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Chapter 13 Thermally Forced Flow over 

Mountains 
[Based on Ch. 6 of Mesoscale Dynamics (Lin 2007)] 
 

6. Thermally Forced Flows   

 

 Some of the basic dynamics of thermally forced flows can be 

understood by prescribing diabatic heating or cooling.  This 

approach makes the mathematical problem more tractable.  

 

 These problems include  

 Heat island circulations 

 Sea and land breezes 

 Mountain-plain solenoidal circulations  

 Density current generation and propagation 

 Flow over thunderstorm tops 

 Circulations and gravity waves forced by differential heating 

 Moist convection 

 Orographic precipitation systems.   

 

6.1 Two-dimensional flows 
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6.1.1 Steady flows over a sinusoidal heat source 

 

 For 2D, steady-state, uniform, constant stratification, 

nonrotating, inviscid, Boussinesq flow over a two-

dimensional mesoscale heat source, (2.2.14) - (2.2.18) reduce 

to 
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The above fluid system is similar to that discussed for 

orographically forced flow except with thermal forcing.   

 

Eqs. (6.1.1) – (6.1.4) can be combined into a single equation 

for the vertical velocity: 
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where 222 /UNl   is the square of the Scorer parameter, as 

defined in (5.1.6), for a uniform basic flow (Uzz = 0).   
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The mathematical approach in solving (6.1.5) is similar to the 

problem of flow over mountains except having to treat the 

hermal forcing by using the Green's function method.  

 
 As a first approximation, we may assume a separable heating function, 

 )()(),(' zgxfQzxq o , (6.1.6) 

 where g(z) is normalized according to  

 1)(
0




dzzg , (6.1.7) 

 so that  
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0
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, (6.1.8) 

which represents the total thermal energy added to a vertical column of the atmosphere per 

unit time.   

 

Note that the net heating involved in diabatic processes in a steady state fluid flow tends to 

produce a vertical displacement that continues to increase downstream.  To avoid the net 

heating problem, we impose the constraint 

 0)( 



dxxf , (6.1.9) 

 at every level.   

  

We then apply the Green's function method by assuming the heating is concentrated at height 

z = 0 in an unbounded atmosphere, 

 

 )0()(),('  zxfQzxq o  . (6.1.10) 

 

At the interface, z  = 0, the kinematic boundary condition  (3.7.11) requires that the vertical 

velocity be continuous, i.e. 

 

 '( 0 ) '( 0 )w z w z    , (6.1.11) 

 

 where 
 0z and 

 0z denote the heights just above and below 0z , respectively.   

Substituting (6.1.10) into (6.1.5) and integrating it from 
 0z  to 

 0z  gives the second 

interface condition, i.e. the dynamic boundary condition (3.7.13), 
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The above condition is equivalent to the continuity of perturbation pressure across the 

interface (Ch. 4).   

 

 Away from z = 0, (6.1.5) reduces to the Scorer's equation, i.e. (5.1.5), 

 

 0''' 2  wlww zzxx . (6.1.13) 

 

The mathematical problem associated with appropriate upper and lower boundary conditions 

in (6.1.11) - (6.1.13) is similar to problems encountered in mountain wave theory (Sec. 5.1-

5.2).   

  

 For simplicity, we consider a spatially sinusoidal heating function 

 

 '( , ) cos ( 0)oq x z Q kx z  , (6.1.14) 

 

 and look for solutions in the form of 

 

 kxwkxzwzxw sincos)(),(' 21  . (6.1.15) 

 

 Thus, Scorer's equation, which governs solutions for wi, i=1, 2, becomes 

 

 0)( 22  iizz wklw ,   2 ,1i . (6.1.16) 

 

 As in mountain wave theory, two regimes are associated with (6.1.16), namely,  

 

  (1) 
22 lk  : the evanescent wave regime, and  

  (2) 
22 lk  : the vertically propagating wave regime.   

 

 For , the solutions can be written as 

 

 ( , ) ( ) ( )z z

i i iw x z A x e B x e   ,      for , (6.1.17a) 

  ( , ) ( ) ( )z z

i i iw x z C x e D x e   ,     for 0z  , (6.1.17b) 

 

22 lk 

0z
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 where 
2 2k l   .   

 

Terms and  represent disturbances that increase in the vertical away from the heating 

level, and should be eliminated, i.e, , in order to satisfy the boundedness 

condition, at infinity far from the energy source located at .   

 

 Applying the interface conditions (6.1.11) and (6.1.12) to (6.1.17) leads to 
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As demonstrated in Chapters 3 and 5, the condition  corresponds to 2 / /N L U  , i.e. 

a relatively stronger wind with weaker stability over a narrower heat source.  When 

, the buoyancy force becomes extremely weak and can be ignored.  In this limit, the 

disturbance will approach a potential (irrotational) flow, 

 

    . (6.1.19) 

 

The flow field of the evanescent waves is simply a negative cosine function at the heating 

level ( ), that exponentially decays with height away from this level.  The negative 

phase of the vertical motion and heating will be explained later.   

  

 When , the solution for (6.1.16) can be written as 

 

  , , (6.1.20) 

 

 where .  Combining this with (6.1.15), the above solution can be rewritten as 

 

  ,  

   for , (6.1.21a) 

  , 

   for , (6.1.21b)  

 

As in mountain wave theory, terms with argument  have an upstream phase tilt with 

height and represent upward energy propagation for , while terms with argument 
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 have a downstream phase tilt and represent downward energy propagation for 

.   

 

Since the energy source is located at 0z , the upper and lower radiation conditions require 

0''  ECFD .  Applying the interface conditions (6.1.11) and (6.1.12) to (6.1.21), we 

obtain 
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22 lk   (6.1.22) 

 

The above solution represents vertically propagating waves, which satisfy the radiation 

conditions at z .  Again, the condition 22 lk   corresponds to 2 / /N L U  , i.e. a 

relatively weaker wind with stronger stability over a broader heat source.   

 

The flow response predicted by (6.1.22) becomes hydrostatic for 
22 lk  .  In this limit, the 

above equation reduces to  
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As in mountain wave theory, the above solution at 0x   repeats itself with a vertical 

wavelength of NU /2 , which is referred to as the hydrostatic vertical wavelength.  With a 

typical atmospheric situation of  and , the vertical wavelength of the 

forced wave is about 6.28 km.  As is the case in the mountain wave theory, when the vertical 

displacement ( ) is in a steady-state and the flow is linear,   is related to 'w  through 
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' . (6.1.24) 

 

 Figure 6.1 shows an example for an unbounded, 

hydrostatic, stratified airflow over a periodic heating and 

mzkx  0z

-110 msU  -10.01 sN 
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cooling concentrated at the 0z   level.  

  
 Vertically propagating waves are evident above and below 

the heating level with upstream phase tilting.  

 

   Note that the vertical displacement at the heating level is 

exactly out of phase with the heating and cooling in Fig. 

6.1.  That is, the air parcel is displaced downward (upward) 

in the heating (cooling) region.   

 

 A similar phenomenon has been observed over heat islands.   

For example, Fig. 6.2 shows that, during the daytime, there is 

a downward motion over Barbados followed by an upward 

motion over the ocean on the downwind side.  This is also 

consistent with other theoretical studies on stratified flow over 

a diabatic heat source or sink.  
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 The responses to diabatic forcing are closely related to the 

flow speed or the Froude number associated with thermal 

forcing.   

 

 Another example is that mountain waves may be strengthened 

by sensible cooling (Fig. 6.3b) and weakened by sensible 

heating.  Responses to diabatic forcing are closely related to 

the flow speed or the Froude number associated with thermal 

forcing which will be discussed in Section 6.2. 
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Similar to (5.1.25), the vertical flux of horizontal momentum can be calculated 

by 
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where ( 2 / )L k  is the horizontal wavelength of the heating.  From (6.1.23) 

and (6.1.25), we have 
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The transport of mechanical energy away from the layer of thermal forcing is 

accompanied by a flux of horizontal momentum towards the layer. 

 

To examine the effect of vertical momentum flux, we consider the time-

dependent nonlinear horizontal momentum equation 
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 Taking the horizontal integration over one wavelength yields 

 

  uw
zt

u









, (6.1.28) 

 where  
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Thus, the convergence of the vertical momentum flux tends to accelerate the 

flow.  Note that this acceleration is not explicitly accounted for in linear theory 

since nonlinear terms are neglected.  This acceleration may be relevant to the 

problems of moist convection, heat islands, and orographic precipitation. 

