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Chapter 3. Basic Wave Dynamics 

3.1 Introduction 
 

 There are 2 types of waves:  
 

(1) Mechanical waves: A physical restoring force and a medium for 
propagation are the two fundamental elements of all wave motion 
in solids, liquids, and gases.  

 Examples: atmospheric waves, oceanic waves, sound (acoustic) 
waves, wind-induced waves, seismic waves, or even traffic 
density waves.  

(2) Electromagnetic waves: Electromagnetic waves do not require a 
medium. Instead, they consist of periodic oscillations of electrical 
and magnetic fields generated by charged particles and can 
therefore travel through a vacuum.  

 Examples: radio waves, microwaves, infrared radiation, visible 
light, ultraviolet radiation, X-rays, and gamma rays.  

 

 When an air parcel is displaced from its initial position, a restoring 
force may cause it to return to its initial position.  In doing so, inertia 
will cause the air parcel to overshoot and pass its initial equilibrium 
position moving in the opposite direction from that in which it is 
initially displaced, thereby creating an oscillation around the 
equilibrium position.   

mailto:ylin@cat.edu
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Concurrently, a wave is produced that propagates from this source 
region to another part of the fluid system, which is the physical 
medium of wave propagation.   

 

 Thus, a physical restoring force and a medium for propagation are the 
two fundamental elements of all wave motion in solids, liquids, and 
gases, including atmospheric waves, oceanic waves, sound (acoustic) 
waves, wind-induced waves, seismic waves, or even traffic density 
waves.  
  

 The ultimate behavior of the wave is dictated by the individual 
properties of the restoring force responsible for wave generation and 
the medium through and by which the wave propagates energy and 
momentum. 

 

 Waves are everywhere! 
 

 Note that waves are different from mass transportation, such as outflow 
from a thunderstorm out and density current below it. 
                                             
 

  

http://rammb.cira.colostate.edu/ramsdis/online/goes-west_goes-east.asp
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 Atmospheric waves may be classified as follows (Table 3.1): (a) 
sound (acoustic) waves, (b) mesoscale waves, and (c) planetary 
(Rossby) waves.   

 
                                  Table 3.1 (Lin 2007) 
 

 In this lecture, mesoscale waves are defined in a more general manner, 
referring to waves that exist and propagate in the atmosphere with a 
mesoscale wavelength.   

 

Thus, mesoscale waves include pure gravity waves and inertia-gravity 
waves.  A more detailed classification of these waves and their 
probable restoring or wave generation forces are summarized in Table 
3.1.   

 

 Each group of waves exhibits multiple wave regimes.  For example, as 
will be discussed later, pure gravity waves may be further categorized 
as either vertically propagating waves or evanescent waves, depending 
upon whether the wave energy is free to propagate vertically.  
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 The restoring forces for pure gravity waves and inertia oscillations are 

the buoyancy force ( '/gρ ρ−  or '/gθ θ ) and Coriolis force, 
respectively.   

 
 Sound waves derive their oscillations from longitudinal compression 

and expansion.  Longitudinal wave means that the wave propagates in 
the same direction as the oscillation. 

 
 Planetary waves derive their oscillations from the meridional variation 

of the Coriolis force or β  effect due to the conservation of angular 
momentum.  Planetary waves are also called Rossby waves. 

 
 The compression force, buoyancy force, Coriolis force, and variation 

of Coriolis forces in the atmosphere are often shown in governing 
equations, respectively by sc , 2N  (= 𝑔𝑔

𝜃𝜃
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

), f , and β  in governing 
equations.   

 
 Restoring forces may also combine and work together to generate 

mixed waves, such as inertia-gravity waves, mixed acoustic-gravity 
waves, and mixed Rossby-gravity waves. 

 
 Inertia-gravity waves are also known as Poincaré waves on the ocean 

or water surface and as coastal or boundary Kelvin waves along a 
rigid, lateral boundary such as a shoreline or coast.   

 
 The oscillation period of the waves is determined by the strength of 

the restoring force and characteristics in the wave medium.   
 

http://glossary.ametsoc.org/wiki/Poincare_wave
https://en.wikipedia.org/wiki/Kelvin_wave
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 The presence of mesoscale waves in the atmosphere and oceans can 
be measured and inferred from (a) thermodynamic soundings, (b) 
microbarograph pressure traces, (c) visible and infrared satellite 
images, (d) radar echoes, (e) sodar, (f) rawinsounde, (g) vertical wind 
profilers, etc.   

