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Chapter 14 Dynamics of Mountain-Solenoidal 
Circulations 
[Based on Ch. 6 of Mesoscale Dynamics (Lin 2007)] 
 
6.6 Dynamics of mountain-plains solenoidal circulations 
 
 The dynamics of mountain-plains solenoidal (MPS) circulations is a 

little explored area of orographically influenced flow and weather 
phenomena.  This is mainly due to the complicated interactions 
between orographic and thermal forcings.   
 

 Taking into consideration sensible heating or cooling over elevated 
terrain results in a considerably more complex flow than has been 
considered until now.  The classical view of orographically and 
thermally forced winds in mountains includes the slope and 
mountain-valley winds.   

 
• During the day, the mountain serves as an elevated heat source due 

to the sensible heat released by the mountain surface.   
 
In a quiescent atmosphere, this can induce mountain upslope flow 
or upslope wind, which in turn may initiate cumuli or 
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thunderstorms over the mountain peak and produce orographic 
precipitation.   
 

• At night, the opposite occurs: surface cooling produces downslope 
drainage flow.    

 
 Based on observations, four stages in the development of a thermally forced 

circulation generated by solar heating in a mountain valley have been identified 
(e.g., Banta 1990):  
 
I. Before sunrise, the nocturnal inversion layer contains drainage flow, 

which generally blows in a different direction from the winds above the 
inversion. Just prior to sunrise, this very stable layer remains adjacent to 
the surface; 

II.  After sunrise, surface sensible heating erodes the inversion layer and 
produces a shallow convective boundary layer (CBL) below the inversion 
layer and the upslope flow; 

III.  The shallow CBL or upslope layer deepens as the surface heating 
continues; and 

IV.  After the nocturnal inversion layer disappears during the afternoon, a 
deep, well-mixed CBL is created.    

 
Linear theories described in Sections 6.1 and 6.2 have been applied to study the combined 
effects of orographic and thermal forcing for mesoscale mountain flow (e.g., Raymond 1972; 
Smith and Lin 1982).  Numerical modeling studies of the combined orographical and thermal 
forcing have been explored as early as the 1960’s (e.g., Orville 1964, 1968).  More 
sophisticated numerical models with a variety of initial conditions have been adopted in the 
more recent studies of mountain-plains solenoidal circulations.  The results given by these 
models have been verified by conventional observations as well as field experiments (e.g. 
Tripoli and Cotton 1989; Wolyn and McKee 1994).   

  
 Figure 6.26 shows a conceptual model for the daytime evolution of the 

MPS circulation.  
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The circulation primarily includes:  

o Transitional stage 
o Developing mountain-plain solenoidal (MPS) stage 
o Migrating MPS stage.   
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The transitional stage occurs when the sun rises.  The most pronounced 
feature of the transition stage is the katabatic jetlike flow down the east 
side of the mountain (Fig. 6.26a).   
 
The slowing of the nocturnal jet on the eastern plains produces a 
convergence that lifts the cold air, thus creating a stable core that is 
shallower farther east of the barrier.  This nocturnal katabatic flow 
weakens as it is affected by the surface heating, and is replaced by a 
mesoscale solenoidal circulation 3-4 h after sunrise (Fig. 6.26b).  
 
A shallow convective boundary layer (CBL) is produced below the 
inversion layer and an upslope flow is produced by the horizontal 
pressure gradient force toward the slope in response to the buoyancy 
associated with the surface sensible heating.  The main upward motion 
of the solenoidal circulation occurs in a narrow zone over the eastern 
slope of the mountain, and is called the leeside convergence zone 
(LCZ).  The LCZ lifts the air into the ambient air above, creating the 
cold core (denoted by “C” in Fig. 6.26b).   
A strong sinking motion occurs to the east of the cold core, creating a 
pressure trough in which the center of the solenoid is located.   The 
horizontal pressure gradient associated with the cold core and the 
trough to the east produces a horizontal wind speed maximum.  A broad 
region of sinking motion is located to the east of the solenoid center.   
 
At the later time of this stage, the sinking and horizontal warm-air 
advection immediately east of the solenoid center is able to warm the 
air enough to create a negative pressure gradient in the stable core 
above the CBL.  
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The final stage of the mountain-plains solenoidal circulation is 
characterized by the eastward migration (Fig. 6.26c). Convergence 
(divergence) near the height of the wind maximum region and 
divergence (convergence) near the surface tend to produce sinking 
motion ahead (behind) the horizontal wind maximum located beneath 
the leading edge of the cold core.   
 
The solenoid center is located in a pressure trough beneath the 
eastward-moving leading edge of the cold core, while the LCZ remains 
anchored over the lee slopes.  Only the migrating MPS may be defined 
as a disturbance, and as thus can significantly affect the atmosphere on 
the plains located east of the system during the daytime circulations.  
The CBL grows explosively and the depth of the upslope flow 
increases when the solenoid passes a location. 

  
The MPS has been shown to be responsible for producing a strong updraft, which in turn 
generated the dominant wave of the second episode of gravity waves observed on 11-12 July 
1981 during the Cooperative Convective Precipitation Experiment (Koch et al. 2001).  A 
gravity wave was generated as the updraft impinged upon a stratified shear layer above the 
deep, well-mixed boundary layer developed by strong sensible heating over the Absaroka 
Mountains.  Explosive convection developed directly over the remnant gravity wave as an 
eastward-propagating density current, produced by a rainband generated within the MPS 
leeside convergence zone, merged with a westward-propagating density current in eastern 
Montana. The complicated interactions of differing sensible heat contributions from complex 
terrain, gravity waves, and convection indicate the need for increasingly detailed observations 
and theories to verify existing MPS hypotheses and gravity wave generation. 
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Appendix 6.1:  Laplace transform  
If a function f(t) is defined in the interval 0 t≤ < ∞ , where t and f(t) are real, then the function 
ˆ ( )f s , defined by the Laplace integral 

 
0

ˆ ( ) ( ( )) ( ) stf s f t f t e dt
∞ −= = ∫L , (A6.1.1) 

where s is a complex number.  The transformation of f(t) into ˆ ( )f s  is called the Laplace transform, 
which is often used to solve differential equations involving time.  The first step is to apply 
(A6.1.1) to transform the differential equation into the Laplace space.  The second is to find the 
solution for the unknown function ˆ ( )f s  in the Laplace space.  The third step is to invert ˆ ( )f s  
back to the physical space f(t), i.e., to take the inverse Laplace transform.  The actual inverse 
Laplace transform involves the contour integration in the complex plane, but in practice it is often 
performed by applying some known properties of Laplace transform, such as the linear property, 
 ˆ ˆ( ( ) ( )) ( ) ( )af t bg t af s bg s+ = +L . (A6.1.2)
   
Some basic properties of Laplace transform and inverse Laplace transform can be found in 
Hildebrand (1976), among other mathematical textbooks.   
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