 
 

6.1.2 Steady flows over an isolated heat source 

 

A useful localized heating function may be chosen 
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where Hz  is the level of thermal forcing, 1b  is the half-width of 

the heating function and 2b  is the horizontal scale of the 

compensated cooling.   

 

Substituting the above equation into (6.1.5) leads to 
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Details of the solution can be found below. 

 
Applying the one-sided Fourier transform of ),(' zxw  in x   to (6.1.31) yields (Appendix 5.1), 
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For Hzz  , (6.1.32) reduces to the Scorer's equation, (6.1.13), in the Fourier space, 

 

 0~)(~ 22  wklwzz . (6.1.33) 

 

For a hydrostatic wave (
22 lk  ), the solution may be written as 

 ilzilz BeAezkw ),(~    for Hzz 0 , (6.1.34a) 

 ilzilz DeCezkw ),(~    for zzH  . (6.1.34b) 

  

The lower boundary condition requires 0'w  over a flat surface at 0z  .  As in the previous 

discussion and in the mountain wave theory, the upper radiation boundary condition requires 

0D .  The interface boundary conditions may be determined in a similar manner to that used 

for the periodic heat source problem (subsection 5.1.1) using (6.1.11) and (6.1.12).  Once the 

interface boundary conditions have been determined, applying them to (6.1.34), using (6.1.24) 

and taking the inverse Fourier transform allows us to obtain the vertical displacement for a 

heating concentrated at Hzz  , 

 

  1 1 1( , ) sin ( )cos ( )sinH Hx z A lz T x lz L x lz    ,   for Hzz 0 , (6.1.35a) 

  1 1 1( , ) sin ( )cos ( )sinHx z A lz T x lz L x lz    ,   for zzH  , (6.1.35b) 
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The vertical displacement for heating distributed in a layer can be determined by superposition 

of the above solution through integration.     
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The surface pressure perturbation can be calculated from (6.1.35) using Bernoulli's equation, 

which is obtained by substituting (6.1.3) and (6.1.24) into (6.1.1),  

  

  2

1 1 1'( ,0) ( ) ( )cos ( )sino H Hp x U l A T x lz L x lz   . (6.1.36) 

 

The vertical momentum flux associated with (6.1.35) is 

 

 0D ,                  for Hzz 0 ,                                                 (6.1.37a) 

 2

1 1 2 1 2ln{( ) / 4 }oUA b b b b  D ,               for zzH  ,                (6.1.37b) 

  

The vertical displacement and surface pressure perturbation produced by the thermally 

induced gravity waves satisfy the rigid lower boundary condition 0'w  at 0z , thus 

causing complete reflection of the downward propagating wave produced by the elevated 

heating.  Flux cancellation of the upward and downward propagating waves results in a 

vertical momentum flux of zero between the heating level and the surface.  This gives the 

disturbance no vertical phase tilt.   

 

 The flow response is sensitive to the heating level since the 

upward propagating and downward propagating waves may 

cancel each other out.  If the heating is added very near the 

surface, 1Hlz , the resulting disturbance is extremely small 

and may be neglected.  From (6.1.35), cancellation of the 

direct upward propagating wave and the reflected upward 

propagating wave above zH  can also occur at  nlzH  ,....,2 , ,0 .  

This effect is less evident if the heating is spread over a layer 

of finite depth.   

 

 Figure 6.4 shows an example of the hydrostatic response to 

isolated heating and widespread cooling [(6.1.30)] added at 

2/Hlz .   
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 A downward displacement, similar to that of the sinusoidal 

heating function, is produced near the region where the 

heating occurs.  This relationship will be explained in Section 

6.2.   

 

 The upstream phase tilt of the thermally forced gravity waves 

is evident above the heating level.  The vertical displacement 

at the heating level is repeated every 6.28 km ( 2 / l ).  The 

surface perturbation pressure is shown in the lower panel of 

Fig. 6.4.  The hydrostatic equation indicates that the surface 

pressure is an integral measure of the temperature or density 

anomaly aloft.  The thermodynamic equation implies that the 

heating directly causes the temperature anomaly, while 

thermally-induced vertical motion causes it indirectly.   
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 The relationship between the system’s thermal response and 

the basic flow will be discussed in the following section as it 

is related to a transient flow over a heat source.   
 

 

6.2 Transient flows over an isolated heat source 

6.2.1 Flow responses to pulse heating 

  

 The basic dynamics of flow responses to pulse heating can be 

studied by considering a two-dimensional, inviscid, 

nonrotating, hydrostatic, Boussinesq uniform flow over a heat 

source.  The governing equation can be deduced from (3.2.1), 
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The above equation is similar to (4.2.1).  To solve (6.2.1), we 

again apply Green's function method in the vertical direction.   

 
[Details of the solutions] Taking the Fourier transform in x and the Laplace transform in t of 

the above equation (which transforms '( , , )w t x z  into ˆ ( , , )w s k z ; see Appendix 6.1), yields 
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where )/( iUksiNk  , and 0)Re( s is assumed.  Assuming the heating is released in a 

short pulse at a single level, z = 0, in an unbounded fluid, 
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taking the Fourier and Laplace transforms of the above heating function and substituting it into 

(6.2.2) gives 
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Similar to the steady state problem, the solution for the vertical displacement can be obtained 

by applying the appropriate upper, lower, and interface conditions, yielding 
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In the above equation, the vertical displacement is related to the vertical velocity through

xUtDtDw  ///'  .  Taking the inverse Laplace transform in s (Appendix 6.1) 

and the inverse Fourier transform in k (Appendix 5.1) of the above equation, leads to (Lin and 

Smith 1986) 
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where
2 2/( )K Nt z X b   and UtxX   is the horizontal coordinate in the reference frame 

moving with the basic wind.  The flow response in a moving frame is analogous to a pulse 

heating in a quiescent fluid, as discussed in Section 6.1.   

 

As in the steady state problem, the solution for heating that is distributed in a layer can be 

obtained through the superposition of the heating at a particular level within the heating layer, 

while the solution for a half-plane with a rigid lower surface can be obtained from that in an 

unbounded fluid, (6.2.6), by the method of images (e.g. Hildebrand 1976).   

 

In the method of images, the solution is obtained by superimposing a solution to the original 

forcing and that of its mirror image at the same distance below the rigid boundary (z = 0 in this 

case).  The solution for a heating layer can be obtained by integrating the solution of a single 

level across the heating layer.   
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The vertical displacement at the center of the heating layer ( dzz   to dz  ), where d is the 

half-depth of the heating layer, in the unbounded fluid can be derived to be 
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where bUtxx /)(~  , bNdtt /
~
 , and )0,,()/(~ 2  zxtgQNTc oop  .  We are interested in 

the flow response to pulse heating in two regions: (a) the region of drifting heated air and (b) 

the region of the initial heating.   

 

Figure 6.5a shows the evolution of the vertical displacement 

around the center of drifting disturbance.   

 

 
 This displacement occurs in a reference frame that is moving 

with the basic wind.  The fluid’s early response to the heating 

is an upward displacement at the drifting center and 

downward displacements at the upstream and downstream 

sides of the growing disturbance.   
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 The weak downward displacements are necessary because 

they compensate for the upward motion at the center.  Mass 

continuity requires this downward displacement.   

  

 The vertical displacement at the drifting center ( 0~ x ) grows 

according to the function exp(1 )te .  The final vertical 

displacement ),,(~ zxt   is proportional at all points to the 

total amount of heat received by that air parcel.  This 

displacement can be found by letting t
~  in (6.2.7) 

 

 
1~

1
),,(~

2 


x
zxtD ,    for dzzdz oo  , (6.2.8) 

which is proportional at all points to the total amount of heat 

received by the air parcel. Figure 6.5b shows the 

nondimensional vertical velocity at the center of the pulse 

heating, which corresponds to Fig. 6.5a.   

 

 Once the updraft at the drifting center weakens, the fluid in 

the adjacent regions can rise.  Subsequently, two updrafts 

develop and propagate outward.   