 
Data obtained from these sources and instruments may be used to 
help predict mesoscale wave generation and propagation, as well as to 
help explain the development and subsequent evolution of a variety of 
mesoscale scale weather phenomena associated with the passage of 
these waves.  
 

 
Fig. 4.2: An example of gravity waves generated by a density current, as revealed by a 
synthesis of sodar, rawinsonde, and wind profiler observations during the Mesogers field 
experiment in southwestern France.  (From Ralph et al. 1993; Lin 2007) 
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Fig. 4.5: (a) Surface pressure traces for selected stations on 6 March 1969: (1) BOS - Boston, MA; 
(2) BDL – Hartford, CT, (3) PSB – Philipsburg; (4) PIT – Pittsburgh; (5) CRW – Charleston, WV; 
and (6) LOZ – London, KY, (7) BWG - Bowling Green, KY; MSL – Muscle Shoals, AL. (b) 
Isochrones (hours in UTC) of the minimum pressure indicating passage of the solitary wave. The 
heavy dashed line indicates the position of the sounding cross section shown in Fig. 4.17b, as well 
as the primary direction of travel of the wave.  (From Lin and Goff 1988) 

 
 

 
 

Fig. 7.9: Kelvin-Helmholtz billow clouds (p. 253-254, Lin 2007) 
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 In previous studies of large-scale dynamics and numerical weather 
prediction (NWP), mesoscale and sound waves were often regarded as 
undesirable “noise”. 

 
The reason is that they often appear as small perturbations or 
disturbances embedded in the large-scale flow, and their presence can 
even trigger numerical instabilities in an operational forecast model if 
the grid interval of the NWP model is not sufficiently small.   

 
Therefore, they are often filtered out from the primitive equations in 
the NWP models.   

 
 However, mesoscale waves do have major dynamical impacts on the 

atmosphere and cannot be simply removed from the NWP models, 
such as:  

 
(a) The initiation of severe convective storms and the organization of 

individual convective cells or elements into larger-scale 
convective systems. 

(b) The spectral transfer of energy between large and small-scale 
motions. 

(c) The vertical and horizontal transport of energy and momentum 
from one region of the atmosphere to another. 

(d) The generation of disturbances, such as mountain waves and 
clear-air turbulence (CAT), that can adversely affect airflow, 
weather, and aviation safety etc. 

(e) The triggering of hydrodynamic instabilities that lead to the 
generation of severe weather. 
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 To understand the above-mentioned atmospheric processes and better 
predict them, it is essential to understand the dynamics of mesoscale 
waves. 

 
 In this chapter (Ch. 3 of Lin 2007), we will derive the governing 

equations and dispersion relationships for mesoscale waves, based on 
linearized equations derived from perturbation theory, and then 
discuss wave properties for different flow regimes.  

 
 Since linear wave theory provides a powerful tool that helps to 

analyze and predict the variety of mesoscale waves observed in the 
atmosphere and those predicted by numerical models, we will restrict 
ourselves to this mathematical framework almost exclusively.   

 
 To help understand basic wave properties, we will begin the 

discussion with sound waves and shallow water waves.   
 

 In a structured atmosphere, mesoscale waves, just as synoptic or 
planetary-scale waves, may be reflected, transmitted, and even over-
reflected from certain internal boundaries.  These properties will be 
discussed in the later lecture notes.   
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3.2 Basic Wave Properties 
 
 With the Boussinesq approximation, the linearized perturbation 

equations, (2.2.14) – (2.2.18), can be combined into a single equation 

for the vertical velocity w’, 

 

( )

( ) ( ) ( )

'
2

2 2 ' ' 2 2 ' '
zz zz zz x zz zz y H z yz z xz2

' ' 2 2 ' 2 ' ' 2
z z xx yy z z xy z xz z yz H

p o

D D D Dw' f w U fV w V fU w N w' 2f U w V w
Dt Dt Dt Dt

g D2fU V w w 2f V U w 2f U w V w q',
c T Dt

    ∇ + − + − − + ∇ + −    
    

+ − + − − + = ∇

 (3.2.1) 

where yVxUtDtD ∂∂+∂∂+∂∂= //// .   

