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Lecture 17 The Clausius-Clapeyron Equation
(Ref.: Sec.4.5 of Hess)

» In this lecture, we will derive an important equation, the Clausius-
Clapeyron equation, which calculates the change of the saturation
vapor pressure with temperature (dey/dT) during a phase change.

» Based on observations and experiments, a phase change is reversible
and isothermal.

The latent heat for a reversible process may be calculated by
le=_[12dq=I12Tds=T(s2—sl). (17.1)

Thus, in order to relate L1, to saturation pressure, we need to relate
entropy s.and s, to saturation pressure.

» Consider the following cyclic process in an a-e diagram.
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Fig. 4.2
A-B: A slight increase in temperature, A7, without any change
in phase leading to state B: (es+Aes, a+Aa,, T+AT)
B—C: an isothermal phase change leading to state C:
(estAes, a+Aa,, T+AT)
C-D: A slight decrease in temperature, -AT, without any change of phase, leading
to state D: (e, o, T)
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D-A: an isothermal change of phase back to state A: (es, ,,
» Apply the first law to the above processes,

dq=1Tds =du+ eda.
Thus, for the whole cyclic process,

$Tds = $egda, (17.2)

because for a closed line integral du is zero (du is an exact differential).

The right side of (17.2) 1s nothing but the area enclosed by the curves,
which is approximately equal to (¢, - &,)Aes.
Thus, we have

¢ Tds = (a, — ay)le;. (17.3)

Since d(Ts) is an exact differential, we have
¢ Tds = —$sdT.

We now evaluate this integral, — fﬁ sdT, along each of the four parts
of the cycle.

A—B: no heat added, thus s 1s a constant.

— [ sdT = —5,4T.
B—C: Isothermal process,

—[{sdT =o0.
C—-D: no heat added, similar to A—B,

—fCDS dT = s,AT.
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D— A: Isothermal process,

—[MsdT = 0.
As a result,

¢ Tds = (s, — s1)AT- (17.4)
Combining Eqgs. (17.3) and (17.4) leads to

(52 — $1)AT = (a; — ag)Ae;
or

de
S; — 51 = (a, — ay) d_TS'

Substituting the above equation into (17.1) leads to

_ _ daes
Li; = (ay; —ay)T ar’

or

deg — L (17.5)
dT T(az-a1)’

This is called Clausius-Clapeyron equation. If L, as, and a2 are
known functions of 7, then (17.5) can be integrated to obtain a
relation between saturation vapor pressure and 7.

It gives the slope of the curves of saturation vapor pressure versus
temperature as a function of the latent heat, temperature and the
difference in specific volume of the two phases.

» We will consider two special cases: evaporation and sublimation.
Since for these two cases, a-is the specific volume for water vapor
which is much greater than «; (for liquid water or ice), and L is
nearly a constant for each processes.
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Thus, the Clausius-Clapeyron equation may be approximated by

deés _ Lip (17.6)
dT Ta3

Using the equation of state for ideal gases,

ea,=RT or a, =M
e,

we get

de, Ly dT 17.7

e, R T (17.7)
Therefore,

m(&j:i(LLJ. (17.8)

eSU RV ]:7 T

where ey, 1s the saturation vapor pressure at To.

For evaporation, e;,=6.11 mb and 7,=273 K, which implies

m( 2 J:%( 1 _i} (17.9)
6.11mb) R, 273 T
or
e =6 11mbexp| 2ow | L _ L (17.10)
o R \273 T )| '
For sublimation,
m( 2 szsub( 1 _LJ, (17.11)
6.11mb) R, 273 T
or
L,( 1 1
es=6.11mbexp{;e—‘:b(2—73—FJ}. (17.12)



Example: Calculate the change in the melting point of ice if the

pressure is increased from 1 to 2 atm, given that

o, =1.0908x10"mkg ™", a,=1.001x10"mkg™"

L . =334x10°J kg™ at 0°C.

‘melt

Solution: Using Clausius-Clapeyron equation,
dl =T(a, - ;) dp

‘melt

=273x(1.001-1.0908)x1.013x10° / 3.34x10°
=-0.00744 deg

Therefore, an increase in pressure of 1 atm decreases the melting
point of ice by about 0.007 deg. Usually, the melting point increases
with increasing pressure. But ice is unusual because ¢, < «.

» Equations (17.9) and (17.11) plus a similar equation for melting
allow us to plot the curves of saturation pressure versus temperature.
These curves describe the T-e relations during phase changes (e=ey).
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Figure 4.3 (Hess): 7, e phase [Ref]

diagram for water substances.

All curves begin at the triple point.
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(a) Evaporation curve a: curves upward exponentially to the right
according to Eq. (17.9) (I'> 273K, and e;> 6.11 mb). Along this
curve, water and vapor are in equilibrium until it reaches the
critical point (7' = 374 K) where only vapor can exist. At some
point along this curve, water starts to boil. That is the point when

€s—Patm-

(b) Sublimation curve b: curves downward exponentially to the left
of the triple point (7 <273 K, ;< 6.11 mb). This curve is steeper
than the evaporation curve because Lgup > Levap.

(c) Melting curve c: since oy, - «; is almost zero (a very small
negative number), dey/dT 1s almost -0o, based on the Clausius-
Clapeyron equation. Thus the curve is almost vertical, but tilts
very slightly to the left.

(d) Supercooled water d: When water which does not freeze below
273 K (0oC), it is called supercooled water. For supercooled water,
within a certain temperature range of 7< 0°C, ey, > es; (curve d).

Therefore, in a cloud with mixture of ice crystals and supercooled
water (cloud) droplets, water vapor will first sublime on the ice
because eg; 1s smaller than ey,

In other words, in the competition for water vapor, ice will win
over supercooled water. This leads to the well-known Bergeron-
Findeisen process.

That is, ice crystal in a cloud of supercooled water droplets will
grow faster than the water droplets.



» Since for each temperature (7), there is a relation (2-D curve)
between e and «, for all possible 7, these curves become a
three-dimensional surface (Figure 4.4)

Figure 4.4: (Hess) 3D thermodynamic [Reference]
surface of water substance.
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