 

 This action is analogous to the left and right moving waves in 

a two-dimensional shallow water system.  These updrafts will 

overcome the downward displacement produced earlier and 

generate upward displacement at a later time, as can be seen 
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from Fig. 6.5a.  When this time is reached, the original 

disturbance will have split in two. 

  

 To find the flow response at the heating center, we set 0x  in 

x~  in (6.2.7).  The nondimensional vertical displacement at the 

origin of the initial pulse heating can thus be obtained 

 

 
2 2 2

2 2 2

1 exp[ / ( 1)]
sin cos

1 ( 1) ( 1)

r
o

r r

t F t t t
t

t F t F t


        
     

       
, (6.2.9) 

where /rF U Nd  is the thermal Froude number.   

 

The above equation reduces to (1/ )sin(1/ )o rt F   when t
~ .  

Therefore, the response of the flow at the heating center ( 0x ) 

is strongly dependent on Fr, and changes sign at 1/rF n . The 

vertical displacement at the heating center decreases as 1/ t

when t
~

, as shown in Fig. 6.6.   
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 The response of the flow at the origin of the pulse heating is an 

upward displacement, followed by a downward displacement 

as the heated air drifts away.   

 

 For a stronger basic flow (larger Fr), the downward 

displacement produced later in the process is associated with 

the compensating downdraft as the growing updraft drifts 

downstream due to the advection effect.  On the other hand, for 

a weaker basic flow (smaller Fr), the advection effect is weaker 

and the growing updraft dominates the flow response near the 

heating center and produces an upward displacement.  This 

advection mechanism helps explain the negative phase 

relationship between the vertical displacement and heating 

shown in Figs. 6.1 and 6.4. 

 

 

6.2.2 Flow responses to steady heating 

   

 As shown in Figs. 6.1 and 6.4, steady heating in a moving 

airstream produces a curiously negative relationship between 

heating and vertical displacement.  That is, heating (cooling) 

produces a downward (upward) displacement in the vicinity of 

the heat source (sink).  This effect is directly related to the 

steadiness of the heating and can be explained as follows: 

  

Taking 0b  and keeping bQo  constant in (6.2.6)  
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gives the vertical displacement of a moving stratified airstream to 

a point heat source that is released initially as a pulse 

 

 2
( , , ) cos

2

oQ bt Nzt
t x z

Nx x




  
  

 
, (6.2.10) 

 

where bUtxx /)(~  .  Since we are interested in the response near 

the origin of the heating, ( , ) (0,0)x z  , the above equation reduces 

to 

 

 
3

2
( ,0,0)

2

oQ b
t

NU t





 . (6.2.11) 

 

Thus, the air is displaced downward proportional to 1t at the 

origin of a pulse heating, consistent with (6.2.9) as t
~

.   
 

 The steady state heat source may be regarded as a succession of very short heat 

pulses, which leads to an accumulated downward displacement by individual pulse 

heating events at the origin of heat source.  This advection mechanism is consistent 

with the group velocity argument (Bretherton 1988).  In the group velocity argument, 

the 1/t decay of the displacement is shown to be a geometrical consequence of 

dispersion in two dimensions.  The growing response to a steady heating is 

understood as the result of energy being pumped into the gravity wave modes, whose 

group velocity is near zero, faster than it can spread in physical space due to 

dispersion.   

 In addition to the advection mechanism and group velocity argument, an 

alternative explanation of the negative relationship between vertical displacement 

and thermal forcing can be made using the energy budget.  A linearized steady state 

energy equation may be derived through a method similar to that used in deriving 

(4.4.5).  Thus, by excluding the basic shear terms and including the diabatic heating 

term, we obtain 
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where ])/' ('[ )2/( 2
o

2  NguE o   is the perturbation wave energy in a hydrostatic 

atmosphere.  According to the above equation, the addition of thermal energy to the 

system requires that steady heating be added where the air is warm or the air density 

is low.  This condition implies that the perturbation flow field must adjust itself so 

that the regions of negative density anomaly (negative displacement) may receive 

the heat.    

The gravity waves produced by a pulse heating in an unsheared flow are 

symmetric about the heating center and impart no net momentum flux to the flow.  

Thus, no vertically propagating gravity waves are produced.  However, a steady 

heating or cooling can generate vertically propagating gravity waves.  The vertical 

displacement for the steady state heating can be obtained by integrating (6.2.6).  

Figure 6.7 shows an example in which a steady state heating is imposed 0t   in an 

unbounded stratified fluid.  The fluid has two separate responses.  First, a region of 

upward displacement is initially generated at the origin of the heat source and is 

subsequently advected downstream by the basic wind.  The amplitude of the 

displacements continues to grow with time.  Note that the peak of the upward 

displacement appears to propagate downstream with a slower speed than the basic 

flow.  Second, there is also a downward displacement in the vicinity of the stationary 

source, which develops at a much slower rate than that of the drifting disturbance.   
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6.3 Applications to mesoscale circulations 

6.3.1 Density current formation and propagation 

 

 Figure 6.8 shows the response of a two-dimensional, 

hydrostatic, stratified flow to a prescribed cooling, which 

represents a quasi-steady cooling due to rain evaporation, in 

the subsaturated layer beneath a thunderstorm, as simulated 

by a nonlinear numerical model.   

 

 
 

 The upward vertical displacement in the vicinity of the heat 

sink resembles the flow structure near the front of a squall 

line, and may provide a possible mechanism for its 

maintenance.  The negative phase relationship between the 

cooling and the vertical displacement (Fig. 6.8a) can be 

explained by the advection mechanism and group velocity 

argument discussed earlier.  The vertical velocity field 
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indicates that flow convergence near the surface causes an 

upward motion upstream of the heat sink due to mass 

continuity, a motion that is responsible for the upward vertical 

displacement.   

 

 Note that a hydrostatic gravity wave is generated above the 

heat sink.  The density field shows that a pool of cold air 

exists near the stationary heat sink (Fig. 6.8b).  The strong 

density gradient in front of the heat sink (x = -35 km) may be 

regarded as an upstream gust front produced by a density 

current.  The high-density region is related to the mesohigh, 

often observed under the strong downdraft region.  On the 

downstream side, the density gradient is weaker than on the 

upstream side due to the advection of the cold air.   

  

 In fact, for a uniform, stably stratified flow with prescribed 

cooling, flow responses are controlled by two nondimensional 

parameters, 1/ 3/( )oU Q Ld and /U Nd , where U is the basic flow 

speed, ( / ) 'o p oQ g c T q  is the cooling rate, and d and L are the 

depth and width of the cooling region, respectively (Raymond 

and Rotunno 1989).   

 

 The second nondimensional number ( NdU /  ) is directly 

proportional to the thermal Froude number (  /rF U Nd ) defined 

in (6.2.9).  Based on these two nondimensional numbers, four 

flow regimes are then identified: (a) supercritical relative to 

both gravity waves and cold air outflow, (b) subcritical 
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relative to gravity waves and supercritical relative to cold air 

outflow, (c) subcritical to both gravity waves and cold air 

outflow, and (d) supercritical relative to gravity waves and 

subcritical relative to cold air outflow.   

 

 If the flow is subcritical relative to the gravity waves, then the 

gravity waves can propagate upstream against the basic flow.   

 

 Similarly, if the flow is subcritical relative to cold air outflow, 

then a density current can form and propagate upstream 

against the basic flow.    

 

 These four flow regimes are shown in Fig. 6.9.   
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 This study is extended (Lin et al. 1993) to investigate the 

flow response and the interaction between gravity waves and 

cold air outflows.  It is found that a density current is able to 

form or is destroyed depending on the interaction between 

the traveling gravity wave and the cold air outflow. 

 

 

6.3.2 Heat island circulations 

 
A heat island is defined as a local area which is significantly warmer than its surroundings. When 

this happens in a metropolitan area, it is referred to as an urban heat island.   

 

 The linear theory discussed in the previous section has been extended to the case of weakly 

nonlinear flow (Chun and Baik 1994; Baik and Chun 1997).   

 

 The nonlinear component of the solution indicates that the downward or upward motion 

downstream depends on the heating depth, or the thermal Froude number (Fr).   