 The above equation governs the small-amplitude vertical velocity w’ 
in a mesoscale system, which may contain the following mechanisms:   

 
(a) pure gravity and inertia-gravity wave generation  
(b) static instability  
(c) Kelvin-Helmholtz (shear) instability  
(d) symmetric instability 
(e) baroclinic instability.   

 

 For different flow regimes, the Boussinesq form of (2.2.14) - (2.2.18) 
may reduce to different approximate equations, which will be further 
discussed in Sections 3.5 and 3.6 of Lin (2007).  

  
 In addition to restoring forces and propagation media, wave motions 

may be characterized by several fundamental properties, such as wave 
frequency, wave number, phase speed, group velocity, and dispersion 
relationship, which will be discussed below.   
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Note that the dispersion relationship relates the wave frequency to the 
wave number.   

 

 Wave properties 
oscillation period: τ  
wave frequency: τω /1= (i.e., what you learned in general physics) 
angular wave frequency: τπω /2=  
horizontal and vertical spatial scales: Lx, Ly, Lz  
horizontal and vertical wave numbers: k = 1/Lx, l = 1/Ly, m = 1/Lz 
angular wave numbers: k = 2π/Lx, l = 2π/Ly, m = 2π/Lz 

 

 A wave may be characterized by its amplitude and phase,  
 
ϕ  = Re {A exp[i(kx+ ly+mz–ωt–α)]} 
 

where  
ϕ : any of dependent flow variable (e.g., u, v, w, p, T, ρ) 
Re: real part 
A : amplitude 

αω −−++ tmzlykx : phase 
α :  phase angle.  The phase angle is determined by the initial 

position of the wave.    
 

 Lines of constant phase, such as wave crests, troughs, or any other 
particular part of the wave propagate through the fluid medium at a 
speed called the phase speed.   
 

Phase speeds in x, y, and z directions, are respectively given by  
 

/ ;     / ;    and  /px py pzc k c l c mω ω ω= = =                             (3.2.2)  
 

e.g. Look at u (x, t) = uo sin (kx-ωt), constant phase: kx-ωt = 0. 
 

 If an observed or experimental set of data is available, the phase speed 
of a wave may be estimated by determining and tracing a constant 
phase of the wave.   
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 In a geophysical fluid system such as the atmosphere, waves normally 

are very complicated in form, due to the superposition of wave 
components with different wavelengths and their nonlinear 
interactions, and cannot be represented by a simple, single sinusoidal 
wave.   

 
 However, a small-amplitude wave with any shape can be 

approximately represented by a linear superposition of wave trains of 
different wave numbers, i.e. a Fourier series of sinusoidal 
components.   

 
 For example, a wave in the x direction may be decomposed into 

sinusoidal components of the form, 

 ( )∑
∞

=
+=

1
cossin)(

n
nnnn xkBxkAxϕ , (3.2.3) 

 where the Fourier coefficients nA and nB are determined by 

 
0

2 πφ( )
L

n
2 nxA x sin dx

L L
= ∫ , (3.2.4) 

 
0

2 πφ( )
L

n
2 nxB x cos dx

L L
= ∫ . (3.2.5) 

 The nth Fourier component or nth harmonic of the wave function nφ

is defined as nφ = xkBxkA nnnn cossin + .   

 
 In deriving (3.2.4) and (3.2.5), we have used the orthogonality 

relationships, 
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=
≠

=∫ mn     L/2,
mn        0,

dx
L
mx2sin

L
nx2sin

L

0

ππ
, and 

 








=
≠

=∫ mn    L/2,
mn       0,

dx
L
mx2cos

L
nx2cos

L

0

ππ
. (3.2.6) 

 If a wave is composed of a series of Fourier components of different 
wavelengths, then the phase speed for each individual component may 
also be different, according to (3.2.2).   

 
 If the phase speed is independent of wave number or wavelength, then 

the wave will retain its initial shape and remain coherent as it 
propagates throughout the fluid medium.  This type of wave is 
nondispersive.   

