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Chapter 2. Governing Equations for Mesoscale Motions

2.1 Scales of Atmospheric Flow
» Scaling atmospheric motions is normally based on observational

and theoretical considerations.
» The following horizontal scaling is often used (Orlanski 1975

BAMS):

» Large (synoptic) scale: L > 2000 km

» Mesoscale: 2 km <L <2000 km
o Meso-a scale: 200 km <L <2000 km
o Meso-f3 scale: 20 km <L <200 km
e Meso-y scale: 2 km <L <20 km

» Microscale: L <2 km
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* Sometimes it is more meaningful to adopt a Lagrangian time scale
rather than a Eulerian time scale (L/U).

Table 1.2 Lagrangian time scales and Rosshy mumbers for typical atmospheric systems.
{ Adapted after Emanuel and Raymond 19584

Lagrangian R,
Phenomenon Time scale (= wf=2x/fT)
Tropical cyclone 2nR{Vy rlfR
[nertia-gravity waves 2n(N to 2nf Niftol
Sea/land breezes 2nf 1
Thunderstorms and cumulus clouds 2n/N, Nulf
Kelvin-Helmholtz waves 2n(N Nif
PBL turbulence 2k i
Tornadoes R Vy rlfR

where:

R = radius of maximum wind scale, «» = frequency, T = time scale, Fr = maximum tangential
wind scale, f = Coriolis parameter, ¥ = buovancy (Brunt-Vaisala) frequency, N, = moist
buovancy (Brunt-Vaisala) frequency, [ = scale for friction velocity, k = scale for the depth of
planetary boundary layer.



Table 1: Atmospheric scale definitions (Thunis and Bornstein 1996;
Lin 2007)
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Fig. 1.4: Scale interactions between the jet streak, inertial-gravity
waves, and strong convection (Lin 2007, adapted from Koch 1997)
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2.2 The Governing Equations of Atmospheric Mesoscale Flow

The governing equations of atmospheric motion and processes are based
on:

(a) Newton’s 2" law of motion,

(b) Conservation of mass,

(c) Conservation of energy, and

(d) Ideal gas law.

Newton’s second law of motion is used to derive the horizontal and
vertical momentum equations. These momentum equations are also

called equations of motion.

The set of momentum equations is called Navier-Stokes equations.

The conservation of mass is used to derive the mass continuity equation
or, simply, the continuity equation.

The conservation of energy is then used to derive the first law of
thermodynamics and then combined with the ideal gas law to give the
thermodynamic energy equation.

The equations governing an atmospheric flow, i.e. the momentum
equations, continuity equation, and thermodynamic energy equation, can
be derived and expressed in the following form (Lin 2007),

Du 1 op

_ =—— T 4+ F

oy St 2.2.1)
Dv 1 op

= N Ny

ot = o gt P (2.2.2)
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where D/Dt=0/0t+ud/ox+vo/0dy+wd/oz is the total or material

derivative, which represents the change of a certain property within a

fluid parcel following the motion, and F,, F,,,, and F;, are the viscous

terms in x, y, and z directions, respectively.

» Earth curvature terms need to be considered for larger scale
motions, which are often incorporated in NWP models.

» The friction and heat fluxes (sensible heat and latent heat)
associated with planetary boundary layer (PBL) processes are
normally parameterized by the £, terms in a numerical model.
This proposes a challenging problem in NWP or mesoscale
modeling.

» The diabatic heating rate (¢) represents the surface heating,
elevated latent heating and radiative heating rate per unit mass.
Accurate parameterizations of these processes are essential for
successful NWP.

» Representations of the diabatic heating in NWP models:

(a) The surface heating is part of the PBL processes, thus is usually

represented by PBL parameterization and land surface
parameterization schemes.



(b) The latent heating is represented by cumulus parameterization
schemes (subgrid) or microphysical parameterization (grid
explicit) schemes.

(c) The radiative processes are represented by radiation (radiative
transfer) parameterization schemes.

» The equation set (2.2.1) - (2.2.3) is often referred to as the Navier-
Stokes equations of motion.

2.3 Approximations of the Governing Equations

» Linear Approximation
Considering an atmosphere on a planetary f'plane, the momentum

equations, continuity equation, and thermodynamic energy equation
can be approximated in the following forms, based on perturbation
theory:
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D/Dt=0/0t+ud/0x+v0/0y +wd/0z : the total (material) derivative,

which represents the rate of change of a certain property within

a fluid parcel following the motion,

F,., F,,,and F,, : the viscous terms or frictional forces per unit mass in

the x, y, and z directions, respectively,
¢, : the heat capacity of dry air at constant pressure,

g : the diabatic heating rate per unit mass in J kg'! s,
Q: Is the above set of equations a closed system mathematically?

The system can be closed by adding two additional equations, such as
the equation of state for dry air,

p=pPRyT, (2.2.6)
and the Poisson’s equation

o=T (%O)Rd/c”, 22.7)

where
6 : the potential temperature,
Po: a constant reference pressure level (1000 hPa)

Ry the gas constant for dry air

cp: heat capacity at constant pressure.

For a moist atmosphere, the temperature in (2.2.6) is replaced by the
virtual temperature, which takes into account the moist effects due to
latent heat release, and the density is replaced by the total density,
which is a sum of the dry air density and the total water density.