 

When Fr  is small (Fig. 6.10) but still within a valid range for the perturbation expansion to be 

valid, the linear and weakly nonlinear effects work together constructively to produce 

enhanced upward motion on the downstream side of the heat island.  This motion occurs not 

far from the heating center.   

 

 These findings might explain to a greater extent the precipitation enhancement observed 

downstream of a heat island than linear effects alone (Hjelmfelt 1982).  The effect of rainfall 

enhancement is often explained by the addition of condensation nuclei introduced by the urban 

heat island into the airstream.   

 

 However, from the above theories, the urban heat island effect can create a stationary heating 

source that produces ascent under a certain range of the thermal Froude numbers.  Thus, a 

combined study of the addition of condensation nuclei and of thermal effects may be required 

to fully understand this phenomenon.   
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6.3.3 Moist convection  

 

 Application of the linear theory involving prescribed cooling is useful for studying the 

dynamics of snow melting-induced mesoscale circulations.   Although the latent heat of 

melting is eight times smaller than the latent heat of evaporation, melting is concentrated in a 

shallow layer of near 0oC temperature.  Thus, the cooling rate induced by melting can be 

comparable to that induced by evaporation (Robichaud and Lin 1989).   

 

 Most rainfall in the midlatitudes is initiated through ice formation processes followed by 

melting.  The transition from the solid to liquid phase normally takes place in an atmospheric 

layer that appears as a layer of enhanced reflectivity called a bright band.   

 

 Theoretical studies of flow responses of a stratified flow to a prescribed temperature 

perturbation were found to be useful for understanding the dynamics of snow melting-

induced mesoscale circulations (e.g., Szeto et al. 1988; Lin and Stewart 1991).  It is found 

that thermally induced circulations have a length scale similar to that of the temperature 

perturbations that produce them.  The updraft branch of the thermally induced circulation 

may enhance precipitation in a saturated environment.   

  

 The transient flow responses to prescribed heating and cooling obtained from linear theories 

can also help us understand the mean flow and shear effects in the adjustment to latent 

heating in cumulus cloud fields and, consequently, to improve the schemes of cumulus 

parameterization (Bretherton 1993).   

  

6.3.4 Gravity wave generation and propagation 

 

 Section 4.2 introduced examples of theoretical studies of stratified flow over 

prescribed heating or cooling to gravity wave generation. These types of studies 

can also be applied to wave propagation.   

 

 For example, based on analytical solutions of the transient linear response of a 

quiescent, two-dimensional, nonrotating atmosphere to prescribed low-level 

steady heating, it is found that two modes exist in the flow when the atmosphere 

is bounded above by a rigid top: (1) a deep fast-moving mode, responsible for 

subsidence warming throughout the depth of troposphere, and (2) a slower 
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moving mode, corresponding to midlevel inflow and lower- and upper-level 

outflows (Fig. 6.11a; Nicholls et al. 1991).   

 

 The linear hydrostatic solution shows a region of upward motion extending in a 

jetlike flow from the top of the heat source (2.5 km).  Upward propagating gravity 

waves are clearly shown by the vertically tilted phase lines.  Regions of 

compensating weak downward motion are thus produced and propagated 

outward from the heating center.   

 

 Note that the positive phase relationship between the vertical motion and diabatic 

heating is anticipated for a low thermal Froude number flow, which is 0 in this 

extreme case because U = 0.  The nonlinear, numerically simulated flow response 

for an atmosphere with constant stratification is similar to the response obtained 

through linear theory (Fig. 6.11b).   

 

 The numerical simulation is more realistic: the atmosphere is stable in the lower 

troposphere, less stable in the upper troposphere and more stable in the 

stratosphere.  Significant wave reflection occurs under these conditions.   

 

 For a rigid-lid solution, the outward-propagating downward motion occurs at 

160 kmx    corresponding to the n = 1 mode, while vertically oriented gravity 

waves with shorter vertical wavelengths occur at 60 kmx    below 5 km 

corresponding to the n = 2 mode.  These propagating waves are similar in 

structure to the gravity waves produced in two-dimensional numerical 

simulations of convection occurring over the Florida peninsula.   

 

 Another example of gravity wave generation and propagation studied by 

prescribing diabatic cooling is shown in Fig. 4.3, in which a nonhydrostatic 

model is used to simulate a density current in an environment characterized by a 

complex stratification and vertical wind.  It is found that the density current 

generated gravity waves, which then propagated along the current itself.  Figure 

4.4 provides an additional example of gravity waves generated in the stratosphere 

by moist convection.    
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6.4 Effects of shear, three dimensionality and rotation 

6.4.1 Two-dimensional shear flows 

 
The effects of vertical shear on thermally forced flow, such as squall lines and convective cloud 

bands, are well documented.  One example is the moist convection associated with midlatitude 

squall lines, such as shown in Fig. 6.12.  In particular, this squall line exhibits a critical level near 

6 km.  Note that the critical level coincides with the wind reversal level in a steady-state flow 

because the phase speed is 0 (Sec. 3.8; Sec. 5.3).  In this section, we will investigate the effects of 

vertical shear in a thermally forced flow in a simple environment. This will help us understand its 

effects in more complicated mesoscale circulations.   

 The effects of shear flows with thermal forcing can be discerned by considering a two-

dimensional, unbounded, steady-state, small-amplitude, non-rotating, inviscid, Boussinesq, shear 

flow with constant buoyancy frequency over a heat source,  
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The above equation is a special form of the Taylor-Goldstein equation, (3.7.19) except that 

0/  t  and with the addition of the diabatic heating term.  To simplify the problem, we further 

assume the basic wind varies linearly with height, 

 ( )U z z ,      (6.4.2) 

where /U z     and 0z is the critical (wind reversal) level.  The mathematics can be further 

simplified by assuming that the heating function is separable in x and z directions,   

 )()(),(' zgxfQzxq o .    (6.4.3) 

and the flow is hydrostatic ( 2 2 2 2/ /x z     ).  Substituting (6.4.2) and (6.4.3) into (6.4.1) and 

taking the Fourier transform in x  yields 
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.    (6.4.4) 

 Once the heating function is known, the above problem can be solved in a way similar to that 

used to solve the uniform flow problem discussed in Sections 3.8 and 6.1.  For example, if we take 

a prescribed isolated heating contained in the layer from the surface to a level below the critical 

level H1, )()(' xfQxq o for 1z H , the general solution of (6.4.4) is  

 
1/ 2ˆ ( , ) iw k z Az  ,     1z H     (6.4.5a) 
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1/ 2ˆ ( , ) iw k z Dz  ,     1H z ,    (6.4.5c) 
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where 4/12  Ri  and )/( 22 NRi   is the Richardson number.  Similar to the boundary 

conditions discussed in Section 3.8, the upper radiation condition has been imposed in the lower 

and upper layer.  Following a similar procedure as in Section 6.1, the interface conditions at 

1Hz  can be derived.  They require both ŵ  and zŵ to be continuous across the interface.  

Special attention should be paid to the solution at the critical level, which is similar to that 

discussed in Section 3.8.    Figure 

6.13 shows the streamlines and vertical velocity field for a two-dimensional, steady-state, 

unbounded, stratified, shear flow with a critical level over an isolated heat source, similar to that 

in Fig. 3.14b except that the atmosphere is unbounded and there is heating at the critical level.  The 

Richardson number of the basic flow is 1Ri .  The presence of thermal forcing in the vicinity of 

the critical level significantly modifies the flow.  Below the critical level, the fluid particle 

undergoes a downward motion upstream (on the left side) of the heating center, followed by an 

ascending motion downstream (Fig. 6.13a).  This broad descending motion can be explained by 

the advection effect and group velocity argument discussed in Section 6.2.  In the vicinity of the 

critical level, however, the fluid particle in the lower layer experiences a strong upward motion 

near the heating center, crosses the critical level, and then returns to the left of the domain in the 

upper layer.  The flow near the concentrated heating region is strongly dominated by an upward 

motion (Fig. 6.13b).  The in-phase relationship between the vertical motion and the heating, which 

is to be explained in the next paragraph, is important in order to maintain the convection.  Away 

from the concentrated heating region, the upstream phase tilt induces upward (downward) 

propagation of wave energy in the upper (lower) layer.  When applied to the dynamics of moist 

convection, the condensational heating in the vicinity of the critical level appears to facilitate the 

flow interaction above and below the critical level.   In fact, the flow circulation in the vicinity of 

the heating area is somewhat similar to that associated with the squall line observed on 22 May 

1976 (Fig. 6.12).     