 
 On the other hand, if the phase speed is a function of wave number or 

wavelength, then the wave will not be able to retain its initial shape 
and remain coherent as it propagates in the medium since each 
Fourier component is propagating at a different phase speed.  In other 
words, the wave is dispersive.   

 
 Thus, it becomes clear that the relationship between wave frequency 

and wave number determines whether the wave is dispersive. 
   
 Although visually, a dispersive wave may look like it is dissipative, 

dispersion and dissipation are completely different physical 
processes.   
 

π πL

0

2 nx 2 mxsin cos dx 0,                 for all n, m 0
L L

= >∫
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 In a dissipative, but nondispersive wave, every Fourier component of 
the wave propagates at the same speed, while the wave amplitude 
decreases.  Thus, individual wave groups preserve their phase (shape) 
during propagation.  
 

 If the wave is nondispersive, then the wave pattern moves throughout 
the medium without any change in shape of the initial waveform.  
This means that the phase velocity of the individual wave crests (cp) is 
equal to the group velocity of the slow-varying modulations or the 
envelope of Fourier wave components (cg).   
 

 In summary, a wave is nondispersive if:  
(a) Phase velocity of the wave is independent of wave 
 number, i.e. )(kfcp ≠  ( )();();( mfclfckfc pzpypx ≠≠≠  for 3D wave), 

or 
(b) Phase velocity equals to group velocity ( pg cc = ). 
       Otherwise, the waves are dispersive. 

 
The concept of group velocity is illustrated in Fig. 3.1.  

 
Fig. 3.1: Propagation of a wave group and an individual wave.  The solid and dashed lines 
denote the group velocity (cg) and phase velocity (cp), respectively.  Shaded oval denotes 
the concentration of wave energy which propagates with the group velocity.  The phase 
speed cp equals  /i ix t , where i = 1, 2, or 3. 
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In Fig. 3.1, the simple group of two superimposed sinusoidal waves, 
represented by the wave function  

 
 ϕ =Re{Aexp[i((k+∆k)x–(ω+∆ω)t)]+Aexp[i((k–∆k)x–(ω−∆ω)t)]}  

 
 propagates at the speed k∆∆ /ω .   
 

This velocity approaches k∂∂ /ω as 0→∆k , which is defined as the 
group velocity (in the x direction).  In other words,

 
kcg ∂∂= /ω .  

 
Thus, the group velocity represents the velocity the slow-varying 
modulation of a wave propagates. For 3D waves, the group velocity is 
given by 

 kjikjicg m
ω

l
ω

k
ωccc gzgygx ∂

∂
+

∂
∂

+
∂
∂

=++= . (3.2.7) 

 Transverse waves  
 
When a wave propagates in the direction perpendicular to the wave 
motion, the wave is called transverse wave.  

 
For example, the incompressible continuity equation, one can show 
that 

 

  0'=⋅Vk ,   (3.2.8) 
 
where k = (k, l, m) is the wave number vector.   
 
For two-dimensional plane waves (e.g., l = 0), the above equation 
indicates that the wave motion or oscillation of fluid parcels is 
perpendicular to the wave number vector.   
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 Wave front 

At any instant to, a wave front is defined by setting the phase (
t -ω α⋅ −k x ) to be constant, which indicates that a family of 

parallel planes is normal to the wave number vector k.  As time 
proceeds, these planes move with the phase speed in the direction k.  
Notice that the phase velocity can be derived as 

 2/ kkc ω= . (3.2.9)
  
 
That is, the phase velocity c is parallel to k.   As will be discussed in 
Section 3.6, inertia-gravity waves are an example of transverse waves 
because the fluid particle motion, V' , is perpendicular to the phase velocity 
(Fig. 3.9 or Fig. 3.10a), as indicated by (3.2.8). Note that the phase speeds 
in the x and z directions do not comprise the phase velocity. That is, 
 )/ ,/ ,/( mlk ωωω≠c .  (3.2.10) 
For sound waves (Section 3.3), it can be shown that 
 0'≠⋅Vk .  (3.2.11) 
This means the wave propagates in the same direction as the wave motion. 
This type of waves is called longitudinal wave. Thus, sound waves are an 
example of longitudinal waves.   
 
In the following, we will discuss about a simple fluid flow system, such 
as a shallow water system, which will help us understand the gravity wave 
dynamics. 
 
