term D 

represents an evanescent wave (disturbance), whose wave amplitude decreases 

exponentially with height.   
 

➢ In other words, there exist two distinct flow regimes for pure gravity waves (i.e. 

vertically propagating waves and evanescent waves) in the atmosphere, which 

are determined respectively by the following criteria: 
 

  
2 2/ 1N       and    

2 2/ 1N   . (3.5.10) 
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➢ The above two pure gravity wave flow regimes can be understood by 

considering steady state responses of stably stratified airflow over a sinusoidal 

topography.   
 

When 1/ 22 N , we have ULN //2  , where kL /2=  is the dominant 

horizontal wavelength of the sinusoidal topography.   
 

Note that N/2  is the buoyancy oscillation period and that UL / is the 

advection time an air parcel takes to cross over the mountain.  Thus, fluid 

particles take less time to oscillate in the vertical, compared to the horizontal 

advection time required to pass over the mountain.  This allows the wave 

energy to propagate vertically (Fig. 3.8a).   

 

 

 

 

 

 

 

 

 

 

Fig. 3.8: (a) Vertically propagating waves ( 1/ 22 N ) and (b) evanescent waves  

( 1/ 22 N ) for a linear, two-dimensional, inviscid flow over sinusoidal topography. 
 

➢ On the other hand, when 1/ 22 N  or ULN //2  , fluid particles do not 

have enough time to oscillate vertically because the time required for the 

particles to be advected over the mountain is shorter.   
 

Therefore, the wave energy cannot freely propagate vertically, and it is 

preferentially advected downstream, remaining near the Earth’s surface (Fig. 

3.8b).  This type of wave or disturbance is also referred to as an evanescent 

wave or a surface trapped wave.            
 

➢ If the stratification of the fluid is uniform (N = constant) and the disturbance is 

sinusoidal in the vertical, then ŵ  may be written as 
imz

oeww =ˆ , where wo and 

m are the wave amplitude and vertical wave number, respectively.  Substituting 
ŵ  into (3.5.7)  

Vertically propagating waves: 

Phase tilts upstream with wave 

amplitude continuing to 

oscillate with height. 

Evanescent waves: Phase tilts 

vertically with amplitude 

decreases exponentially with 

height. 
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yields the dispersion relationship for pure gravity waves,  
 

  
22

  

mk

Nk

+

= . (3.5.11) 

 

➢ Returning to the vertical structure solutions, (3.5.8) and (3.5.9), there are two 

extreme cases that merit further discussion.  
 

  
z1/Nik-z1/ΩNik 2222

e Be Aw  Ω ˆ −− += ,    for 1/ΩN 22  , (3.5.8) 

 and 

 

  
z/N-1k-z/N-1k 2222

e De Cw  Ω Ωˆ += ,    for 1/ΩN 22  . (3.5.9)  
 

When 
22 N , the buoyancy oscillation period ( 2 / N ) is much shorter than 

the oscillation period of the disturbance ( 2 /  ) or the advection time ( /L U ).   
 

Therefore, the wave energy will propagate purely in the vertical direction.  In 

this situation ( 22 N ), constant phase lines and group velocities are oriented 

vertically, while the total wave number vector is oriented horizontally.  
 

In this special flow regime, often referred to as the hydrostatic gravity wave 

regime, the vertical momentum equation (3.5.2)  
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 reduces to its hydrostatic form, 

  

  
oo

g
z

p







''1
=




.  (3.5.18) 

 

➢ This implies that the vertical pressure gradient force is in balance with the 

buoyancy force in the z direction.  In other words, vertical acceleration DtDw /'
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plays an insignificant role in wave propagation.  It can be shown from (3.5.8) 

that the waves repeat themselves in the vertical direction without losing their 

amplitude and have a wavelength of kN/2    for a steady state flow.  For 

hydrostatic gravity waves, the wave equation (3.5.5)  
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 for the vertical velocity w’ reduces to 
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Note that by assuming 
22 /' xw   << 

22 /' zw  , it implies that the horizontal 

scale of the motion is much larger than the vertical scale, i.e. Lx >> Lz.  In other 

words, the motion is shallow.  In general, hydrostatic assumption applies to a 

fluid system or motion which is shallow. 
 

➢ In the other limit, 22 N , the buoyancy oscillation period is much greater 

than that of the disturbance ( 2 /  ) or advection time of the air parcel (L/U).   
 

Therefore, the buoyancy force plays insignificant role in this flow regime.  In 

this situation ( 22 N ), the wave energy is not able to propagate vertically, 

and the wave disturbance will remain locally in the vicinity of the forcing.  
 

The vertical momentum equation, (3.5.2),  
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reduces to 
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Thus, only the vertical pressure gradient force contributes to the vertical 

acceleration.  It can also be shown from (3.5.9) that the amplitude of the 

disturbance decreases exponentially with height.  As discussed earlier, this 

special case is called the evanescent flow regime.    
 

The wave equation for w’ then reduces to (for evanescent flow regime)  
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If the flow starts with no relative vorticity in the y-direction (i.e. if 

0/'/' =− xwzu  at t = 0), then the above equation reduces to a two-

dimensional form of the Laplace’s equation 
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Because this type of flow is everywhere vorticity-free, it is often referred to as 

potential (irrotational) flow. 

 

[More discussions on wave properties] – reading assignment 

➢ For a quiescent fluid,  =  (∵  =  - kU & U = 0), Eq. (3.5.11) reduces to 

  
22 mk

Nk

+


= , (3.5.12) 

 or 

  


 cos 
22

=
+


=

mk

k

N
, (3.5.13) 

where   is the angle ( 2/  ) between the wave number vector k = (k, m) and 

the x-axis.   