 The in-phase relationship between the vertical motion and the heating in the heating region at 

the critical level can be explained by considering the steady-state thermodynamic equation, 
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At the critical level ( 0z  ), 'w is proportional to 'q  because the basic wind disappears.  This also 

means that no temperature anomalies are produced directly by the heating at the critical level.  In 

fact, at the critical level, the nondimensional form of the relationship between vertical velocity and 

diabatic heating may be expressed as Riqw /~~  .  Thus, the vertical velocity at the critical level 

increases as Ri decreases for a constant heating rate.  As discussed in Section 3.8, for 

0.25 2.0Ri  , a significant amount of the wave energy is reflected and some of it is also 

transmitted through the critical level.  This also helps to explain the strong interaction between the 

flow above and below the critical level for cases where 1Ri   (Figs. 3.14b and 6.13).  For 

0.25Ri  , overreflection can occur.   
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 Note that a small perturbation in the horizontal velocity field may easily exceed the basic 

horizontal flow velocity in the vicinity of the critical level, thereby resulting in a highly nonlinear 

flow.  In order to study the nonlinear effects, a nonlinear numerical simulation is conducted with 

a setting similar to that in Fig. 6.13.  Figure 6.14a shows the nonlinear response in a thermally 

forced flow.  The basic wind has a hyperbolic tangent profile with Ri = 0.1 at the wind reversal 

level ( 5 kmiz  ).   The nonlinear transient response (Fig. 6.14a) is approximately similar to the 

steady state linear solution for a linear shear flow over isolated heating (Fig. 6.13) and the transient 

linear flow response (Fig. 6.14b).  The closed circulation centered at the critical level resembles 

the squall line observation shown in Fig. 6.12 and simulated by the wave-CISK model (Fig. 4.19b). 

The major difference of the nonlinear response relative to the linear response is that the former is 

stronger and more compact.  The following energy argument can be used to explain the upshear 

phase tilt of the upward motion in the shear layer, as shown in Fig. 6.14.  Since there is shear 

instability, the local rate of change in total perturbation energy is positive, which, in turn, requires 

the vertical momentum flux term (integral of uwU zo ) to be negative in the whole domain for 

0zU .   This condition requires an upshear tilt of the vertical motion.  This aspect will be further 

discussed in Section 7.1. 

 This type of approach for treating thermally forced flow in simple environments has been taken 

to help understand various mesoscale circulation problems in the atmosphere. Related 

developments include: (a) squall line initialization in numerical models (Crook and Moncrieff 

1988), (b) the response of a nonlinear shear flow with a critical level to a steady cooling (Lin and 

Chun 1991), (c) amplification mechanisms for melting-induced circulations (Robichaud and Lin 

1989), (d) the effects of evaporative cooling in a three-layer flow with a critical level (e.g. Chun 

and Lin 1995), (e) the role of internal gravity waves in modifying the behavior and structure of a 

simulated squall line (Schmidt and Cotton 1990), and the effects of variable wind shear on the 

mesoscale circulations (Reuter and Jacobsen 1993), (f) the transient responses in a shear flow with 

critical level (Baik et al. 1999), and (g) the convective gravity wave drag parameterization (Song 

and Chun 2005).   

 

6.4.2 Three-dimensional nonrotating flows 

 The small-amplitude equation governing the vertical velocity for a steady state, three-

dimensional, stratified, incompressible, Boussinesq, non-rotating flow can be reduced from 

(2.2.14)-(2.2.18) to the following, 
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The procedure involved in obtaining the analytical solution is also similar to that in the mountain 

wave theory described in Section 5.4.1 except that the Green’s function method is employed here 

to solve the problem with interface boundary conditions. 

 By considering a special case with uniform wind UzU )( and 0V , and a bell-shaped heat 

source with circular contours, 
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zQ
zyxq o ,  (6.4.8) 

in an unbounded atmosphere, the problem can be solved analytically in the Fourier space and then 

transformed back to the physical space by applying a fast Fourier transform (FFT) algorithm.    

 Figure 6.15 shows the nondimensional vertical displacement of a three-dimensional, 

hydrostatic, continuously stratified, uniform flow over an isolated shallow heat source added at 

0z  .  The surface, assumed to be flat, is located at z   .  The basic flow is directed from left 

to right.  The fluid response to the heating at the heating level ( 0z  ) is a downward displacement 

upstream of the prescribed heat source followed by an upward displacement downstream (Fig. 

6.15b).  This response is similar to that given by the thermally-induced two-dimensional flow with 

high Froude number discussed earlier in this chapter.  The region of disturbance generally widens 

as one moves above and below the heating level.  At / 2z  , a V-shaped pattern, which is similar 

to the U-shaped disturbance as discussed in Chapter 5, in the region of upward displacement forms 

above the heating center (Fig. 6.15c).  This region of upward displacement shifts upstream as one 

moves higher as required by the upper radiation condition.  This upstream movement allows the 

heating-generated energy to propagate upward to infinity.  At UNz /  (Fig. 6.15d), the V-

shaped region of upward displacement shifts further upstream and widens in the cross-wind 

direction.  In addition, a region of downward displacement also forms downstream of the V-shaped 

region of upward displacement.  The response is almost periodic in the vertical and the flow fields 

at 2// UNz  and 2/  (Figs. 6.15a and 6.15c) are quite similar.   

 The flow behavior is similar to the three-dimensional flow over an isolated mountain and the 

formation of a V-shaped pattern of upward displacement can be explained using a group velocity 

argument (Fig. 5.17; Smith 1980).  The pattern is produced by basic wind advection of the heating-

generated upward propagating gravity waves, while the wave energy is concentrated in the V-

shaped region trailing downstream.   The hydrostatic group velocities (5.4.23) can be extended for 

a nonhydrostatic flow,  
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The propagation of the wave energy associated with quasi-steady waves forced by a prescribed 

heating in an unbounded, nonhydrostatic, shear flow is sketched in Fig. 6.16.  Above the heating, 

the energy propagates upward and upstream relative to the air (cga+), but is then advected 

downstream by the basic flow.  Thus, the wave energy is along the direction of cgh+ or cgh- relative 

to the heat source.  The nonhydrostatic effects are the main cause of the formation of the 

disturbance’s repeating, damped oscillations.  The wave energy is concentrated in the region 

enclosed by the parabola:   
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 The response to a heating layer from 1z  to 2z  can be obtained by taking a continuous 

superposition (i.e. integration) of ),,(' ozyxw  with respect to oz , where 21 zzz o  , and 

),,(' ozyxw  is the Green’s function solution for heating applied at a single level oz .   In the absence 

of a basic wind (U = 0), the vertical velocity distribution corresponds to the axisymmetric shape 

of the heat source, thus resulting in upward motion over the region of heating.  This in-phase 

relation of the vertical displacement and heating is present over a wide range of values of the basic 

wind in the three-dimensional flow.  In contrast to the two-dimensional thermally-induced flow 

responses discussed earlier, only in strong basic winds does downward motion develop over the 

heating layer.  Physically, this occurs because part of the flow is able to circumvent the isolated 

three-dimensional heat source.  In a region where no thermal forcing exists, such as in Figs. 6.15a, 

c, and d, the temperature perturbation is inversely proportional to the vertical displacement 

according to  )/(' 2 gN o .  In other words, the V-shaped regions of upward (downward) 

displacement will adiabatically produce cold (warm) air.   