3.3 Sound Waves 
 
 Sound (acoustic) waves derive their oscillations from the compression 

and expansion of the medium due to the compression force.  
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 Let us consider one-dimensional ( 0// =∂∂=∂∂ zy ), small-amplitude, 
adiabatic perturbations in a non-rotating, inviscid, uniform (no basic 
wind shear) flow governed by (2.2.14) – (2.2.18), 

  

 , (3.3.1) 

 . (3.3.2) 

In Eq. (3.3.2), vp cc /=γ .  The above two equations may be 
combined into a single equation for p’, 

 0'' 2

2
2

2

=
∂
∂

−







∂
∂

+
∂
∂

x
pcp

x
U

t s , (3.3.3) 

where sc is the sound (acoustic) wave speed, which is defined as 

TRcs γ= .   

Assuming a wave-like solution,  

 ( )( , ) [cos( ) sin( )]i kx t
o op x t p e p kx t i kx tω ω ω−= = − + − ,  

and substituting it into (3.3.3) leads to 

 kcU s )( ±=ω . (3.3.4) 

For brevity, we omit the Re{ } notation (real part) in the wave-like 
solution, but it is to be understood that only the real part of the above 
solution has physical significance.   
 

' ' 1 ' 0u u pU
t x xρ

∂ ∂ ∂
+ + =

∂ ∂ ∂

' ' ' 0p p uU p
t x x

γ∂ ∂ ∂
+ + =

∂ ∂ ∂
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The above method of the assumption of wave-like solutions for the 
small-amplitude perturbations is also referred to as the method of 
normal modes.  
 
The above equation is the dispersion relation for sound waves, which 
relates the wave frequency ω  to the horizontal wave number k.   
 
From (3.3.4), we may obtain the horizontal phase speeds, which are 
given by 
 sp cU

k
c ±==

ω . (3.3.5) 

Eq. (3.3.5) represents phase speeds of the downstream ( sU c+ ) and 
upstream ( sU c− ) propagating sound waves, which are simultaneously 
being advected by the basic wind U.   
 

Sound waves are nondispersive since their phase speeds are 
independent of wave number.  This nondispersive property of sound 
waves may also be verified by showing that the group velocities for 
these waves cg are identical to their phase speeds cp. 
 

 Consider a semi-infinite tube filled with gas whose right-hand side 
extends to infinity and whose left-hand side is confined by a piston.   

 
 When the gas is alternatively compressed and expanded by oscillating 

the piston in and out of the left hand side of the semi-infinite tube, an 
air parcel located adjacent to the piston will be forced to oscillate 
back and forth about its equilibrium position due to the oscillating 
horizontal pressure gradient and, concurrently, a sound wave will be 
excited that propagates toward the right at the speed TRcs γ= .    
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 In a dry, isothermal atmosphere with a constant temperature of 300 K, 
a one-dimensional acoustic wave has a phase speed and group 
velocity of approximately 347 -1ms  (~ 776 mph).  

  
 In fact, the general solution of (3.3.3) may be written as, 

 
 ])([])([' tcUxFtcUxFp ss −++++= , (3.3.6) 

where F is any arbitrary function whose amplitude is one-half that of 
the initial disturbance, and whose shape is identical  to that of the 
initial disturbance.   
 
In a quiescent fluid, the first and second terms on the right hand side 
of (3.3.6) represent the leftward and rightward propagating sound 
waves, respectively.   
 
Since sound waves do not play significant dynamic roles in affecting 
most atmospheric motions, they are often eliminated from the 
primitive equations - particularly those that are commonly employed 
in most current operational NWP models.   
 
Although sound waves may have no particular relevance to 
atmospheric motions in the troposphere that are responsible for 
“weather”, a special class of waves called Lamb waves has been 
observed.  These waves can propagate horizontally in an isothermal 
atmosphere in the absence of vertical motion.  Lamb waves, as well 
as sound waves and gravity waves, can be generated by latent heat 
release in a convective storm (e.g., Nicholls and Pielke 2000).   
 