The above equation set may be linearized by partitioning the field
variables:

u(t,x,y,z)=U(z)+u'(t,x,y,z2)

v(t,x,y,z)=V(z)+V'(t,x,y,2)

w(t,x,y,z)=w'(t,x,y,2)

pt,x%,y,2) = p(x,9,2) + p'(1,x,,2)

p(t,%,y,2) = p(x,y,2) + p'(t,x,,2)

o(t,x,v,z)= g(x,y,z) +8'(t,x,y,2)

T(t,x,y,z)= T(x,y,z) +T'(t,x,y,2)

q(t,x,,z) =4'(t,x,,2) (2.2.8)

where capital letters and overbars represent the basic state and the
primes indicate perturbations from the basic state, such as the
mesoscale flow fields.

The basic state 1s assumed to follow Newton’s second law of motion,
conservation of mass, and the first law of thermodynamics. The basic
state is assumed to be in geostrophic balance,

1 op 1 p
U=—-——— V=—-—
5 and 7P ox (2.2.9)
and in hydrostatic balance,
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e Prg, (2.2.10)



where p = pR,T . Equations (2.2.9) and (2.2.10) automatically imply

the thermal wind balance for the basic state

g@H_V_gGH

T Z_ﬁa’ (2.2.11)
where 6 =T (p, / ﬁ)Rd/C" and subscripts indicate partial
differentiations.
The conservation of mass, (2.2.4), may be written as
Dp ou Ov ow
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where ¢; is the sound wave speed defined as R, T .

The last equality of (2.2.12) is consistent with the geostrophic wind
relation. Conservation of the basic state thermal energy gives

00 00
U4V ===0
>t (2.2.13)
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which implies no basic state thermal advection by the basic wind, and
will be assumed for deriving the perturbation thermodynamic
equation.

The left-hand side of (2.2.13) is required to satisfy the constraint that
the vertical motion field vanishes at the surface and possibly at the
upper boundary for some theoretical studies (Bannon 1986). In the
Eady (1949) model of baroclinic instability, this term is assumed to be
0. In fact, if one assumes ¥V =0, then the above equation is
automatically satisfied because 00 /0x=(f0/g)V,=0, based on the
basic-state thermal wind relations.

Substituting (2.2.8) with (2.2.9) - (2.2.13) into (2.2.1) - (2.2.5) and
neglecting the nonlinear and viscous terms, the perturbation equations
for mesoscale motions in the free atmosphere (i.e. above the planetary
boundary layer) can be obtained,

Ly +Uzw'—fv’+ia£=0 (2.2.14)
o ox Oy p Ox -
YLy Yy e 2 2 g (2.2.15)
ot x Oy poy -
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where N is the Brunt-Vaisala (buoyancy) frequency and H is the scale
height, which are defined as
N =8 00 I c’

CS2 = ]/RT , and )V = £ ) (2219)

Equations (2.2.14) - (2.2.18) form a compressible fluid system that
may include the following types of waves:

(1) pure acoustic waves: ¢; finite,g =0, /=0,
(2) acoustic-gravity waves: ¢,/g finite, f =0,
(3) pure gravity waves: ¢, > o,g #0, f =0, and

(4) inertia-gravity waves: ¢, > 0,2 =0, f #0

In general, the system of (2.2.1)-(2.2.7) may include static (buoyant),
shear (Kelvin-Helmholtz), symmetric, inertial, and baroclinic
instabilities.

» Approximations of the continuity equation

The continuity equation may be derived to be (see Lin 2007),

' —

0 o d —
p+V.Vp+Wd—'LZ)+(p+p)V-V=0’ (2.2.20)

ot

where V' = (u,v,w) . For small-amplitude perturbations, the above

equation reduces to the following linear form:
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% +éI7-Vp'+¥d—p+V-V'=O (2.2.21)
o p p dz ‘ -

'

x|~

(a) Fully compressible continuity equation
Note that sound waves are included in the system, thus a special
treatment of them are necessary, in order to keep the numerical

integrations efficient.

One popular scheme used in NWP models is the time-splitting
scheme in which smaller time step is adopted for simulating the
terms related to sound waves while a larger time step is adopted for

simulating the other terms in the governing equations.

Most of the popular NWP models, such as WRF (NCAR), MM5
(PSU-NCAR), ARPS (OU), CSU-RAMS, and COAMPS (NRL)

models, adopt the time-splitting scheme.

(b) Anelastic or deep convection continuity equation

!

w
v - Yoo

7 (2.3.1)
V-V'e ")=0, or (2.3.2)
V-(pV')=0. (2.3.3)

where H is the scale height. The sound waves are filtered out in this
approximation.
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(c) Incompressible or shallow convection continuity equation
V- V'=0. (2.3.4)

This approximation is valid when L, /H <<1. It is important to
mention that 7 represents the depth of convection (dry or moist) or

disturbance, while H represents the scale height, which is controlled
by the basic structure of the atmosphere, instead of the motion.

» Boussinesq Approximation

A well-known approximation, which has been used widely in
theoretical studies, is the Boussinesq approximation (Boussinesq
1903; see Spiegel and Veronis 1960), which is equivalent to that: (1)

1/L, >>1/H , (2) density is treated as a constant except where it is
coupled to gravity in the buoyancy term of the vertical momentum

equation, and (3) replace 2 and 8 by p,and 6,, respectively.

» For a disturbance with a much larger horizontal scale than vertical
scale, the vertical acceleration generally becomes small and may be
neglected. This leads to the linear hydrostatic equation.

o (8P
_— | = 0’20
. ( = j . (2.3.12)
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