 The above theory and its extension through the inclusion of vertical wind shear have been 

applied to explain the formation of the V-shaped cloud anvil over a thunderstorm cloud top, as 

observed via satellite imagery (e.g., Adler and Mack 1986).    V-shaped cloud anvils have often 

been observed over severe midwestern thunderstorm cloud tops that rise above the tropopause 

level.  These thunderstorm cloud tops normally are measured on a scale on the order of 10 km and 

are typically embedded in more diffuse V-shaped anvils with lateral widths of over 100 km and 

lengths of several hundred kilometers.  Figure 6.17a shows the V-shaped cloud top features based 

on the analysis of a satellite image.  Prominent features of this thunderstorm top are: (a) a region 

of lowest cloud top temperatures associated with the updraft air overshooting the tropopause, (b) 

a V-shaped region of lower equivalent blackbody temperature with the point of the V either at or 

above the cloud top, and (c) a region of higher temperatures 20-40 km downwind of the cloud top 

(i.e. the closed-in warm area), forming a cold-warm thermal couplet with (a).  Figure 6.17b shows 

the vertical velocity field at z = 14 km predicted by a linear theory of hydrostatic flow over a 

prescribed heating distributed from z = 1.5 km to 12 km and a linear unidirectional vertical shear 

of the basic wind.  The V-shaped region of upward (downward) displacement corresponds to the 

cold (warm) region resulting from adiabatic cooling (warming), which mimics the observed V-

shaped cloud anvils over severe thunderstorms (e.g. Fig. 6.17a).  The asymmetric, skewed V-
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shaped cloud anvils result from the advection effects of directional shear flow.  In addition to the 

thermal forcing, other mechanisms, such as the mechanical forcing by the cloud top (e.g., 

Heymsfield and Blackmer 1988), the mixing of stratospheric and cloud air (e.g., Adler and Mack 

1986), and injection of the plume of cloud water vapor into the stratosphere (e.g., Wang 2003), 

have been proposed. 

 

6.4.3 Three-dimensional rotating flows 
Equations (5.1.1) – (5.1.4) can be extended to investigate the three-dimensional, steady-state, 

small-amplitude response of an inviscid, stratified, hydrostatic, Boussinesq flow on an f plane to a 

thermal forcing, 

  0o x xR u v    ,  (6.4.11) 

  0o x yR v u    ,  (6.4.12) 

 0z b   ,  (6.4.13) 

 0x y o zu v R w   ,  (6.4.14) 

 xb w q  ,  (6.4.15) 

where Ro=U/fa is the Rossby number, ’ (=p’/o) the perturbation kinetic pressure, b’ (=g’/o) 

the perturbation buoyancy and a the half-width (horizontal scale) of the heat source or sink.  The 

nondimensional variables are defined as 

 ( , ) ( / , / )x y x a y a ;  /z z H ; 

 ( , ) ( '/ , '/ )u v u U v U ;  ' / ow w b R UH ; 

 '/( ) '/( )ofUa p fUa    ; ' /( ) ' /( )ob b H fUa g H fUa   ;  

 )/(' 2 fUTcgHqq op .   (6.4.16) 

where H=fa/N is the deformation depth.   

 Equations (6.4.11) – (6.4.15) can be combined into a single equation of w (with primes ignored) 
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Again, the mathematical problem can be solved using the Green’s function method.  For simplicity, 

we prescribe the surface heating as 

 ,   (6.4.18) 

whereis the nondimensional heating depth.  Taking the double Fourier transform (Appendix 

5.1) of the above equation in both x and y directions leads to  
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The general solution of the above equation is 

/),(),,( zeyxhzyxq 
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There exist two flow regimes for (6.4.20): (a) 122
kRo  and (b) 122

kRo .   

 For 122
kRo , the upper radiation boundary condition requires B = 0 in order to allow the 

energy to radiate upward.  Over a flat surface, the lower boundary condition requires w = 0 at z = 

0.  Applying the lower boundary condition, the solution may be written as 
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For 122
kRo , the upper boundary condition requires the solution to decrease with height.  Thus 

it requires A = 0 and the solution becomes 
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As long as the heating function, ( , )exp( / )h x y z  , is known, the solutions in the physical space 

can be obtained by performing inverse double Fourier transforms on (6.4.21) and (6.4.22).  

Because the inverse Fourier transform tends to be analytically intractable, a numerical method, 

such as a FFT subroutine, is often employed.   

 Consider a bell-shaped warm region as 
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 
, (6.4.23) 

where o  is the maximum temperature anomaly of the warm region. To a first approximation, the 

diabatic heating rate associated with this specified warm region in a basic flow can be prescribed 

by )0,,(' yxq  = ),(' yxh   xUTc oop  /' )/(   if the diabatic heating is mainly created and 

maintained by the horizontal temperature advection.  Thus, a prescribed warm region, as described 

by (6.4.23), implies that a coupled diabatic heating and cooling are present in the basic flow. A 

more realistic representation of the sensible heating in the boundary layer could be used in a 

parameterization (see Chapter 14), but this would require a numerical model to solve the problem.   

 Figure 6.18a shows the response of an inviscid, hydrostatic, westerly flow to an isolated warm 

region near the surface. A region of upward motion concentrated in the warm region followed by 

a region of downward motion downstream is produced.  Note that the descent that occurs upstream 

and over the heating region, as found in the two-dimensional case for a large Ro flow, is absent for 

most values of Ro in a three-dimensional flow due to lateral deflection.  In addition, a cyclonic 

flow exists on the lee side of the warm region.  The relatively strong advection effect moves the 

thermally forced cyclonic flow out of phase with the warm region.  Note that the positive vorticity 

or cyclonic flow is not in phase with the low pressure for such a relatively high Rossby number 

flow.  This occurs because the vertical motion still plays a significant role in the vorticity equation, 

zo wkiRK ˆˆˆ 22   .   The vertical velocity field on the vertical plane across the heating center 
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has a strong upstream phase tilt, indicating that the wave energy produced by the diabatic heating 

and cooling associated with the prescribed warm region is able to propagate upward (Fig. 6.18b).   

 Figure 6.19 shows a case simimiar to that of Fig. 6.18 but with 0.2oR  , which falls mostly in 

the regime 2 2 1oR k  .  A region of upward motion is produced on the heat source and followed by 

a downward motion to the downstream side of the heat source.  These regions are a direct 

consequence of the heating and cooling that the prescribed heating function produces (Fig. 6.19a).  

The positive vorticity or cyclonic flow is more in phase with the warm region ( ' 0  ), and the 

low pressure, than in Fig. 6.18a.  The flow response is similar to that predicted by the quasi-

geostrophic theory except that the advection effect makes the disturbance stronger and allows a 

small amount of energy to propagate upward, as shown in Fig. 6.19b.  The oscillating pattern on 

the lee side of the heat source (Fig. 6.19a) is caused by the dispersion associated with the 

evanescent inertia-gravity waves near the surface (Fig. 6.19b).  For 1oR k  , the first term inside 

the square bracket on the right hand side of (6.4.22) exponentially decays with height, therefore 

reducing the above fluid flow system to the quasi-geostrophic flow (Table 3.2).  This is consistent 

with the results shown in Figs. 6.18 and 6.19. 

 The above three-dimensional theory has been extended to investigate various mesoscale 

problems with surface sensible heating associated with the Gulf Stream to the east of the Carolina 

coast, such as (a) lake effects on snowstorms in the vicinity of Lake Michigan (e.g. Hsu 1987; 

Sousounis and Shirer 1992), (b) coastal cyclogeneis in a baroclinic flow using a semi-geostrophic 

model (Lin 1990), and (c) coastal frontogenesis using a linear theoy (Riordan and Lin 1992) and a 

nonlinear primitive equation model (Xie and Lin 1996).  For example, Fig. 6.20 shows a 

conceptual model under various basic wind conditions for the coastal frontogenesis associated with 

confluence zones and low-level jets.  The coastal front forms at the confluence zone which is 

located at different points relative to the Gulf Stream front (i.e., the major axis of the heat source).  

Advection and rotational effects play a significant role in this thermally forced flow.  This approach 

helps understand the basic dynamics of coastal frontogenesis as revealed in observational analyses 

(e.g. Riordan 1990), and sophisticated numerical simulations (e.g. Doyle and Warner 1993).    

 

6.5 Dynamics of sea and land breezes 

 Sea and land breezes are the atmosphere’s response to the differential surface heating across 

coastlines or shores of large lakes.  They have been recognized among fishermen for several 

centuries and have been studied extensively by meteorologists for several decades to the present 

day.  Figure 6.21 shows an example of a sea (lake)-breeze circulation observed near Chicago.  

Aside from the difference in forcing and circulation scales, the basic dynamics of sea-breeze 

circulations and lake-breeze circulations are identical.  During the day, a smaller heat capacity 

causes the land to heat up more rapidly than the adjacent water surface.  As a result, the air above 

the land surface expands and rises.  At a height of about 1 km or the top of the convective boundary 

layer, the rising air spreads outward, creating an area of low pressure near the surface of the land.  