In a two-dimensional, i.e. in (x, z) vertical plane (

0/,/,0/ =∂∂∂∂≠∂∂ yzx ), adiabatic, hydrostatic, non-rotating, inviscid, 
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isothermal atmosphere with no vertical motion and basic wind shear, 
small-amplitude motions are governed by (2.2.14) – (2.2.18) reduced 
to (3.3.1), (3.3.2), and 

 
1 ' '  'p p g

z H
θ

ρ θ
∂ + = ∂ 

, (3.3.7) 

 0' ' 
=

∂
∂

+
∂

∂
x

U
t

θθ
. (3.3.8) 

 
Note that in an isothermal atmosphere, the scale height, gcH s /2= , is a 
constant.  Equations (3.3.7) and (3.3.8) may be combined to yield an 
equation that, when coupled with (3.3.3), forms the set of equations 
governing the evolution of Lamb waves.      

  
3.4 Shallow Water Waves 
 
 Consider a  
 (1) non-rotating,  
 (2) hydrostatic,  
 (3) two-layer fluid system with constant densities 1ρ  and oρ  
   in the upper and lower layers, respectively, (Fig. 3.2) and  

(4) 1 oρ ρ< , the pressure gradients at the interface can be 
approximated by 

 
  

x
hhg

x
p s

∂
+∂

∆=
∂
∂ )(ρ ,   

  
y

hhg
y
p s

∂
+∂

∆=
∂
∂ )(ρ ,  

 where 1ρρρ −=∆ o  and hs is the height of the topography (see Fig. 3.2).  
In deriving the above equations, we have used h+hs=H+h’, where h 
is the depth of the fluid.   
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Fig. 3.2: A two-layer system of homogeneous fluids.  Symbols H, h, hs, and h’ denote the 
undisturbed fluid depth, actual fluid depth, bottom topography, and perturbation (vertical 
displacement) from the undisturbed fluid depth, respectively.  The densities of the upper and lower 
layers are 1ρ and oρ , respectively.  The pressure perturbations at A and B from p in the upper layer 
are denoted by 1p pδ+ and 2p pδ+ , respectively. 

 
 By assuming no initial vertical shear, the horizontal momentum 

equations become 
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∂
∂ )(' , (3.4.2) 

  
 where ogg ρρ /' ∆= is the reduced gravity.    
 
 The continuity equation in a shallow water system can be derived, 
 
  0  =








∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

y
v

x
uh

y
hv

x
hu

t
h , (3.4.3) 

 

 One may substitute 'uUu += , 'vVv += , and shhHh −+= ' to obtain 
the perturbation form, 

 
  0''')'(')'('

=
∂
∂

+
∂
∂

++
∂
∂

++
∂
∂

x
hg

y
uvV

x
uuU

t
u , (3.4.4) 
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 Special Case - 2D, linear, one-layer system  

The governing equations for two-dimensional, small-perturbation 
(linear), one-layered fluid system with a flat bottom reduce to the 
following  

 

  0''''
=

∂
∂

+
∂
∂

+
∂
∂
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, (3.4.7)’ 
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h

 (3.4.8)’ 
 

The above two equations may be combined to 
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 We may obtain the solution directly from the governing equation, 
 

  ( )( ) ( )[ ]tgHUxftgHUxfxth  
2
1 

2
1),(' −++++= , (3.4.12)’ 

 where f preserves the same shape of the initial disturbance but with the 
amplitude reduced to half.  For example, the shallow-water waves with 
the initial disturbance 

  22
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 The governing equation for a two-dimensional, small-perturbation 
shallow water fluid flow over an obstacle can be derived,  
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 which gives the following steady state solution 
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 where F is called the Froude number.   

 Thus, we have 

  shh ∝'          for 1>F ,  

  shh −∝'          for 1<F ,                                                       (3.4.18) 

 Froude number is related to the ratio of KE and PE of the upstream, 
undisturbed basic flow.    

 
Note that in the real atmosphere, ocean, or other geofluid, there is 
density variation with height (i.e., stratification).  Thus, the Froude 
number is often defined as U/Nh in a stratified fluid flow, where N is 
the Brunt-Vaisala frequency and h is the mountain height.  
 

Some scientists argued that the physical meaning of U/Nh is very 
different from the Froude number ( gHUF /≡ ), thus prefer to use 
Nh/U and called it nondimensional mountain height.    
 