 

➢ First consider the extreme case of N = 0 (no stratification => no vertical 

oscillation, i.e. no gravity waves: kx - t = 0 => cp = x/t = /k. The wave 

generator in a quiescent, homogeneous fluid will send water waves out 

horizontally.  
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Then allow the stratification (N) to occur and increase => generate vertical 

oscillations, which will send 4 rays out (see water tank experiment in Mowbray 

and Rarity 1967).  

 

Note that fluid parcels oscillate in a direction perpendicular to the total wave 

number vector, as indicated by the incompressible continuity equation, 

0=V'k .  Therefore, the wave fronts or rays associated with particle 

oscillations tilt at an angle   with respect to the vertical.  For a given 

stratification, waves with constant N propagate at a fixed angle to the 

horizontal axis, which is independent of the wavelength. 

 

The above characteristics can be illustrated in Fig. 3.9.  While the wave number 

vector is oriented in the same direction as the phase speed vector [cp in Fig. 

3.9], the wave front is oriented perpendicular.    

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.9: Basic properties of a vertically propagating gravity wave with 0 and ,0 ,0  mk .  The energy of the wave 

group propagates with the group velocity (cg, thick blunt arrow), while the phase of the wave propagates with the phase 

speed (cp).  Relations between w’, u’, p’, and '  as expressed by (3.5.16) and (3.5.17) are also sketched.  Symbols H and L 

denote the perturbation high and low pressures, respectively, while W and C denote the warmest and coldest regions, 

respectively, for the wave at t1.  Symbol   defined in (3.5.13) represents the angle of the wave number vector k from the 

horizontal axis or the wave front (line of constant phase) from the vertical axis.  (Adapted after Hooke 1986) 
 
 

The wave is dispersive when: 

 

(1) cp = cg  or 

(2) cp is not a function of wave number (i.e. wavelength) 
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Dispersion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Propagation of a wave group and an individual wave.  The solid 

and dashed lines denote the group velocity (cg) and phase velocity (cp), 

respectively.  Shaded oval denotes the concentration of wave energy which 

propagates with the group velocity.  The phase speed cp equals  /i ix t , where 

i = 1, 2, or 3. 
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➢ [Application to the lateral boundary conditions in a numerical model] 
 

From (3.5.12), we may obtain the horizontal and vertical phase velocities, 
  

  
22 mk
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 (3.5.14) 

 

These expressions indicate that pure gravity waves are dispersive in both the x 

and z directions because both cpx and cpz depend on wave number.  The group 

velocities can be derived from (3.5.12), 
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Note that pxc  and gxc  are directed in the same direction, while pzc  and gzc  are 

directed in opposite directions.  This is also shown in Fig. 3.9.   

 

Due to these peculiar properties of internal gravity waves, the implementations 

for lateral and upper boundary conditions associated with mesoscale numerical 

models that resolve these waves must be carefully configured.   
 

➢ Briefly speaking, a horizontal advection equation, / / 0pxt c x   +   = , where 

  represents any prognostic dependent variable, can be applied at the lateral 

boundaries and can be implemented to help advect the wave energy out of the 

lateral boundary of the computational domain.   

➢ On the other hand, a vertical advection equation, / / 0pzt c z   +   =  (with 

0pzc  ), cannot advect the wave energy out of the upper boundary since the 

wave energy will propagate downward back into the computational domain as 

gzc is negative.  The numerical radiation boundary conditions will be discussed 

in more detail in Section 13.2, while the details of the Sommerfeld (1949) 

radiation boundary condition will be discussed in Section 4.4 (Lin 2007). 
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Due to the fact that only the real part of the solution is physical, (3.5.6)  
  

    
)(  )(ˆ' tkxiezww −= , (3.5.6) 

 

and ˆ ( ) exp( )ow z w imz=  can be combined in the form, 
 

  ( )( )' Re  cos( ) sin( )i kx mz t

o r iw w e w kx mz t w kx mz t  + −= = + − − + − , 
  

    ( ) )cos()sin( /' 2 tmzkxwtmzkxwgN iro  −++−+=  (3.5.16) 

 where wr and wi are the real and imaginary parts of ow , respectively.   
 

➢ Substituting  w’ into (3.5.1) – (3.5.4) and assuming U = 0 leads to the 

polarization relations 

  )sin()cos( )/(' tmzkxwtmzkxwkmu ir  −+−−+−= , (3.5.17a) 

 ( ) )sin()cos( /' 2 tmzkxwtmzkxwkmp iro  −+−−+−= , (3.5.17b) 

 ( ) )cos()sin( /' 2 tmzkxwtmzkxwgN iro  −++−+= . (3.5.17c) 

The above relationships are also shown in Fig. 3.9 for the case where k > 0, m 

< 0, and 0  .  The wave frequency is assumed to be positive, in order to 

avoid redundant solutions.   
 

For k > 0, m < 0, and 0  , (3.5.17a) indicates that 'u  is in phase with 'w , 

which is shown in Fig. 3.9 by fluid oscillating toward the right in regions of 

upward motion.   
 

Equation (3.5.17b) indicates that p’ is also in phase with w’.  Thus, high (low) 

pressure is produced in regions of upward (downward) motion.   
 

Equation (3.5.17c) indicates that ’ is out of phase with w’ by /2 (90o). A fluid 

particle loses (gains) buoyancy in regions of upward (downward) motion, 

according to (3.5.4) with 0U = .  Therefore, the least buoyant (coldest) fluid 

parcels (denoted by C in t1 of Fig. 3.9) will move toward regions of maximum 

upward motion.  That is, internal gravity waves will move in the direction of 

phase propagation (toward the lower right corner of the figure), as denoted by 

pc in the figure.   