Less heating takes place over the adjacent water, thus causing the air pressure to be greater over 

water than over land.  A sea breeze then develops as cooler air over the sea or lake is pushed 
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toward the land by the pressure gradient force.   As a sea breeze advances toward land, a distinct 

boundary forms between cooler maritime air and the continental warmer air it displaces.  This 

boundary is called the sea breeze front, and is characterized by often producing an abrupt drop in 

temperature by as much as 5 to 10oC as it passes overhead.  The cooling effect of the sea breezes 

may reach a maximum distance of 100 km inland in the tropics and 50 km in midlatitudes.  Across 

lakeshores, the scale of sea breezes is smaller.  At night, the situation reverses: the land cools more 

rapidly than the sea and a land breeze develops.   

 The intensity and reach of sea and land breezes depends on location and time of year.  For 

example, sea breezes are more frequent and intense in the tropics due to intense solar heating 

throughout the year.  In the midlatitudes, sea breezes are more frequent during the warmer season, 

but the land breezes are often missing because the land does not always cool below the ocean 

temperature.  In higher latitudes, the atmospheric circulations are often dominated by high- and 

low-pressure systems, making sea and land breezes less noticeable.  Sea breeze circulations can 

be described in terms of the depth between the lower current and the upper “return” current, and 

their horizontal extent.  Sea breeze depth ranges from just over 100 m to 1 km or higher.  

Dynamically, sea and land breezes are influenced by the diurnal variation of differential heating 

across the coastline, diffusion of heat, stability, the Coriolis parameter, and friction.  Ideally, these 

effects can be understood and predicted by theoretical and numerical models.  In the following, 

we will make a brief description of their fundamental dynamics.   

 

6.5.1 Linear theories 

 The basic dynamics of sea and land breezes can be understood by considering the following 

set of equations governing the two-dimensional (across the coastline), small-amplitude, 

Boussinesq fluid flow, 
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where the 1rF , 2rF , and 3rF  terms represent the viscous forces in the x, y, and z, directions, 

respectively.  The above equation set is similar to (6.1.1) – (6.1.4) except that they are time-

dependent, and contain viscosity and Coriolis force terms, as well as the y-momentum equation.  

A simple and common approach used to represent the viscous force in the planetary boundary 
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layer is to assume the Fickian diffusion, ( 1rF , 2rF , 3rF ) = )' ,' ,'( 2 wvu , or ( 1rF , 2rF , 3rF ) = 

)' ,' ,'( )/( 22 wvuz , where 22222 // zx   and   is the eddy viscosity.   

 Combining (6.5.1) – (6.5.5) with the frictional terms neglected and the thermal forcing term, 

regarded as a known function, leads to a single governing equation for w’ 
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where ')/( qTcgQ op . Equation (6.5.6) reduces to (6.2.1) for a nonrotating and hydrostatic flow.  

Assuming  

 ) ()ˆ ,ˆ() ,'( tkxieQwQw  , (6.5.7) 

and substituting it into (6.5.6) yields 
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where kU  is the Doppler-shifted frequency.  The above equation is similar to (3.6.8) except 

with the assumption of two-dimensionality and the addition of diabatic heating.  Equation (6.5.8) 

contains a thermally forced mode and a free mode.  Thus, as discussed in Chapter 3, the free mode 

includes the following three major flow regimes: (1) fN  : high-frequency evanescent flow 

regime; (2) fN  : vertically propagating inertia-gravity wave regime; and (3)  fN : low-

frequency evanescent flow regime.  The disturbance decays exponentially with height and is 

confined to its neighborhood for evanescent flow regimes. It is able to propagate vertically as 

inertia-gravity waves for the vertically propagating inertia-gravity wave regime.   

 In applying (6.5.8) to sea breeze circulations with no basic wind ( 0U ), the thermal forcing 

is controlled by the diurnal cycle of sensible heating, which has an intrinsic frequency ( ) of 7.272 

x 10-5 s-1 (= 2 / 24h ).  Since  is generally much smaller than N , (6.5.8) approximately reduces 

to 
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and only two flow regimes exist in the system, i.e. the vertically propagating inertia-gravity wave 

regime ( f ), and the low-frequency evanescent flow regime ( f ).  In addition, the regime 

where f  should be considered (Rotunno 1983).  In this particular flow regime, friction needs 

to be considered; otherwise (6.5.9) is singular.   

 This inviscid theory gives different flow regimes for latitudes higher and lower than 30o.  In 

reality, however, the effects of friction and thermal diffusion influence the critical latitude that 

separates the vertically propagating inertia-gravity wave regime from the low-frequency 

evanescent flow regime.  By prescribing the heating function as an arc tangent function and 

introducing a streamfunction   ( ' /u z   ; xw  /'  ), a mathematical problem similar to 

that governed by (6.5.9) has been solved analytically (Rotunno 1983).  Figure 6.22 shows the 
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nondimensionalized horizontal velocity and vertical velocity fields for f .  The horizontal 

scale of the sea breeze is confined within a distance of order 2  2/Nd f  , where d is the vertical 

scale of heating.  When f , the response associated with the sea breeze circulations is in the 

form of inertia-gravity waves.   

 The above theory was extended to include Rayleigh friction [
1 2 3( , , ) ( ', ', ')r r rF F F u v w  ] and 

Newtonian cooling ( 'Q   ).  It is found (Dalu and Pielke 1989) that: (a) when friction is small, 

periodicity in the forcing enhances the intensity and the horizontal scale of the breeze; (b) when 

the friction e-folding time is of the order of one day, the opposite is true; (c) when the dissipation 

is small ( 222 f ), waves might occur after a few days of sea breeze below the latitude 







   2/sin 221 , which is lower than the 30o derived from inviscid theory; and (d) wave 

patterns below a latitude of 30o predicted by inviscid linear theory are likely to be rare.   

 Although friction controls the diffusion of momentum, it is not necessarily important for 

producing the sea breeze circulations (Niino 1987).  Friction is important in satisfying the no-slip 

lower boundary condition at the ground level and producing a realistic wind profile near the 

ground.  Thus, the vertical scale of the heating is a function of viscosity and cannot generally be 

prescribed as in the above linear theory.  With the effects of friction included, it is found (Niino 

1987) that: (a) the singularity at 30o latitude vanishes, (b) the horizontal extent of the sea breeze is 

controlled by 1/ 2 3/ 2

* ( )N g f  , where N is the buoyancy frequency,   the eddy thermal diffusivity, 

*  the frequency of sea breeze toward the ground, and ( )g f  is a universal function which remains 

constant (about 2.1) for latitudes below 30o and decreases rapidly to 0.9 at the North or the South 

Pole; and (c) nonhydrostatic effects are significant in the immediate neighborhood of the coastline.  

Sun and Orlanski (1981a, b) solved both linearized and nonlinear equations as initial values 

problems and confirmed that the two-day-waves can be easily excited by the diurnal oscillation of 

the land-sea contrast at lower latitudes (< 15 degrees).  On the other hand, a combination of 1-day 

and 2-day waves may coexist up to 30 degrees.  These waves may correspond to the mesoscale 

cloud bands observed along coastlines with a space interval of a few tens to few hundred 

kilometers. 

 

6.5.2 Nonlinear numerical studies 

 Figure 6.23 shows an example of the structure of a sea breeze front, as simulated by a three-

dimensional nonlinear numerical model.  At 1000 local time (Fig. 6.23a), the sea breeze is about 

400 m deep with a maximum horizontal velocity of about 6 ms-1 and a vertical velocity of about 

1.5 ms-1 above the sea breeze front.  The front has advanced a distance of about 6 km inland in 

spite of resistance from the offshore basic wind of 10 ms-1. Since the sea breeze front has a scale 

of only 200 m, there is a need for treating it in greater detail.  This is approached by utilizing higher 

horizontal resolution for more accurate and detailed simulation of the front.  At 1200 local time 

(Fig. 6.23b), the sea breeze front advances to about 60 km inland and has developed to a depth of 

about 800 m.  In three-dimensional simulations, horizontal convective rolls tend to develop over 
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land in response to strong daytime surface heating with a parallel alignment to the vertical wind 

shear vector (Dailey and Fovell 1999).  The sea-breeze front, along with the horizontal convective 

rolls parallel to the front, are thus able to initiate deep convection (Fovell 2005). 