However, a recent study of Sun and Sun (2015, Geosci Lett.) shows 
that the Froude number defined as U/Nh can be interpreted in the same 
way as in a shallow-water fluid flow. 
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Fig. 3.3: Five flow regimes of the transient one-layer shallow water system, based on the two 
nondimensional control parameters ( ,/ gHUFo = HhM mc /= ): (a) supercritical flow, (b) flow 
with both upstream and downstream propagating jump, (c) flow with upstream propagating 
jump and downstream stationary jump, (d) completely blocked flow, and (e) subcritical flow.  
(Lin 2007; Adapted after Baines 1995 and Durran 1990) 
 
(a) Supercritical Flow (F > 1) 

If F > 1 far upstream, shh ∝' .  
Thus, h’ increases as hs(x) increases and the interface bows 
upwards over the obstacle (Fig. (3.3a)). Physically, this means that 
the upstream flow has enough kinetic energy to convert to potential 
energy and climb over the obstacle.  This flow regime is called 
supercritical flow.   

 
(e) Subcritical Flow (F < 1) 

If F < 1, then shh −∝' .  
Thus, h’ decreases as hs(x) increases.  
Physically, this means that a fluid particle does not have enough 
kinetic energy to climb over the obstacle. In order to surmount the 
obstacle, the fluid particle needs to draw its potential energy to gain 
enough kinetic energy (Fig. 3.3e).   
 
Over the peak of the obstacle, the fluid reaches its minimum speed.  
This flow regime is called subcritical flow.  The square of F is the 
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ratio of the advection flow speed (U) to the shallow water wave or 
long wave speed ( gH ).    
 
Thus, when the flow is supercritical (F > 1), small disturbance 
cannot propagate upstream against the flow and any obstacle will 
produce a purely local disturbance.    
 
When the flow is subcritical (F<1), shallow water (long) waves 
can propagate upstream.  The steady state effect of this is to 
increase the layer depth upstream, i.e. increases the PE upstream, 
which then converts into KE when the fluid surmounts the 
obstacle.   Thus, the fluid reaches its maximum speed over the 
mountain peak and the water surface dips down. 
 
Note that in this type of “steady state” flow, we have 
 

 H
h

FU
u '1'

2 





−= . (3.4.19) 

 
 Venturi effect: Pertubation fluid velocity (u’) is proportional to 

the perturbation height (h’).  For example, flow speeds up in a 
tube where it is narrower. 
 

 Bernoulli effect: Venturi effect may be derived to obtain the 
Bermoull’s equation if the  continuity equation is involved.  

   
 
 
 
 
 In a transient (unsteady) flow, more flow regimes may occur.  

Dividing Eq. (3.4.17)  
 

.)2/1( 2 constghvp =++ ρρ  

https://en.wikipedia.org/wiki/Venturi_effect
http://sciphile.org/lessons/bernoullis-principle-and-venturi-tube
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by H leads to another nondimensional control parameter, M = 
hm/H, where M is also called nondimensional mountain height. 

 
 Based on F and M, there exist 3 additional flow regimes (Figs. 

3.3c-d), in a single-layer transient shallow water system (Long 
1970, 1972; Houghton and Kasahara 1968). 

  
(b) Flow with both upstream and downstream propagating jump (Fig. 

3.3b)  
 

As either F decreases or the non-dimensional obstacle height M 
increases, the upstream flow is partially blocked and the flow 
response shifts to the regime in which both an upstream hydraulic 
jump (bore) and a downstream jump form and propagate away 
from the obstacle as time proceeds (Regime b, Fig. 3.3b).   
 
In this case, a transition from subcritical to supercritical states 
occurs over the peak of the obstacle.  Very high velocities are 
produced along the lee slope since the potential energy associated 
with the upstream flow is converted to kinetic energy when the 
fluid passes over and descends along the lee slope of the obstacle.  
 
Eventually, a steady state is established near the obstacle and the 
free surface shape acquires a "waterfall-like” profile.   

 
(c) Flow with upstream propagating jump and stationary   

downstream jump (Fig. 3.3c)  
 
As F decreases further, the flow shifts to the regime in which 
another upstream jump forms and propagates upstream, while the 
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downstream jump becomes stationary over the lee slope due to 
the weaker advection effect (Regime c, Fig. 3.3c). 
 