 At the nose of the sea breeze front, the denser sea breeze air overruns the less dense land 

airmass, an occurrence that extends to a height of approximately 100 m (Fig. 6.24).  The sea-breeze 

front thus begins to behave like a density current.  Its head is divided into a series of lobes and 

clefts.  Some of the warmer air is overrun and ingested in the cleft in the center of the lobe, as 

depicted in Fig. 6.24.    The spacing between the clefts is about 1 km.  Longitudinal bands aligned 

with environmental shear vectors are the preferred mode of convection for small-amplitude 

perturbations over a flat terrain in both dry and saturated atmospheres, as revealed in theoretical 

studies (Asai 1972), although sometimes, the longitudinal band may coexist with transvers bands 

associated with gravity waves (Sun 1978).  In addition to the sea-breeze front, Kelvin-Helmholtz 

billows have been observed; they are caused by the development of shear instability, as depicted 

in the schematic diagram of Fig. 6.25.  These features of the sea-breeze front have also been 

reproduced in laboratory experiments.   

 Further advancement in numerical simulations of the sea and land breezes have been made by 

exploring the effects of diurnal variation, land breeze, isolated lakes and islands, basic wind shear, 

differences between land breeze and sea breeze, combined effects of sea breeze and mountain 

solenoidal circulations, initiation of and interaction with deep convection, air pollutant transport 

by sea-breezes, and mountain effects.   

 

6.6 Dynamics of mountain-plains solenoidal circulations 

 

 The dynamics of mountain-plains solenoidal (MPS) 

circulations is a little explored area of orographically 

influenced flow and weather phenomena.  This is mainly due 

to the complicated interactions between orographic and 

thermal forcings.   

 

 Taking into consideration sensible heating or cooling over 

elevated terrain results in a considerably more complex flow 

than has been considered until now.  The classical view of 

orographically and thermally forced winds in mountains 

includes the slope and mountain-valley winds.   
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 During the day, the mountain serves as an elevated heat 

source due to the sensible heat released by the mountain 

surface.   

 

In a quiescent atmosphere, this can induce mountain 

upslope flow or upslope wind, which in turn may initiate 

cumuli or thunderstorms over the mountain peak and 

produce orographic precipitation.   

 

 At night, the opposite occurs: surface cooling produces 

downslope drainage flow.    

 

 Based on observations, four stages in the development of a 

thermally forced circulation generated by solar heating in a 

mountain valley have been identified (e.g., Banta 1990):  

 

I. Before sunrise, the nocturnal inversion layer contains drainage 

flow, which generally blows in a different direction from the 

winds above the inversion. Just prior to sunrise, this very stable 

layer remains adjacent to the surface; 

II.  After sunrise, surface sensible heating erodes the inversion layer 

and produces a shallow convective boundary layer (CBL) below 

the inversion layer and the upslope flow; 

III.  The shallow CBL or upslope layer deepens as the surface 

heating continues; and 

IV.  After the nocturnal inversion layer disappears during the 

afternoon, a deep, well-mixed CBL is created.    
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Linear theories described in Sections 6.1 and 6.2 have been applied to study the combined 

effects of orographic and thermal forcing for mesoscale mountain flow (e.g., Raymond 1972; 

Smith and Lin 1982).  Numerical modeling studies of the combined orographical and thermal 

forcing have been explored as early as the 1960’s (e.g., Orville 1964, 1968).  More 

sophisticated numerical models with a variety of initial conditions have been adopted in the 

more recent studies of mountain-plains solenoidal circulations.  The results given by these 

models have been verified by conventional observations as well as field experiments (e.g. 

Tripoli and Cotton 1989; Wolyn and McKee 1994).   

  

 Figure 6.26 shows a conceptual model for the daytime 

evolution of the MPS circulation.  
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The circulation primarily includes:  

o Transitional stage 

o Developing mountain-plain solenoidal (MPS) stage 
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o Migrating MPS stage.   

 

The transitional stage occurs when the sun rises.  The most 

pronounced feature of the transition stage is the katabatic 

jetlike flow down the east side of the mountain (Fig. 6.26a).   

 

The slowing of the nocturnal jet on the eastern plains produces 

a convergence that lifts the cold air, thus creating a stable core 

that is shallower farther east of the barrier.  This nocturnal 

katabatic flow weakens as it is affected by the surface heating, 

and is replaced by a mesoscale solenoidal circulation 3-4 h after 

sunrise (Fig. 6.26b).  

 

A shallow convective boundary layer (CBL) is produced below 

the inversion layer and an upslope flow is produced by the 

horizontal pressure gradient force toward the slope in response 

to the buoyancy associated with the surface sensible heating.  

The main upward motion of the solenoidal circulation occurs 

in a narrow zone over the eastern slope of the mountain, and is 

called the leeside convergence zone (LCZ).  The LCZ lifts the 

air into the ambient air above, creating the cold core (denoted 

by “C” in Fig. 6.26b).   

A strong sinking motion occurs to the east of the cold core, 

creating a pressure trough in which the center of the solenoid 

is located.   The horizontal pressure gradient associated with 

the cold core and the trough to the east produces a horizontal 



 

 

 44 

wind speed maximum.  A broad region of sinking motion is 

located to the east of the solenoid center.   

 

At the later time of this stage, the sinking and horizontal warm-

air advection immediately east of the solenoid center is able to 

warm the air enough to create a negative pressure gradient in 

the stable core above the CBL.  

 

The final stage of the mountain-plains solenoidal circulation is 

characterized by the eastward migration (Fig. 6.26c). 

Convergence (divergence) near the height of the wind 

maximum region and divergence (convergence) near the 

surface tend to produce sinking motion ahead (behind) the 

horizontal wind maximum located beneath the leading edge of 

the cold core,.   

 

The solenoid center is located in a pressure trough beneath the 

eastward-moving leading edge of the cold core, while the LCZ 

remains anchored over the lee slopes.  Only the migrating MPS 

may be defined as a disturbance, and as thus can significantly 

affect the atmosphere on the plains located east of the system 

during the daytime circulations.  The CBL grows explosively 

and the depth of the upslope flow increases when the solenoid 

passes a location. 

  
The MPS has been shown to be responsible for producing a strong updraft, which in turn 

generated the dominant wave of the second episode of gravity waves observed on 11-12 July 

1981 during the Cooperative Convective Precipitation Experiment (Koch et al. 2001).  A 
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gravity wave was generated as the updraft impinged upon a stratified shear layer above the 

deep, well-mixed boundary layer developed by strong sensible heating over the Absaroka 

Mountains.  Explosive convection developed directly over the remnant gravity wave as an 

eastward-propagating density current, produced by a rainband generated within the MPS 

leeside convergence zone, merged with a westward-propagating density current in eastern 

Montana. The complicated interactions of differing sensible heat contributions from complex 

terrain, gravity waves, and convection indicate the need for increasingly detailed observations 

and theories to verify existing MPS hypotheses and gravity wave generation. 
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Appendix 6.1:  Laplace transform  

If a function f(t) is defined in the interval 0 t   , where t and f(t) are real, then the function 

ˆ ( )f s , defined by the Laplace integral 

 
0

ˆ ( ) ( ( )) ( ) stf s f t f t e dt


  L , (A6.1.1) 

where s is a complex number.  The transformation of f(t) into ˆ ( )f s  is called the Laplace transform, 

which is often used to solve differential equations involving time.  The first step is to apply 

(A6.1.1) to transform the differential equation into the Laplace space.  The second is to find the 

solution for the unknown function ˆ ( )f s  in the Laplace space.  The third step is to invert ˆ ( )f s  

back to the physical space f(t), i.e., to take the inverse Laplace transform.  The actual inverse 

Laplace transform involves the contour integration in the complex plane, but in practice it is often 

performed by applying some known properties of Laplace transform, such as the linear property, 

 ˆ ˆ( ( ) ( )) ( ) ( )af t bg t af s bg s  L
. (A6.1.2) 

  

Some basic properties of Laplace transform and inverse Laplace transform can be found in 

Hildebrand (1976), among other mathematical textbooks.   
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