Regimes b and c are characterized by high surface drag and 
large flow velocities on the lee slope and is referred to as the 
transitional flow.  This transitional flow has been used to explain 
the formation of severe downslope windstorms in the atmosphere 
(e.g., Long, 1954; Smith, 1985; Durran, 1986; Bacmeister and 
Pierrehumbert, 1988). 
   

1972 Boulder Severe Downslope Windstorm 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3.4: (a) Analysis of potential temperature from aircraft flight data and rawinsondes for the 
11 January 1972 Boulder windstorm.  (b) A sketch of flow Regime C of Fig. 3.3(c), which may 
be used to explain the phenomenon associated with (a).  Q is the volume flux per unit width.  
(Adapted after Turner 1973; Lin 2007) 
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 A severe downslope wind over the Front Range to the east of the 
continental divide reached a value of over 60 ms-1.   The mechanisms 
for producing severe downslope winds will be discussed in the chapter 
of orographically forced flow (Ch. 5).  An example of an internal 
hydraulic jump occurred in the atmosphere is shown in Fig. 3.5.   
 

                                                                  
Fig. 3.5: A hydraulic jump in a supercritical airflow over the Sierra Nevada mountain range, 
made visible by the formation of clouds, and by dust raised from the ground in the turbulent 
flow behind the jump. (Lin 2007; Photographed by Robert Symons, published in 
Communication on Pure and Applied Math, 20, no. 2, (review by M. J. Lighthill, @John Wiley 
and Sons, Inc., 1967). 

 
(d)  Completely blocked flow  
 With a very small F and M > 1, the flow response falls into the 

regime of completely blocked flow (Regime d in Fig. 3.3d).   
 

 [Nonlinear Effects] If the nonlinear terms are considered, then wave 
steepening and wave overturning may occur.   

 
 The nonlinear effects on wave steepening may be elucidated by 

imaging an elevated wave, which is composed of several rectangular 
blocks with smaller blocks on top of larger blocks.  Since the shallow 
water wave speed is proportional to the layer depth, the speed of fluid 
particles in the upper layer is higher than that in the lower layer.  
Thus, the wave front will steepen and possibly overturn.  In the real 
atmosphere, once overturning occurs, the fluid becomes unstable and 
turbulence will be induced. 
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Fig. 3.6: The evolution of an initial symmetric wave, which is imagined to be composed of 
three rectangular blocks with shorter blocks on top of longer blocks.  The wave speeds of these 
fluid blocks are approximately equal to ( )nc g H nh= + , based on shallow-water theory, 
where n = 1, 2, and 3, H is the shallow-water layer depth, and h is the height of an individual 
fluid block.  The wave steepening in (b) and wave overturning in (c) are interpreted by the 
different wave speeds of different fluid blocks because 3 2 1c c c> > . 

 
 Note that for stratified fluid, the Froude number is defined differently, 

such as 

  Nh
UF =  

It can be derived (Sun and Sun 2015, Geosci. Lett.) that the Froude 
number defined above is equivalent to that defined for shallow-water 
waves, 
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 Many flow characteristics found in shallow-water fluid flow are also 
shown in stratified fluid flow over mesoscale mountains. 

 
 

 
Fig. 6.10: Time evolution of the potential temperature fields (left two columns) and the horizontal velocity 
fields (right two columns) for a two-dimensional, hydrostatic, uniform flow over a bell-shaped mountain 
as simulated by a numerical model.  (Lin 2007; Adapted from Lin and Wang, 1996) 
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Model Intercomparison for the 1972 Boulder Windstorm  
(Mesoscale Alpine Programme-MAP; MAP & MAP D-Phase)  

  
(Doyle et al. 2000 MWR) 

 
     Model Intercomparison for the Terrain-Induced Rotor Experiment (T-Rex) 

 
                                                  (Doyle et al., 2011, MWR) 

 

https://data.eol.ucar.edu/project/MAP
https://iac.ethz.ch/group/climate-and-water-cycle/research/completed-projects/mesoscale-alpine-programme.html
https://www.eol.ucar.edu/field_projects/t-rex
http://journals.ametsoc.org/doi/pdf/10.1175/MWR-D-10-05042.1
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